android13/kernel-5.10/drivers/media/spi/rk1608_core.c

2798 lines
68 KiB
C

// SPDX-License-Identifier: GPL-2.0
/**
* Rockchip rk1608 driver
*
* Copyright (C) 2017-2018 Rockchip Electronics Co., Ltd.
*
*/
#include <linux/i2c.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
#include <linux/regulator/consumer.h>
#include <linux/completion.h>
#include <linux/rk-preisp.h>
#include <linux/rk-camera-module.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#include <linux/crc32.h>
#include "rk1608_core.h"
#include "rk1608_dev.h"
#define REF_DATA_PATH "/data/ref_data.img"
#define ENABLE_DMA_BUFFER 1
#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
struct msg_disp {
struct msg msg;
int32_t value[2];
};
struct rk1608_power_work {
struct work_struct wk;
struct rk1608_state *pdata;
struct completion work_fin;
};
static struct rk1608_power_work gwork;
/**
* Rk1608 is used as the Pre-ISP to link on Soc, which mainly has two
* functions. One is to download the firmware of RK1608, and the other
* is to match the extra sensor such as camera and enable sensor by
* calling sensor's s_power.
* |-----------------------|
* | Sensor Camera |
* |-----------------------|
* |-----------||----------|
* |-----------||----------|
* |-----------\/----------|
* | Pre-ISP RK1608 |
* |-----------------------|
* |-----------||----------|
* |-----------||----------|
* |-----------\/----------|
* | Rockchip Soc |
* |-----------------------|
* Data Transfer As shown above. In RK1608, the data received from the
* extra sensor,and it is passed to the Soc through ISP.
*/
static inline struct rk1608_state *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct rk1608_state, sd);
}
/**
* rk1608_operation_query - RK1608 last operation state query
*
* @spi: device from which data will be read
* @state: last operation state [out]
* Context: can sleep
*
* It returns zero on success, else a negative error code.
*/
int rk1608_operation_query(struct spi_device *spi, s32 *state)
{
s32 query_cmd = RK1608_CMD_QUERY;
struct spi_transfer query_cmd_packet = {
.tx_buf = &query_cmd,
.len = sizeof(query_cmd),
};
struct spi_transfer state_packet = {
.rx_buf = state,
.len = sizeof(*state),
};
struct spi_message m;
spi_message_init(&m);
spi_message_add_tail(&query_cmd_packet, &m);
spi_message_add_tail(&state_packet, &m);
spi_sync(spi, &m);
return ((*state & RK1608_STATE_ID_MASK) == RK1608_STATE_ID) ? 0 : -1;
}
/**
* rk1608_state_query - RK1608 system state query
*
* @spi: spi device
* @state: system state [out]
* Context: can sleep
*
* It returns zero on success, else a negative error code.
*/
int rk1608_state_query(struct spi_device *spi, int32_t *state)
{
int ret = 0;
s32 query_cmd = RK1608_CMD_QUERY_REG2;
struct spi_transfer query_cmd_packet = {
.tx_buf = &query_cmd,
.len = sizeof(query_cmd),
};
struct spi_transfer state_packet = {
.rx_buf = state,
.len = sizeof(*state),
};
struct spi_message m;
spi_message_init(&m);
spi_message_add_tail(&query_cmd_packet, &m);
spi_message_add_tail(&state_packet, &m);
ret = spi_sync(spi, &m);
return ret;
}
int rk1608_write(struct spi_device *spi,
s32 addr, const s32 *data, size_t data_len)
{
u8 *local_buf = NULL;
int ret = 0;
s32 write_cmd = RK1608_CMD_WRITE;
struct spi_transfer write_cmd_packet = {
.tx_buf = &write_cmd,
.len = sizeof(write_cmd),
};
struct spi_transfer addr_packet = {
.tx_buf = &addr,
.len = sizeof(addr),
};
struct spi_transfer data_packet = {
.tx_buf = data,
.len = data_len,
};
struct spi_message m;
u32 trans_len;
#if ENABLE_DMA_BUFFER
trans_len = data_len + sizeof(write_cmd) + sizeof(addr);
if (trans_len > (size_t)SPI_BUFSIZ) {
local_buf = kmalloc(max_t(size_t, SPI_BUFSIZ, data_len),
GFP_KERNEL | GFP_DMA);
if (!local_buf)
return -ENOMEM;
memcpy(local_buf, data, data_len);
data_packet.tx_buf = local_buf;
}
#endif
spi_message_init(&m);
spi_message_add_tail(&write_cmd_packet, &m);
spi_message_add_tail(&addr_packet, &m);
spi_message_add_tail(&data_packet, &m);
ret = spi_sync(spi, &m);
kfree(local_buf);
return ret;
}
/**
* rk1608_safe_write - RK1608 synchronous write with state check
*
* @spi: spi device
* @addr: resource address
* @data: data buffer
* @data_len: data buffer size, in bytes
* Context: can sleep
*
* It returns zero on success, else a negative error code.
*/
static int _rk1608_safe_write(struct rk1608_state *rk1608, struct spi_device *spi,
s32 addr, const s32 *data, size_t data_len)
{
int ret = 0;
s32 state = 0;
s32 try = 0;
do {
mutex_lock(&rk1608->spi2apb_lock);
ret = rk1608_write(spi, addr, data, data_len);
if (ret == 0)
ret = rk1608_operation_query(spi, &state);
mutex_unlock(&rk1608->spi2apb_lock);
if (ret != 0)
return ret;
else if ((state & RK1608_STATE_MASK) == 0)
break;
if (try++ == RK1608_OP_TRY_MAX)
break;
udelay(RK1608_OP_TRY_DELAY);
} while (1);
return (state & RK1608_STATE_MASK);
}
int rk1608_safe_write(struct rk1608_state *rk1608, struct spi_device *spi,
s32 addr, const s32 *data, size_t data_len)
{
int ret = 0;
size_t max_op_size = (size_t)RK1608_MAX_OP_BYTES;
while (data_len > 0) {
size_t slen = ALIGN(MIN(data_len, max_op_size), 4);
ret = _rk1608_safe_write(rk1608, spi, addr, data, slen);
if (ret == -ENOMEM) {
max_op_size = slen / 2;
continue;
}
if (ret)
break;
data_len = data_len - slen;
data = (s32 *)((s8 *)data + slen);
addr += slen;
}
return ret;
}
static void rk1608_hw_init(struct rk1608_state *rk1608, struct spi_device *spi)
{
s32 write_data = SPI0_PLL_SEL_APLL;
/* modify rk1608 spi slave clk to 300M */
rk1608_safe_write(rk1608, spi, CRUPMU_CLKSEL14_CON, &write_data, 4);
/* modify rk1608 spi io driver strength to 8mA */
write_data = BIT7_6_SEL_8MA;
rk1608_safe_write(rk1608, spi, PMUGRF_GPIO1A_E, &write_data, 4);
write_data = BIT1_0_SEL_8MA;
rk1608_safe_write(rk1608, spi, PMUGRF_GPIO1B_E, &write_data, 4);
}
/**
* rk1608_read - RK1608 synchronous read
*
* @spi: spi device
* @addr: resource address
* @data: data buffer [out]
* @data_len: data buffer size, in bytes
* Context: can sleep
*
* It returns zero on success, else a negative error code.
*/
int rk1608_read(struct spi_device *spi,
s32 addr, s32 *data, size_t data_len)
{
u8 *local_buf = NULL;
int ret;
s32 real_len = MIN(data_len, RK1608_MAX_OP_BYTES);
s32 read_cmd = RK1608_CMD_READ | (real_len << 14 &
RK1608_STATE_ID_MASK);
s32 read_begin_cmd = RK1608_CMD_READ_BEGIN;
s32 dummy = 0;
struct spi_transfer read_cmd_packet = {
.tx_buf = &read_cmd,
.len = sizeof(read_cmd),
};
struct spi_transfer addr_packet = {
.tx_buf = &addr,
.len = sizeof(addr),
};
struct spi_transfer read_dummy_packet = {
.tx_buf = &dummy,
.len = sizeof(dummy),
};
struct spi_transfer read_begin_cmd_packet = {
.tx_buf = &read_begin_cmd,
.len = sizeof(read_begin_cmd),
};
struct spi_transfer data_packet = {
.rx_buf = data,
.len = data_len,
};
struct spi_message m;
u32 trans_len;
#if ENABLE_DMA_BUFFER
trans_len = data_len + sizeof(read_cmd) + sizeof(addr) +
sizeof(dummy) + sizeof(read_begin_cmd);
if (trans_len > (size_t)SPI_BUFSIZ) {
local_buf = kmalloc(max_t(size_t, SPI_BUFSIZ, data_len),
GFP_KERNEL | GFP_DMA);
if (!local_buf)
return -ENOMEM;
data_packet.rx_buf = local_buf;
}
#endif
spi_message_init(&m);
spi_message_add_tail(&read_cmd_packet, &m);
spi_message_add_tail(&addr_packet, &m);
spi_message_add_tail(&read_dummy_packet, &m);
spi_message_add_tail(&read_begin_cmd_packet, &m);
spi_message_add_tail(&data_packet, &m);
ret = spi_sync(spi, &m);
if (local_buf) {
memcpy(data, local_buf, data_len);
kfree(local_buf);
}
return ret;
}
/**
* rk1608_safe_read - RK1608 synchronous read with state check
*
* @spi: spi device
* @addr: resource address
* @data: data buffer [out]
* @data_len: data buffer size, in bytes
* Context: can sleep
*
* It returns zero on success, else a negative error code.
*/
static int _rk1608_safe_read(struct rk1608_state *rk1608, struct spi_device *spi,
s32 addr, s32 *data, size_t data_len)
{
s32 state = 0;
s32 retry = 0;
int ret = 0;
do {
mutex_lock(&rk1608->spi2apb_lock);
ret = rk1608_read(spi, addr, data, data_len);
if (ret == 0)
ret = rk1608_operation_query(spi, &state);
mutex_unlock(&rk1608->spi2apb_lock);
if (ret != 0)
return ret;
if ((state & RK1608_STATE_MASK) == 0)
break;
udelay(RK1608_OP_TRY_DELAY);
} while (retry++ != RK1608_OP_TRY_MAX);
return -(state & RK1608_STATE_MASK);
}
int rk1608_safe_read(struct rk1608_state *rk1608, struct spi_device *spi,
s32 addr, s32 *data, size_t data_len)
{
int ret = 0;
size_t max_op_size = (size_t)RK1608_MAX_OP_BYTES;
while (data_len > 0) {
size_t slen = ALIGN(MIN(data_len, max_op_size), 4);
ret = _rk1608_safe_read(rk1608, spi, addr, data, slen);
if (ret == -ENOMEM) {
max_op_size = slen / 2;
continue;
}
if (ret)
break;
data_len = data_len - slen;
data = (s32 *)((s8 *)data + slen);
addr += slen;
}
return ret;
}
static int rk1608_read_wait(struct rk1608_state *rk1608, struct spi_device *spi,
const struct rk1608_section *sec)
{
s32 value = 0;
int retry = 0;
int ret = 0;
do {
ret = rk1608_safe_read(rk1608, spi, sec->wait_addr, &value, 4);
if (!ret && value == sec->wait_value)
break;
if (retry++ == sec->timeout) {
ret = -EPERM;
dev_err(&spi->dev, "Read 0x%x is %x != %x timeout\n",
sec->wait_addr, value, sec->wait_value);
break;
}
msleep(sec->wait_time);
} while (1);
return ret;
}
static int rk1608_boot_request(struct rk1608_state *rk1608,
struct spi_device *spi,
const struct rk1608_section *sec)
{
struct rk1608_boot_req boot_req;
int retry = 0;
int ret = 0;
/* Send boot request to rk1608 for ddr init */
boot_req.flag = sec->flag;
boot_req.load_addr = sec->load_addr;
boot_req.boot_len = sec->size;
boot_req.status = 1;
boot_req.cmd = 2;
ret = rk1608_safe_write(rk1608, spi, BOOT_REQUEST_ADDR,
(s32 *)&boot_req, sizeof(boot_req));
if (ret)
return ret;
if (sec->flag & BOOT_FLAG_READ_WAIT) {
/* Waitting for rk1608 init ddr done */
do {
ret = rk1608_safe_read(rk1608, spi, BOOT_REQUEST_ADDR,
(s32 *)&boot_req,
sizeof(boot_req));
if (!ret && boot_req.status == 0)
break;
if (retry++ == sec->timeout) {
ret = -EPERM;
dev_err(&spi->dev, "Boot request timeout\n");
break;
}
msleep(sec->wait_time);
} while (1);
}
return ret;
}
static int rk1608_download_section(struct rk1608_state *rk1608,
struct spi_device *spi, const u8 *data,
const struct rk1608_section *sec)
{
int ret = 0;
dev_info(&spi->dev, "offset:%x,size:%x,addr:%x,wait_time:%x",
sec->offset, sec->size, sec->load_addr, sec->wait_time);
dev_info(&spi->dev, "timeout:%x,crc:%x,flag:%x,type:%x",
sec->timeout, sec->crc_16, sec->flag, sec->type);
if (sec->size > 0) {
ret = rk1608_safe_write(rk1608, spi, sec->load_addr,
(s32 *)(data + sec->offset),
sec->size);
if (ret) {
dev_err(&spi->dev, "RK1608 safe write err =%d\n", ret);
return ret;
}
}
if (sec->flag & BOOT_FLAG_BOOT_REQUEST)
ret = rk1608_boot_request(rk1608, spi, sec);
else if (sec->flag & BOOT_FLAG_READ_WAIT)
ret = rk1608_read_wait(rk1608, spi, sec);
return ret;
}
/**
* rk1608_download_fw: - rk1608 firmware download through spi
*
* @spi: spi device
* @fw_name: name of firmware file, NULL for default firmware name
* Context: can sleep
*
* It returns zero on success, else a negative error code.
*/
int rk1608_download_fw(struct rk1608_state *rk1608, struct spi_device *spi,
const char *fw_name)
{
const struct rk1608_header *head;
const struct firmware *fw;
u32 i = 0;
int ret = 0;
if (!fw_name)
fw_name = RK1608_FW_NAME;
dev_info(&spi->dev, "Before request firmware");
ret = request_firmware(&fw, fw_name, &spi->dev);
if (ret) {
dev_err(&spi->dev, "Request firmware %s failed!", fw_name);
return ret;
}
head = (const struct rk1608_header *)fw->data;
dev_info(&spi->dev, "Request firmware %s (version:%s) success!",
fw_name, head->version);
for (i = 0; i < head->section_count; i++) {
ret = rk1608_download_section(rk1608, spi, fw->data,
&head->sections[i]);
if (ret)
break;
}
release_firmware(fw);
return ret;
}
static int rk1608_lsb_w32(struct spi_device *spi, s32 addr, s32 data)
{
s32 write_cmd = RK1608_CMD_WRITE;
struct spi_transfer write_cmd_packet = {
.tx_buf = &write_cmd,
.len = sizeof(write_cmd),
};
struct spi_transfer addr_packet = {
.tx_buf = &addr,
.len = sizeof(addr),
};
struct spi_transfer data_packet = {
.tx_buf = &data,
.len = sizeof(data),
};
struct spi_message m;
write_cmd = MSB2LSB32(write_cmd);
addr = MSB2LSB32(addr);
data = MSB2LSB32(data);
spi_message_init(&m);
spi_message_add_tail(&write_cmd_packet, &m);
spi_message_add_tail(&addr_packet, &m);
spi_message_add_tail(&data_packet, &m);
return spi_sync(spi, &m);
}
static int rk1608_msg_init_sensor(struct rk1608_state *pdata,
struct msg_init *msg, int in_mipi, int out_mipi,
int id, int cam_id)
{
u32 idx = pdata->dphy[id]->fmt_inf_idx;
msg->msg_head.size = sizeof(struct msg_init);
msg->msg_head.type = id_msg_init_sensor_t;
msg->msg_head.id.camera_id = cam_id;
msg->msg_head.mux.sync = 1;
msg->in_mipi_phy = in_mipi;
msg->out_mipi_phy = out_mipi;
msg->mipi_lane = pdata->dphy[id]->fmt_inf[idx].mipi_lane;
msg->bayer = 0;
memcpy(msg->sensor_name, pdata->dphy[id]->sensor_name,
sizeof(msg->sensor_name));
msg->i2c_slave_addr = pdata->dphy[id]->i2c_addr;
msg->i2c_bus = pdata->dphy[id]->i2c_bus;
msg->sub_sensor_num = pdata->dphy[id]->sub_sensor_num;
return rk1608_send_msg_to_dsp(pdata, &msg->msg_head);
}
static int rk1608_msg_init_dsp_time(struct rk1608_state *pdata,
struct msg_init_dsp_time *msg, int id)
{
u64 usecs64;
u32 mod;
msg->msg_head.size = sizeof(struct msg_init_dsp_time);
msg->msg_head.type = id_msg_sys_time_set_t;
msg->msg_head.id.camera_id = id;
msg->msg_head.mux.sync = 0;
usecs64 = ktime_to_us(ktime_get());
mod = do_div(usecs64, USEC_PER_MSEC);
msg->tv_usec = mod;
msg->tv_sec = usecs64;
return rk1608_send_msg_to_dsp(pdata, &msg->msg_head);
}
static int rk1608_msg_set_input_size(struct rk1608_state *pdata,
struct msg_in_size *msg, int id, int cam_id)
{
u32 i;
u32 msg_size = sizeof(struct msg);
u32 idx = pdata->dphy[id]->fmt_inf_idx;
struct rk1608_fmt_inf *fmt_inf = &pdata->dphy[id]->fmt_inf[idx];
for (i = 0; i < 4; i++) {
if (fmt_inf->in_ch[i].width == 0)
break;
msg->channel[i].width = fmt_inf->in_ch[i].width;
msg->channel[i].height = fmt_inf->in_ch[i].height;
msg->channel[i].data_id = fmt_inf->in_ch[i].data_id;
msg->channel[i].decode_format =
fmt_inf->in_ch[i].decode_format;
msg->channel[i].flag = fmt_inf->in_ch[i].flag;
msg_size += sizeof(struct preisp_vc_cfg);
}
msg->msg_head.size = msg_size / sizeof(int);
msg->msg_head.type = id_msg_set_input_size_t;
msg->msg_head.id.camera_id = cam_id;
msg->msg_head.mux.sync = 1;
return rk1608_send_msg_to_dsp(pdata, &msg->msg_head);
}
static int rk1608_msg_set_output_size(struct rk1608_state *pdata,
struct msg_set_output_size *msg, int id, int cam_id)
{
u32 i;
u32 msg_size = sizeof(struct msg_out_size_head);
u32 idx = pdata->dphy[id]->fmt_inf_idx;
struct rk1608_fmt_inf *fmt_inf = &pdata->dphy[id]->fmt_inf[idx];
for (i = 0; i < 4; i++) {
if (fmt_inf->out_ch[i].width == 0)
break;
msg->channel[i].width = fmt_inf->out_ch[i].width;
msg->channel[i].height = fmt_inf->out_ch[i].height;
msg->channel[i].data_id = fmt_inf->out_ch[i].data_id;
msg->channel[i].decode_format =
fmt_inf->out_ch[i].decode_format;
msg->channel[i].flag = fmt_inf->out_ch[i].flag;
msg_size += sizeof(struct preisp_vc_cfg);
}
msg->head.msg_head.size = msg_size / sizeof(int);
msg->head.msg_head.type = id_msg_set_output_size_t;
msg->head.msg_head.id.camera_id = cam_id;
msg->head.msg_head.mux.sync = 1;
msg->head.width = fmt_inf->hactive;
msg->head.height = fmt_inf->vactive;
msg->head.mipi_clk = 2 * pdata->dphy[id]->link_freqs;
msg->head.line_length_pclk = fmt_inf->htotal;
msg->head.frame_length_lines = fmt_inf->vtotal;
msg->head.mipi_lane = fmt_inf->mipi_lane_out;
msg->head.flip = pdata->flip;
return rk1608_send_msg_to_dsp(pdata, &msg->head.msg_head);
}
static int rk1608_msg_set_stream_in_on(struct rk1608_state *pdata,
struct msg *msg, int id)
{
msg->size = sizeof(struct msg);
msg->type = id_msg_set_stream_in_on_t;
msg->id.camera_id = id;
msg->mux.sync = 1;
return rk1608_send_msg_to_dsp(pdata, msg);
}
static int rk1608_msg_set_stream_in_off(struct rk1608_state *pdata,
struct msg *msg, int id)
{
msg->size = sizeof(struct msg);
msg->type = id_msg_set_stream_in_off_t;
msg->id.camera_id = id;
msg->mux.sync = 1;
return rk1608_send_msg_to_dsp(pdata, msg);
}
static int rk1608_msg_set_stream_out_on(struct rk1608_state *pdata,
struct msg *msg, int id)
{
msg->size = sizeof(struct msg);
msg->type = id_msg_set_stream_out_on_t;
msg->id.camera_id = id;
msg->mux.sync = 1;
return rk1608_send_msg_to_dsp(pdata, msg);
}
static int rk1608_msg_set_stream_out_off(struct rk1608_state *pdata,
struct msg *msg, int id)
{
msg->size = sizeof(struct msg);
msg->type = id_msg_set_stream_out_off_t;
msg->id.camera_id = id;
msg->mux.sync = 1;
return rk1608_send_msg_to_dsp(pdata, msg);
}
int rk1608_set_log_level(struct rk1608_state *pdata, int level)
{
struct msg *msg = kzalloc(sizeof(*msg), GFP_KERNEL);
int ret = 0;
if (!msg)
return -ENOMEM;
msg->size = sizeof(struct msg);
msg->type = id_msg_set_log_level_t;
msg->mux.log_level = level;
ret = rk1608_send_msg_to_dsp(pdata, msg);
kfree(msg);
return ret;
}
static int rk1608_send_meta_hdrae(struct rk1608_state *pdata,
struct preisp_hdrae_exp_s *hdrae_exp)
{
int ret = 0;
unsigned long flags;
struct msg_set_sensor_info_s *msg;
msg = kzalloc(sizeof(*msg), GFP_KERNEL);
if (!msg)
return -ENOMEM;
msg->msg_head.size = sizeof(*msg) / 4;
msg->msg_head.type = id_msg_set_sensor_info_t;
msg->msg_head.id.camera_id = 0;
msg->msg_head.mux.sync = 0;
msg->set_exp_cnt = pdata->set_exp_cnt++;
spin_lock_irqsave(&pdata->hdrae_lock, flags);
msg->r_gain = pdata->hdrae_para.r_gain;
msg->b_gain = pdata->hdrae_para.b_gain;
msg->gr_gain = pdata->hdrae_para.gr_gain;
msg->gb_gain = pdata->hdrae_para.gb_gain;
memcpy(msg->lsc_table, pdata->hdrae_para.lsc_table,
sizeof(msg->lsc_table));
spin_unlock_irqrestore(&pdata->hdrae_lock, flags);
/* dsp hdrae */
msg->dsp_hdrae.bayer_mode = BAYER_MODE_BGGR;
msg->dsp_hdrae.grid_mode = AE_MEASURE_GRID_15X15;
memset(&msg->dsp_hdrae.weight[0], 3, ISP_DSP_HDRAE_MAXGRIDITEMS);
msg->dsp_hdrae.hist_mode = AE_HISTSTATICMODE_Y;
msg->dsp_hdrae.ycoeff.rcoef = 1;
msg->dsp_hdrae.ycoeff.gcoef = 1;
msg->dsp_hdrae.ycoeff.bcoef = 1;
msg->dsp_hdrae.ycoeff.offset = 0;
msg->dsp_hdrae.imgbits = 0;
msg->dsp_hdrae.width = 1920;
msg->dsp_hdrae.height = 1080;
msg->dsp_hdrae.frames = 2;
msg->reg_exp_time[0] = hdrae_exp->long_exp_reg;
msg->reg_exp_gain[0] = hdrae_exp->long_gain_reg;
msg->reg_exp_time[1] = hdrae_exp->middle_exp_reg;
msg->reg_exp_gain[1] = hdrae_exp->middle_gain_reg;
msg->reg_exp_time[2] = hdrae_exp->short_exp_reg;
msg->reg_exp_gain[2] = hdrae_exp->short_gain_reg;
msg->exp_time[0] = hdrae_exp->long_exp_val;
msg->exp_gain[0] = hdrae_exp->long_gain_val;
msg->exp_time[1] = hdrae_exp->middle_exp_val;
msg->exp_gain[1] = hdrae_exp->middle_gain_val;
msg->exp_time[2] = hdrae_exp->short_exp_val;
msg->exp_gain[2] = hdrae_exp->short_gain_val;
ret = rk1608_send_msg_to_dsp(pdata, &msg->msg_head);
kfree(msg);
return ret;
}
static int rk1608_disp_set_frame_output(struct rk1608_state *pdata,
void *args)
{
int ret = 0;
int value = *(unsigned int *)args;
struct msg_disp msg_disp;
dev_info(pdata->dev, "%s:%d\n", __func__, value);
msg_disp.msg.size = sizeof(msg_disp) / 4;
msg_disp.msg.type = id_msg_disp_set_frame_output_t;
msg_disp.msg.id.camera_id = pdata->sd.grp_id;
msg_disp.msg.mux.sync = 0;
msg_disp.value[0] = value;
ret = rk1608_send_msg_to_dsp(pdata, (struct msg *)&msg_disp);
return ret;
}
static int rk1608_disp_set_frame_format(struct rk1608_state *pdata,
void *args)
{
int ret = 0;
unsigned int value = *(unsigned int *)args;
struct msg_disp msg_disp;
dev_info(pdata->dev, "%s:%d\n", __func__, value);
msg_disp.msg.size = sizeof(msg_disp) / 4;
msg_disp.msg.type = id_msg_disp_set_frame_format_t;
msg_disp.msg.id.camera_id = pdata->sd.grp_id;
msg_disp.msg.mux.sync = 0;
msg_disp.value[0] = value;
ret = rk1608_send_msg_to_dsp(pdata, (struct msg *)&msg_disp);
return ret;
}
static int rk1608_disp_set_led_on_off(struct rk1608_state *pdata,
void *args)
{
int ret = 0;
unsigned int value = *(unsigned int *)args;
struct msg_disp msg_disp;
dev_info(pdata->dev, "%s:%d\n", __func__, value);
msg_disp.msg.size = sizeof(msg_disp) / 4;
msg_disp.msg.type = id_msg_disp_set_led_on_off_t;
msg_disp.msg.id.camera_id = pdata->sd.grp_id;
msg_disp.msg.mux.sync = 0;
msg_disp.value[0] = value;
ret = rk1608_send_msg_to_dsp(pdata, (struct msg *)&msg_disp);
return ret;
}
static int rk1608_disp_set_frame_type(struct rk1608_state *pdata,
void *args)
{
int ret = 0;
unsigned int value = *(unsigned int *)args;
struct msg_disp msg_disp;
dev_info(pdata->dev, "%s:%d\n", __func__, value);
msg_disp.msg.size = sizeof(msg_disp) / 4;
msg_disp.msg.type = id_msg_disp_set_frame_type_t;
msg_disp.msg.id.camera_id = pdata->sd.grp_id;
msg_disp.msg.mux.sync = 0;
msg_disp.value[0] = value;
ret = rk1608_send_msg_to_dsp(pdata, (struct msg *)&msg_disp);
return ret;
}
static int rk1608_disp_set_pro_time(struct rk1608_state *pdata,
void *args)
{
int ret = 0;
unsigned int value = *(unsigned int *)args;
struct msg_disp msg_disp;
dev_info(pdata->dev, "%s:%d\n", __func__, value);
msg_disp.msg.size = sizeof(msg_disp) / 4;
msg_disp.msg.type = id_msg_disp_set_pro_time_t;
msg_disp.msg.id.camera_id = pdata->sd.grp_id;
msg_disp.msg.mux.sync = 0;
msg_disp.value[0] = value;
ret = rk1608_send_msg_to_dsp(pdata, (struct msg *)&msg_disp);
return ret;
}
static int rk1608_disp_set_pro_current(struct rk1608_state *pdata,
void *args)
{
int ret = 0;
unsigned int value = *(unsigned int *)args;
struct msg_disp msg_disp;
dev_info(pdata->dev, "%s:%d\n", __func__, value);
msg_disp.msg.size = sizeof(msg_disp) / 4;
msg_disp.msg.type = id_msg_disp_set_pro_current_t;
msg_disp.msg.id.camera_id = pdata->sd.grp_id;
msg_disp.msg.mux.sync = 0;
msg_disp.value[0] = value;
ret = rk1608_send_msg_to_dsp(pdata, (struct msg *)&msg_disp);
return ret;
}
static int rk1608_disp_set_denoise(struct rk1608_state *pdata,
void *args)
{
int ret = 0;
unsigned int *value = (unsigned int *)args;
struct msg_disp msg_disp;
dev_info(pdata->dev, "%s:%d %d\n", __func__, value[0], value[1]);
msg_disp.msg.size = sizeof(msg_disp) / 4;
msg_disp.msg.type = id_msg_disp_set_denoise_t;
msg_disp.msg.id.camera_id = pdata->sd.grp_id;
msg_disp.msg.mux.sync = 0;
msg_disp.value[0] = value[0];
msg_disp.value[1] = value[1];
ret = rk1608_send_msg_to_dsp(pdata, (struct msg *)&msg_disp);
return ret;
}
static int rk1608_disp_write_eeprom_request(struct rk1608_state *pdata)
{
int ret = 0;
struct msg msg;
dev_info(pdata->dev, "%s\n", __func__);
msg.size = sizeof(struct msg) / 4;
msg.type = id_msg_calibration_write_req_mode2_t;
msg.id.camera_id = pdata->sd.grp_id;
msg.mux.sync = 0;
ret = rk1608_send_msg_to_dsp(pdata, (struct msg *)&msg);
return ret;
}
static int rk1608_disp_read_eeprom_request(struct rk1608_state *pdata)
{
int ret = 0;
struct msg msg;
dev_info(pdata->dev, "%s\n", __func__);
msg.size = sizeof(struct msg) / 4;
msg.type = id_msg_calibration_read_req_mode2_t;
msg.id.camera_id = pdata->sd.grp_id;
msg.mux.sync = 0;
ret = rk1608_send_msg_to_dsp(pdata, (struct msg *)&msg);
return ret;
}
static int rk1608_init_virtual_sub_sensor(
struct rk1608_state *pdata, int id, int index)
{
struct msg *msg = NULL;
struct msg_init *msg_init = NULL;
struct msg_in_size *msg_in_size = NULL;
struct msg_set_output_size *msg_out_size = NULL;
int cam_id = pdata->dphy[id]->sub_sensor[index].id;
int in_mipi = pdata->dphy[id]->sub_sensor[index].in_mipi;
int out_mipi = pdata->dphy[id]->sub_sensor[index].out_mipi;
int ret = 0;
msg = kzalloc(sizeof(*msg), GFP_KERNEL);
if (!msg) {
ret = -ENOMEM;
goto err;
}
msg_init = kzalloc(sizeof(*msg_init), GFP_KERNEL);
if (!msg_init) {
ret = -ENOMEM;
goto err;
}
msg_in_size = kzalloc(sizeof(*msg_in_size), GFP_KERNEL);
if (!msg_in_size) {
ret = -ENOMEM;
goto err;
}
msg_out_size = kzalloc(sizeof(*msg_out_size), GFP_KERNEL);
if (!msg_out_size) {
ret = -ENOMEM;
goto err;
}
ret = rk1608_msg_init_sensor(pdata, msg_init, in_mipi, out_mipi, id, cam_id);
ret |= rk1608_msg_set_input_size(pdata, msg_in_size, id, cam_id);
ret |= rk1608_msg_set_output_size(pdata, msg_out_size, id, cam_id);
ret |= rk1608_msg_set_stream_in_on(pdata, msg, cam_id);
err:
kfree(msg_init);
kfree(msg_in_size);
kfree(msg_out_size);
kfree(msg);
return ret;
}
static int rk1608_init_sensor(struct rk1608_state *pdata, int id)
{
struct msg *msg = NULL;
struct msg_init *msg_init = NULL;
struct msg_in_size *msg_in_size = NULL;
struct msg_set_output_size *msg_out_size = NULL;
struct msg_init_dsp_time *msg_init_time = NULL;
int in_mipi = pdata->dphy[id]->in_mipi;
int out_mipi = pdata->dphy[id]->out_mipi;
int cam_id = id;
int ret = 0;
if (!pdata->sensor[id]) {
dev_err(pdata->dev, "Did not find a sensor[%d]!\n", id);
return -EINVAL;
}
msg = kzalloc(sizeof(*msg), GFP_KERNEL);
if (!msg) {
ret = -ENOMEM;
goto err;
}
msg_init = kzalloc(sizeof(*msg_init), GFP_KERNEL);
if (!msg_init) {
ret = -ENOMEM;
goto err;
}
msg_init_time = kzalloc(sizeof(*msg_init_time), GFP_KERNEL);
if (!msg_init_time) {
ret = -ENOMEM;
goto err;
}
msg_in_size = kzalloc(sizeof(*msg_in_size), GFP_KERNEL);
if (!msg_in_size) {
ret = -ENOMEM;
goto err;
}
msg_out_size = kzalloc(sizeof(*msg_out_size), GFP_KERNEL);
if (!msg_out_size) {
ret = -ENOMEM;
goto err;
}
ret = rk1608_msg_init_sensor(pdata, msg_init, in_mipi, out_mipi, id, cam_id);
ret |= rk1608_msg_init_dsp_time(pdata, msg_init_time, id);
ret |= rk1608_msg_set_input_size(pdata, msg_in_size, id, cam_id);
ret |= rk1608_msg_set_output_size(pdata, msg_out_size, id, cam_id);
ret |= rk1608_msg_set_stream_in_on(pdata, msg, cam_id);
ret |= rk1608_msg_set_stream_out_on(pdata, msg, cam_id);
err:
kfree(msg_init);
kfree(msg_init_time);
kfree(msg_in_size);
kfree(msg_out_size);
kfree(msg);
return ret;
}
static int rk1608_deinit(struct rk1608_state *pdata, int id)
{
struct msg *msg;
int ret = 0;
msg = kzalloc(sizeof(*msg), GFP_KERNEL);
if (!msg)
return -ENOMEM;
ret = rk1608_msg_set_stream_out_off(pdata, msg, id);
ret |= rk1608_msg_set_stream_in_off(pdata, msg, id);
kfree(msg);
return ret;
}
static void rk1608_cs_set_value(struct rk1608_state *pdata, int value)
{
s8 null_cmd = 0;
struct spi_transfer null_cmd_packet = {
.tx_buf = &null_cmd,
.len = sizeof(null_cmd),
.cs_change = !value,
};
struct spi_message m;
spi_message_init(&m);
spi_message_add_tail(&null_cmd_packet, &m);
spi_sync(pdata->spi, &m);
}
void rk1608_set_spi_speed(struct rk1608_state *pdata, u32 hz)
{
pdata->spi->max_speed_hz = hz;
}
static int rk1608_power_on(struct rk1608_state *pdata)
{
struct spi_device *spi = pdata->spi;
int ret = 0;
if (pdata->pwren_gpio)
gpiod_direction_output(pdata->pwren_gpio, 1);
if (!IS_ERR(pdata->mclk)) {
ret = clk_set_rate(pdata->mclk, RK1608_MCLK_RATE);
if (ret < 0)
dev_warn(pdata->dev, "Failed to set mclk rate\n");
if (clk_get_rate(pdata->mclk) != RK1608_MCLK_RATE)
dev_warn(pdata->dev, "mclk(%lu) mismatched\n",
clk_get_rate(pdata->mclk));
ret = clk_prepare_enable(pdata->mclk);
if (ret < 0)
dev_warn(pdata->dev, "Failed to enable mclk\n");
else
usleep_range(3000, 3500);
}
/* Request rk1608 enter slave mode */
rk1608_cs_set_value(pdata, 0);
if (pdata->wakeup_gpio)
gpiod_direction_output(pdata->wakeup_gpio, 1);
usleep_range(3000, 3500);
if (pdata->reset_gpio) {
gpiod_direction_output(pdata->reset_gpio, 1);
gpiod_direction_output(pdata->reset_gpio, 0);
gpiod_direction_output(pdata->reset_gpio, 1);
}
/* After Reset pull-up, CSn should keep low for 2ms+ */
usleep_range(3000, 3500);
rk1608_cs_set_value(pdata, 1);
rk1608_set_spi_speed(pdata, pdata->min_speed_hz);
rk1608_lsb_w32(spi, SPI_ENR, 0);
rk1608_lsb_w32(spi, SPI_CTRL0,
OPM_SLAVE_MODE | RSD_SEL_2CYC | DFS_SEL_16BIT);
rk1608_hw_init(pdata, pdata->spi);
rk1608_set_spi_speed(pdata, pdata->max_speed_hz);
/* Download system firmware */
ret = rk1608_download_fw(pdata, pdata->spi, pdata->firm_name);
if (ret)
dev_err(pdata->dev, "Download firmware failed!");
else
dev_info(pdata->dev, "Download firmware success!");
if (pdata->irq > 0)
enable_irq(pdata->irq);
if (!ret)
ret = rk1608_set_log_level(pdata, pdata->log_level);
return ret;
}
static int rk1608_power_off(struct rk1608_state *pdata)
{
/* Request rk1608 enter slave mode */
if (pdata->irq > 0)
disable_irq(pdata->irq);
if (pdata->wakeup_gpio)
gpiod_direction_output(pdata->wakeup_gpio, 0);
if (pdata->reset_gpio)
gpiod_direction_output(pdata->reset_gpio, 0);
rk1608_cs_set_value(pdata, 0);
if (pdata->pwren_gpio)
gpiod_direction_output(pdata->pwren_gpio, 0);
if (!IS_ERR(pdata->mclk))
clk_disable_unprepare(pdata->mclk);
return 0;
}
int rk1608_set_power(struct rk1608_state *pdata, int on)
{
mutex_lock(&pdata->lock);
if (on) {
if (!pdata->power_count)
rk1608_power_on(pdata);
} else {
if (pdata->power_count == 1)
rk1608_power_off(pdata);
}
pdata->power_count += on ? 1 : -1;
if (pdata->power_count < 0)
pdata->power_count = 0;
mutex_unlock(&pdata->lock);
return 0;
}
static void rk1608_poweron_func(struct work_struct *work)
{
struct rk1608_power_work *pwork = (struct rk1608_power_work *)work;
int ret = rk1608_power_on(pwork->pdata);
if (!ret)
complete(&pwork->work_fin);
}
static int rk1608_sensor_power(struct v4l2_subdev *sd, int on)
{
struct rk1608_state *pdata = to_state(sd);
int ret = 0;
mutex_lock(&pdata->lock);
if (on) {
if (!pdata->power_count) {
INIT_WORK(&gwork.wk, rk1608_poweron_func);
init_completion(&gwork.work_fin);
gwork.pdata = pdata;
schedule_work(&gwork.wk);
v4l2_subdev_call(pdata->sensor[sd->grp_id],
core, s_power, on);
if (!wait_for_completion_timeout(&gwork.work_fin,
msecs_to_jiffies(1000))) {
dev_err(pdata->dev,
"wait for preisp power on timeout!");
ret = -EBUSY;
}
}
} else if (!on && pdata->power_count == 1) {
v4l2_subdev_call(pdata->sensor[sd->grp_id], core, s_power, on);
ret = rk1608_power_off(pdata);
}
/* Update the power count. */
pdata->power_count += on ? 1 : -1;
WARN_ON(pdata->power_count < 0);
mutex_unlock(&pdata->lock);
return ret;
}
static int rk1608_stream_on(struct rk1608_state *pdata)
{
int id = 0, cnt = 0, ret = 0;
int sub_sensor_num = 0, index = 0;
mutex_lock(&pdata->lock);
id = pdata->sd.grp_id;
pdata->sensor_cnt = 0;
pdata->set_exp_cnt = 1;
sub_sensor_num = pdata->dphy[id]->sub_sensor_num;
for (index = 0; index < sub_sensor_num; index++) {
ret = rk1608_init_virtual_sub_sensor(pdata, id, index);
if (ret) {
dev_err(pdata->dev, "Init rk1608[%d] sub[%d] is failed!",
id,
index);
mutex_unlock(&pdata->lock);
return ret;
}
}
ret = rk1608_init_sensor(pdata, id);
if (ret) {
dev_err(pdata->dev, "Init rk1608[%d] is failed!",
pdata->sd.grp_id);
mutex_unlock(&pdata->lock);
return ret;
}
/* Waiting for the sensor to be ready */
while (pdata->sensor_cnt < pdata->sensor_nums[id]) {
/* TIMEOUT 10s break */
if (cnt++ > SENSOR_TIMEOUT) {
dev_err(pdata->dev,
"Sensor%d is ready to timeout!",
pdata->sensor_cnt);
break;
}
usleep_range(10000, 11000);
}
if (pdata->sensor_nums[id]) {
if (pdata->sensor_cnt == pdata->sensor_nums[id])
dev_info(pdata->dev, "Sensor(num %d) is ready!",
pdata->sensor_cnt);
} else {
dev_warn(pdata->dev, "No sensor is found!");
}
mutex_unlock(&pdata->lock);
pdata->hdrae_para.r_gain = 0x0100;
pdata->hdrae_para.b_gain = 0x0100;
pdata->hdrae_para.gr_gain = 0x0100;
pdata->hdrae_para.gb_gain = 0x0100;
for (cnt = 0; cnt < PREISP_LSCTBL_SIZE; cnt++)
pdata->hdrae_para.lsc_table[cnt] = 0x0400;
memset(&pdata->hdrae_exp, 0, sizeof(pdata->hdrae_exp));
return 0;
}
static int rk1608_stream_off(struct rk1608_state *pdata)
{
u32 sub_sensor_num = 0, index = 0, sub_id = 0;
mutex_lock(&pdata->sensor_lock);
pdata->sensor_cnt = 0;
mutex_unlock(&pdata->sensor_lock);
sub_sensor_num = pdata->dphy[pdata->sd.grp_id]->sub_sensor_num;
for (index = 0; index < sub_sensor_num; index++) {
sub_id = pdata->dphy[pdata->sd.grp_id]->sub_sensor[index].id;
rk1608_deinit(pdata, sub_id);
}
rk1608_deinit(pdata, pdata->sd.grp_id);
return 0;
}
static int rk1608_set_quick_stream(struct rk1608_state *pdata, void *args)
{
u32 stream = *(u32 *)args;
if (stream)
return rk1608_stream_on(pdata);
else
return rk1608_stream_off(pdata);
}
static int rk1608_s_stream(struct v4l2_subdev *sd, int enable)
{
int ret;
struct rk1608_state *pdata = to_state(sd);
pdata->msg_num = 0;
if (enable) {
v4l2_subdev_call(pdata->sensor[sd->grp_id], core, s_power, enable);
ret = rk1608_stream_on(pdata);
} else {
ret = rk1608_stream_off(pdata);
v4l2_subdev_call(pdata->sensor[sd->grp_id], core, s_power, enable);
}
v4l2_subdev_call(pdata->sensor[sd->grp_id], video, s_stream, enable);
return ret;
}
static int rk1608_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct rk1608_state *pdata = to_state(sd);
v4l2_subdev_call(pdata->sensor[sd->grp_id],
video,
g_frame_interval,
fi);
return 0;
}
static int rk1608_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct rk1608_state *pdata = to_state(sd);
v4l2_subdev_call(pdata->sensor[sd->grp_id],
pad,
set_fmt,
cfg,
fmt);
return 0;
}
static long rk1608_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
struct rk1608_state *pdata = to_state(sd);
struct preisp_hdrae_para_s *hdrae_para;
struct preisp_hdrae_exp_s *hdrae_exp;
switch (cmd) {
case PREISP_CMD_SAVE_HDRAE_PARAM:
hdrae_para = arg;
spin_lock(&pdata->hdrae_lock);
pdata->hdrae_para = *hdrae_para;
spin_unlock(&pdata->hdrae_lock);
break;
case PREISP_CMD_SET_HDRAE_EXP:
hdrae_exp = arg;
if (pdata->hdrae_exp.long_exp_reg == hdrae_exp->long_exp_reg &&
pdata->hdrae_exp.long_gain_reg == hdrae_exp->long_gain_reg &&
pdata->hdrae_exp.short_exp_reg == hdrae_exp->short_exp_reg &&
pdata->hdrae_exp.short_gain_reg == hdrae_exp->short_gain_reg)
break;
if (!pdata->sensor_cnt) {
dev_info(pdata->dev, "set Aec before stream on");
break;
}
pdata->hdrae_exp = *hdrae_exp;
/* hdr exposure start */
if (pdata->aesync_gpio)
gpiod_direction_output(pdata->aesync_gpio, 1);
v4l2_subdev_call(pdata->sensor[sd->grp_id], core, ioctl,
cmd, hdrae_exp);
if (pdata->aesync_gpio)
gpiod_direction_output(pdata->aesync_gpio, 0);
rk1608_send_meta_hdrae(pdata, hdrae_exp);
break;
case RKMODULE_GET_MODULE_INFO:
case RKMODULE_AWB_CFG:
v4l2_subdev_call(pdata->sensor[sd->grp_id], core, ioctl,
cmd, arg);
break;
case PREISP_DISP_SET_FRAME_OUTPUT:
rk1608_disp_set_frame_output(pdata, arg);
break;
case PREISP_DISP_SET_FRAME_FORMAT:
rk1608_disp_set_frame_format(pdata, arg);
break;
case PREISP_DISP_SET_FRAME_TYPE:
rk1608_disp_set_frame_type(pdata, arg);
break;
case PREISP_DISP_SET_PRO_TIME:
rk1608_disp_set_pro_time(pdata, arg);
break;
case PREISP_DISP_SET_PRO_CURRENT:
rk1608_disp_set_pro_current(pdata, arg);
break;
case PREISP_DISP_SET_DENOISE:
rk1608_disp_set_denoise(pdata, arg);
break;
case PREISP_DISP_WRITE_EEPROM:
rk1608_disp_write_eeprom_request(pdata);
break;
case PREISP_DISP_READ_EEPROM:
rk1608_disp_read_eeprom_request(pdata);
break;
case PREISP_DISP_SET_LED_ON_OFF:
rk1608_disp_set_led_on_off(pdata, arg);
break;
case RKMODULE_SET_QUICK_STREAM:
rk1608_set_quick_stream(pdata, arg);
break;
default:
return -ENOTTY;
}
return 0;
}
static int rk1608_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_ctrl *remote_ctrl;
struct rk1608_state *pdata =
container_of(ctrl->handler,
struct rk1608_state, ctrl_handler);
int id = pdata->sd.grp_id;
if (!pdata->sensor[id]) {
dev_err(pdata->dev, "Did not find a sensor[%d]!\n", id);
return -EINVAL;
}
remote_ctrl = v4l2_ctrl_find(pdata->sensor[id]->ctrl_handler,
ctrl->id);
if (remote_ctrl) {
ctrl->val = v4l2_ctrl_g_ctrl(remote_ctrl);
__v4l2_ctrl_modify_range(ctrl,
remote_ctrl->minimum,
remote_ctrl->maximum,
remote_ctrl->step,
remote_ctrl->default_value);
}
return 0;
}
static int rk1608_set_ctrl(struct v4l2_ctrl *ctrl)
{
int ret = 0;
struct v4l2_ctrl *remote_ctrl;
struct rk1608_state *pdata =
container_of(ctrl->handler,
struct rk1608_state, ctrl_handler);
int id = pdata->sd.grp_id;
if (id == 1) {
switch (ctrl->id) {
case V4L2_CID_HFLIP:
if (ctrl->val)
pdata->flip |= MIRROR_BIT_MASK;
else
pdata->flip &= ~MIRROR_BIT_MASK;
dev_info(pdata->dev, "%s V4L2_CID_HFLIP ctrl id:0x%x, flip:0x%x\n",
__func__, ctrl->id, pdata->flip);
break;
case V4L2_CID_VFLIP:
if (ctrl->val)
pdata->flip |= FLIP_BIT_MASK;
else
pdata->flip &= ~FLIP_BIT_MASK;
dev_info(pdata->dev, "%s V4L2_CID_VFLIP ctrl id:0x%x, flip:0x%x\n",
__func__, ctrl->id, pdata->flip);
break;
default:
dev_warn(pdata->dev, "%s Unhandled id:0x%x, val:0x%x\n",
__func__, ctrl->id, ctrl->val);
break;
}
}
if (!pdata->sensor[id]) {
dev_err(pdata->dev, "Did not find a sensor[%d]!\n", id);
return -EINVAL;
}
remote_ctrl = v4l2_ctrl_find(pdata->sensor[id]->ctrl_handler,
ctrl->id);
if (remote_ctrl)
ret = v4l2_ctrl_s_ctrl(remote_ctrl, ctrl->val);
return ret;
}
static const struct v4l2_ctrl_ops rk1608_ctrl_ops = {
.g_volatile_ctrl = rk1608_g_volatile_ctrl,
.s_ctrl = rk1608_set_ctrl,
};
static int rk1608_initialize_controls(struct rk1608_state *rk1608)
{
int ret;
struct v4l2_ctrl_handler *handler;
unsigned long flags = V4L2_CTRL_FLAG_VOLATILE |
V4L2_CTRL_FLAG_EXECUTE_ON_WRITE;
handler = &rk1608->ctrl_handler;
ret = v4l2_ctrl_handler_init(handler, 10);
if (ret)
return ret;
rk1608->hblank = v4l2_ctrl_new_std(handler,
&rk1608_ctrl_ops,
V4L2_CID_HBLANK,
0, 0x7FFFFFFF, 1, 0);
if (rk1608->hblank)
rk1608->hblank->flags |= flags;
rk1608->vblank = v4l2_ctrl_new_std(handler,
&rk1608_ctrl_ops,
V4L2_CID_VBLANK,
0, 0x7FFFFFFF, 1, 0);
if (rk1608->vblank)
rk1608->vblank->flags |= flags;
rk1608->exposure = v4l2_ctrl_new_std(handler,
&rk1608_ctrl_ops,
V4L2_CID_EXPOSURE,
0, 0x7FFFFFFF, 1, 0);
if (rk1608->exposure)
rk1608->exposure->flags |= flags;
rk1608->gain = v4l2_ctrl_new_std(handler,
&rk1608_ctrl_ops,
V4L2_CID_ANALOGUE_GAIN,
0, 0x7FFFFFFF, 1, 0);
if (rk1608->gain)
rk1608->gain->flags |= flags;
rk1608->h_flip = v4l2_ctrl_new_std(handler, &rk1608_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
if (rk1608->h_flip)
rk1608->h_flip->flags |= flags;
rk1608->v_flip = v4l2_ctrl_new_std(handler, &rk1608_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
if (rk1608->v_flip)
rk1608->v_flip->flags |= flags;
rk1608->flip = 0;
if (handler->error) {
ret = handler->error;
dev_err(rk1608->dev,
"Failed to init controls(%d)\n", ret);
goto err_free_handler;
}
rk1608->sd.ctrl_handler = handler;
return 0;
err_free_handler:
v4l2_ctrl_handler_free(handler);
return ret;
}
static const struct v4l2_subdev_video_ops rk1608_subdev_video_ops = {
.s_stream = rk1608_s_stream,
.g_frame_interval = rk1608_g_frame_interval,
};
static const struct v4l2_subdev_core_ops rk1608_core_ops = {
.s_power = rk1608_sensor_power,
.ioctl = rk1608_ioctl,
};
static const struct v4l2_subdev_pad_ops rk1608_subdev_pad_ops = {
.set_fmt = rk1608_set_fmt,
};
static const struct v4l2_subdev_ops rk1608_subdev_ops = {
.core = &rk1608_core_ops,
.video = &rk1608_subdev_video_ops,
.pad = &rk1608_subdev_pad_ops,
};
/**
* rk1608_msq_read_head - read rk1608 msg queue head
*
* @spi: spi device
* @addr: msg queue head addr
* @m: msg queue pointer
*
* It returns zero on success, else a negative error code.
*/
static int rk1608_msq_read_head(struct rk1608_state *rk1608,
struct spi_device *spi,
u32 addr, struct rk1608_msg_queue *q)
{
int err = 0;
s32 reg;
err = rk1608_safe_read(rk1608, spi, RK1608_PMU_SYS_REG0, &reg, 4);
if (err || ((reg & RK1608_MSG_QUEUE_OK_MASK) !=
RK1608_MSG_QUEUE_OK_TAG))
return -EINVAL;
err = rk1608_safe_read(rk1608, spi, addr, (s32 *)q, sizeof(*q));
return err;
}
/**
* rk1608_msq_recv_msg - receive a msg from RK1608 -> AP msg queue
*
* @q: msg queue
* @m: a msg pointer buf [out]
*
* need free msg after msg use done
*
* It returns zero on success, else a negative error code.
*/
int rk1608_msq_recv_msg(struct rk1608_state *rk1608, struct spi_device *spi,
struct msg **m)
{
struct rk1608_msg_queue queue;
struct rk1608_msg_queue *q = &queue;
u32 size = 0, msg_size = 0;
u32 recv_addr = 0;
u32 next_recv_addr = 0;
int err = 0;
*m = NULL;
err = rk1608_msq_read_head(rk1608, spi, RK1608_S_MSG_QUEUE_ADDR, q);
if (err)
return err;
if (q->cur_send == q->cur_recv)
return -EINVAL;
/* Skip to head when size is 0 */
err = rk1608_safe_read(rk1608, spi, (s32)q->cur_recv, (s32 *)&size, 4);
if (err)
return err;
if (size == 0) {
err = rk1608_safe_read(rk1608, spi, (s32)q->buf_head,
(s32 *)&size, 4);
if (err)
return err;
msg_size = size * sizeof(u32);
recv_addr = q->buf_head;
next_recv_addr = q->buf_head + msg_size;
} else {
msg_size = size * sizeof(u32);
recv_addr = q->cur_recv;
next_recv_addr = q->cur_recv + msg_size;
if (next_recv_addr == q->buf_tail)
next_recv_addr = q->buf_head;
}
if (msg_size > (q->buf_tail - q->buf_head))
return -EPERM;
*m = kmalloc(msg_size, GFP_KERNEL);
if (!*m)
return -ENOMEM;
err = rk1608_safe_read(rk1608, spi, recv_addr, (s32 *)*m, msg_size);
if (err == 0) {
err = rk1608_safe_write(rk1608, spi, RK1608_S_MSG_QUEUE_ADDR +
(u8 *)&q->cur_recv - (u8 *)q,
&next_recv_addr, 4);
}
if (err) {
kfree(*m);
*m = NULL;
}
return err;
}
/**
* rk1608_msq_tail_free_size - get msg queue tail unused buf size
*
* @q: msg queue
*
* It returns size of msg queue tail unused buf size, unit byte
*/
static u32 rk1608_msq_tail_free_size(const struct rk1608_msg_queue *q)
{
if (q->cur_send >= q->cur_recv)
return (q->buf_tail - q->cur_send);
return q->cur_recv - q->cur_send;
}
/**
* rk1608_interrupt_request - RK1608 request a dsp interrupt
*
* @spi: spi device
* @interrupt_num: interrupt identification
* Context: can sleep
*
* It returns zero on success, else a negative error code.
*/
int rk1608_interrupt_request(struct spi_device *spi, s32 interrupt_num)
{
s32 write_reg1_cmd = APB_CMD_WRITE_REG1;
struct spi_transfer write_reg1_cmd_packet = {
.tx_buf = &write_reg1_cmd,
.len = sizeof(write_reg1_cmd),
};
struct spi_transfer reg1_packet = {
.tx_buf = &interrupt_num,
.len = sizeof(interrupt_num),
};
struct spi_message m;
spi_message_init(&m);
spi_message_add_tail(&write_reg1_cmd_packet, &m);
spi_message_add_tail(&reg1_packet, &m);
return spi_sync(spi, &m);
}
/**
* dsp_msq_head_free_size - get msg queue head unused buf size
*
* @q: msg queue
*
* It returns size of msg queue head unused buf size, unit byte
*/
static u32 rk1608_msq_head_free_size(const struct rk1608_msg_queue *q)
{
if (q->cur_send >= q->cur_recv)
return (q->cur_recv - q->buf_head);
return 0;
}
/*
* rk1608_msq_send_msg - send a msg to Soc -> DSP msg queue
*
* @spi: spi device
* @m: a msg to send
*
* It returns zero on success, else a negative error code.
*/
int rk1608_msq_send_msg(struct rk1608_state *rk1608, struct spi_device *spi,
struct msg *m)
{
int err = 0;
s32 tmp = 0;
struct rk1608_msg_queue queue;
struct rk1608_msg_queue *q = &queue;
u32 msg_size = m->size * sizeof(u32);
err = rk1608_msq_read_head(rk1608, spi, RK1608_R_MSG_QUEUE_ADDR, q);
if (err)
return err;
if (rk1608_msq_tail_free_size(q) > msg_size) {
u32 next_send;
err = rk1608_safe_write(rk1608, spi, q->cur_send,
(s32 *)m, msg_size);
next_send = q->cur_send + msg_size;
if (next_send == q->buf_tail)
next_send = q->buf_head;
q->cur_send = next_send;
} else if (rk1608_msq_head_free_size(q) > msg_size) {
/* Set size to 0 for skip to head mark */
err = rk1608_safe_write(rk1608, spi, q->cur_send, &tmp, 4);
if (err)
return err;
err = rk1608_safe_write(rk1608, spi, q->buf_head, (s32 *)m,
msg_size);
q->cur_send = q->buf_head + msg_size;
} else {
return -EPERM;
}
if (err)
return err;
err = rk1608_safe_write(rk1608, spi, RK1608_R_MSG_QUEUE_ADDR +
(u8 *)&q->cur_send - (u8 *)q, &q->cur_send, 4);
rk1608_interrupt_request(spi, RK1608_IRQ_TYPE_MSG);
return err;
}
int rk1608_send_msg_to_dsp(struct rk1608_state *pdata, struct msg *m)
{
int ret, msg_num = 0, timeout = 0;
/* For msg sync */
if (pdata->msg_num >= 8) {
dev_err(pdata->dev, "MSG sync queue full\n!");
return -EINVAL;
} else if (m->mux.sync == 1) {
mutex_lock(&pdata->send_msg_lock);
msg_num = pdata->msg_num;
pdata->msg_done[pdata->msg_num++] = 0;
mutex_unlock(&pdata->send_msg_lock);
}
mutex_lock(&pdata->send_msg_lock);
ret = rk1608_msq_send_msg(pdata, pdata->spi, m);
mutex_unlock(&pdata->send_msg_lock);
/* For msg sync */
if (m->mux.sync == 1) {
timeout = wait_event_timeout(pdata->msg_wait,
pdata->msg_done[msg_num],
MSG_SYNC_TIMEOUT);
if (unlikely(timeout <= 0)) {
dev_info(pdata->dev,
"MSG wait timeout %d msg_num:%d\n",
timeout, pdata->msg_num);
mutex_lock(&pdata->send_msg_lock);
pdata->msg_done[msg_num] = 0;
mutex_unlock(&pdata->send_msg_lock);
}
}
return ret;
}
static void rk1608_print_rk1608_log(struct rk1608_state *pdata,
struct msg *log)
{
char *str = (char *)(log);
str[log->size * sizeof(s32) - 1] = 0;
str += sizeof(struct msg);
dev_info(pdata->dev, "DSP(%d): %s", log->id.core_id, str);
}
static int preisp_file_import_part(struct rk1608_state *pdata, struct msg *msg)
{
struct file *fp;
int ret = -1;
loff_t pos = 0;
unsigned int file_size = 0;
unsigned int write_size = 0;
char *file_data = NULL;
struct msg_xfile *xfile;
struct calib_head *head = NULL;
char *name;
u32 crc_val;
int i;
xfile = (struct msg_xfile *)msg;
fp = filp_open(REF_DATA_PATH, O_RDONLY, 0);
if (IS_ERR(fp)) {
pr_err("open %s error\n", REF_DATA_PATH);
return -EFAULT;
}
head = vmalloc(sizeof(struct calib_head));
if (!head) {
ret = -ENOMEM;
goto err;
}
pos = 0;
ret = kernel_read(fp, (char *)head, sizeof(struct calib_head), &pos);
if (ret <= 0)
pr_err("%s: read error: ret=%d\n", __func__, ret);
if (strncmp(head->magic, PREISP_CALIB_MAGIC, sizeof(head->magic))) {
pr_err("%s: magic(%s) is unmatch\n", __func__, head->magic);
goto err;
}
name = strrchr(xfile->path, '/');
if (!name)
goto err;
name += 1;
for (i = 0; i < head->items_number; i++) {
if (!strncmp(head->item[i].name, name, sizeof(head->item[i].name)))
break;
}
if (i >= head->items_number) {
pr_err("%s: cannot find %s\n", __func__, name);
goto err;
}
file_size = head->item[i].size;
/* file_size = align4(file_size); */
pr_info("start import addr:0x%x size:%d to %s\n", xfile->addr, file_size, xfile->path);
file_data = vmalloc(file_size);
if (!file_data) {
ret = -ENOMEM;
goto err;
}
pos = head->item[i].offset;
ret = kernel_read(fp, file_data, head->item[i].size, &pos);
if (ret <= 0) {
pr_err("%s: read error: ret=%d\n", __func__, ret);
goto err;
}
crc_val = crc32_le(~0, file_data, head->item[i].size);
crc_val = ~crc_val;
if (crc_val != head->item[i].crc32) {
pr_err("%s: crc check error: 0x%x, 0x%x\n", __func__,
crc_val, head->item[i].crc32);
goto err;
}
write_size = (file_size <= xfile->data_size)?file_size:xfile->data_size;
if (file_size != xfile->data_size)
pr_err("%s import size:%d != file size:%d, write size:%d\n",
__func__, xfile->data_size, file_size, write_size);
ret = rk1608_safe_write(pdata, pdata->spi, xfile->addr, (s32 *)file_data, write_size);
if (ret) {
pr_err("%s: spi2apb write addr 0x%x size %d failed\n",
__func__, xfile->addr, file_size);
goto err;
}
xfile->data_size = file_size;
xfile->ret = ret;
rk1608_msq_send_msg(pdata, pdata->spi, (struct msg *)xfile);
pr_info("import %s to preisp addr:0x%x size:%d success!\n",
xfile->path, xfile->addr, file_size);
err:
if (file_data)
vfree(file_data);
if (fp)
filp_close(fp, NULL);
if (head)
vfree(head);
return ret;
}
static int preisp_file_import_data(struct rk1608_state *pdata, struct msg *msg)
{
struct file *fp;
int ret = -1;
loff_t pos = 0;
unsigned int file_size = 0;
unsigned int write_size = 0;
char *file_data = NULL;
struct msg_xfile *xfile;
char *ref_data_path = REF_DATA_PATH;
char *file_path = NULL;
xfile = (struct msg_xfile *)msg;
if (!strncmp(xfile->path, "ref_data.img", sizeof("ref_data.img") - 1))
file_path = ref_data_path;
else
file_path = xfile->path;
fp = filp_open(file_path, O_RDONLY, 0766);
if (IS_ERR(fp)) {
dev_err(pdata->dev, "open import file(%s) error\n", file_path);
return -EFAULT;
}
dev_info(pdata->dev, "start import %s to addr:0x%x size:%d\n",
file_path, xfile->addr, xfile->data_size);
file_data = vmalloc(xfile->data_size);
if (!file_data) {
ret = -ENOMEM;
goto err;
}
file_size = kernel_read(fp, file_data, xfile->data_size, &pos);
if (file_size <= 0) {
dev_err(pdata->dev, "%s: read error: ret=%d\n",
__func__, ret);
goto err;
}
write_size = (file_size <= xfile->data_size)?file_size:xfile->data_size;
if (file_size != xfile->data_size)
dev_err(pdata->dev,
"%s import size:%d != file size:%d, write size:%d\n",
__func__, xfile->data_size, file_size, write_size);
ret = rk1608_safe_write(pdata, pdata->spi, xfile->addr, (s32 *)file_data, write_size);
if (ret) {
dev_err(pdata->dev,
"%s: spi2apb write addr 0x%x size %d failed\n",
__func__, xfile->addr, file_size);
goto err;
}
xfile->data_size = file_size;
xfile->ret = ret;
rk1608_msq_send_msg(pdata, pdata->spi, (struct msg *)xfile);
dev_info(pdata->dev, "import %s to preisp addr:0x%x size:%d success!\n",
xfile->path, xfile->addr, file_size);
err:
if (file_data)
vfree(file_data);
if (fp)
filp_close(fp, NULL);
return ret;
}
static int rk1608_file_export(struct rk1608_state *pdata, struct msg *msg)
{
struct file *fp;
int ret = -1;
loff_t pos = 0;
unsigned int file_size = 0;
char *file_data = NULL;
struct msg_xfile *xfile;
char *ref_data_path = REF_DATA_PATH;
char *file_path = NULL;
xfile = (struct msg_xfile *)msg;
if (!strncmp(xfile->path, "ref_data.img", sizeof("ref_data.img") - 1))
file_path = ref_data_path;
else
file_path = xfile->path;
dev_info(pdata->dev, "start export addr:0x%x size:%d to %s\n",
xfile->addr, xfile->data_size, file_path);
fp = filp_open(file_path, O_RDWR | O_CREAT, 0666);
if (IS_ERR(fp)) {
dev_err(pdata->dev, "%s open/create export file(%s) error\n",
__func__, file_path);
return -EFAULT;
}
file_size = xfile->data_size;
file_size = (file_size + 3)&(~3);
file_data = vmalloc(file_size);
if (!file_data) {
ret = -ENOMEM;
goto err;
}
ret = rk1608_safe_read(pdata, pdata->spi, xfile->addr, (s32 *)file_data, file_size);
if (ret) {
dev_err(pdata->dev,
"%s: spi2apb read addr 0x%x size %d failed, ret:%d\n",
__func__, xfile->addr, file_size, ret);
goto err;
}
ret = kernel_write(fp, file_data, file_size, &pos);
if (ret <= 0) {
dev_err(pdata->dev, "%s: read error: ret=%d\n",
__func__, ret);
}
xfile->data_size = file_size;
xfile->ret = ret;
rk1608_msq_send_msg(pdata, pdata->spi, (struct msg *)xfile);
dev_info(pdata->dev, "export %s to preisp addr:0x%x size:%d success!\n",
xfile->path, xfile->addr, file_size);
err:
if (file_data)
vfree(file_data);
if (fp)
filp_close(fp, NULL);
return ret;
}
static int rk1608_file_import(struct rk1608_state *pdata, struct msg *msg)
{
struct msg_xfile *xfile;
xfile = (struct msg_xfile *)msg;
if (!strncmp(xfile->path, "/dev", sizeof("/dev") - 1))
return preisp_file_import_part(pdata, msg);
else
return preisp_file_import_data(pdata, msg);
}
#if UPDATE_REF_DATA_FROM_EEPROM
static int rk1608_get_calib_version_temperature_sn(struct rk1608_state *pdata,
struct msg_calib_temp **calibdata)
{
struct file *fp;
int ret = -1;
loff_t pos = 0;
struct calib_head *head = NULL;
int i;
struct msg_calib_temp *calibdata_ = NULL;
unsigned int msg_size;
fp = filp_open(REF_DATA_PATH, O_RDONLY, 0);
if (IS_ERR(fp)) {
dev_err(pdata->dev, "open %s error\n", REF_DATA_PATH);
ret = -ENOMEM;
goto file_err;
}
head = vmalloc(sizeof(struct calib_head));
if (!head) {
ret = -ENOMEM;
goto err;
}
pos = 0;
ret = kernel_read(fp, (char *)head, sizeof(*head), &pos);
if (ret <= 0)
dev_err(pdata->dev, "%s: read error: ret=%d\n", __func__, ret);
if (strncmp(head->magic, PREISP_CALIB_MAGIC, sizeof(head->magic))) {
dev_err(pdata->dev, "%s: magic(%s) is unmatch\n", __func__, head->magic);
goto err;
}
dev_info(pdata->dev,
"version: 0x%x, head_size: 0x%x, image_size: 0x%x, items_number: 0x%x, hash_len: 0x%x, sign_len: 0x%x\n",
head->version,
head->head_size,
head->image_size,
head->items_number,
head->hash_len,
head->sign_len);
for (i = 0; i < head->items_number; i++) {
dev_info(pdata->dev, "item[%d]: %s, 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
i,
head->item[i].name,
head->item[i].offset,
head->item[i].size,
head->item[i].temp,
head->item[i].crc32);
}
for (i = 0; i < head->items_number; i++) {
if (!strncmp(head->item[i].name, "sn_code", strlen("sn_code")))
break;
}
if (i >= head->items_number) {
dev_err(pdata->dev, "%s: cannot find %s\n", __func__, "sn_code");
goto err;
}
if (head->item[i].size > sizeof(calibdata_->calib_sn_code)) {
dev_err(pdata->dev, "%s: %s size:%d error!\n",
__func__, head->item[i].name, head->item[i].size);
goto err;
}
msg_size = sizeof(struct msg_calib_temp) + head->item[i].size;
msg_size = (msg_size + 3)&(~0x03);
calibdata_ = vmalloc(msg_size);
if (!calibdata_) {
ret = -ENOMEM;
goto err;
}
memset((char *)calibdata_, 0, msg_size);
pos = head->item[i].offset;
ret = kernel_read(fp, (char *)calibdata_->calib_sn_code, head->item[i].size, &pos);
if (ret <= 0) {
dev_err(pdata->dev, "%s: read error: ret=%d\n", __func__, ret);
goto err;
}
calibdata_->size = msg_size>>2;
calibdata_->calib_version = head->version;
calibdata_->temp = head->item[i].temp;
calibdata_->calib_sn_size = head->item[i].size;
calibdata_->calib_sn_offset = head->item[i].offset;
calibdata_->calib_exist = 1;
dev_info(pdata->dev, "version:%#x, temp:%#x, name:%s, size:%d sn_code:%s\n",
head->version,
head->item[i].temp,
head->item[i].name,
head->item[i].size,
(char *)&calibdata_->calib_sn_code);
err:
*calibdata = calibdata_;
if (fp)
filp_close(fp, NULL);
if (head)
vfree(head);
if (calibdata_ != NULL)
return ret;
file_err:
msg_size = sizeof(struct msg_calib_temp);
calibdata_ = vmalloc(msg_size);
if (!calibdata_) {
ret = -ENOMEM;
*calibdata = NULL;
return ret;
}
memset((char *)calibdata_, 0, msg_size);
calibdata_->size = msg_size>>2;
*calibdata = calibdata_;
return ret;
}
static int rk1608_send_calib_version_temperature(struct rk1608_state *pdata, struct msg *msg)
{
int ret = 0;
struct msg_calib_temp *calibdata = NULL;
rk1608_get_calib_version_temperature_sn(pdata, &calibdata);
if (calibdata == NULL) {
dev_err(pdata->dev, "%s error\n", __func__);
return -1;
}
calibdata->type = id_msg_calib_temperature_t;
calibdata->camera_id = msg->id.camera_id;
mutex_lock(&pdata->send_msg_lock);
ret = rk1608_msq_send_msg(pdata, pdata->spi, (struct msg *)calibdata);
mutex_unlock(&pdata->send_msg_lock);
if (calibdata)
vfree(calibdata);
return ret;
}
#else
static int rk1608_get_calib_version_temperature(u32 *version, u32 *temp)
{
struct file *fp;
int ret = -1;
loff_t pos = 0;
struct calib_head *head = NULL;
int i;
fp = filp_open(REF_DATA_PATH, O_RDONLY, 0);
if (IS_ERR(fp)) {
pr_err("open %s error\n", REF_DATA_PATH);
return -1;
}
head = vmalloc(sizeof(struct calib_head));
if (!head) {
ret = -ENOMEM;
goto err;
}
pos = 0;
ret = kernel_read(fp, (char *)head, sizeof(*head), &pos);
if (ret <= 0)
pr_err("%s: read error: ret=%d\n", __func__, ret);
if (strncmp(head->magic, PREISP_CALIB_MAGIC, sizeof(head->magic))) {
pr_err("%s: magic(%s) is unmatch\n", __func__, head->magic);
goto err;
}
pr_info("%s: version: 0x%x, head_size: 0x%x, image_size: 0x%x, items_number: 0x%x, hash_len: 0x%x, sign_len: 0x%x\n",
__func__,
head->version,
head->head_size,
head->image_size,
head->items_number,
head->hash_len,
head->sign_len);
for (i = 0; i < head->items_number; i++) {
pr_info("%s: item[%d]: %s, 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
__func__, i,
head->item[i].name,
head->item[i].offset,
head->item[i].size,
head->item[i].temp,
head->item[i].crc32);
}
*version = head->version;
for (i = 0; i < head->items_number; i++) {
if (!strncmp(head->item[i].name, "ref1bit.bin", sizeof(head->item[i].name)))
break;
}
if (i >= head->items_number) {
pr_err("%s: cannot find %s\n", __func__, "ref1bit.bin");
goto err;
}
*temp = head->item[i].temp;
err:
if (fp)
filp_close(fp, NULL);
if (head)
vfree(head);
return ret;
}
static int rk1608_send_calib_version_temperature(struct rk1608_state *pdata, struct msg *msg)
{
struct msg_calib_temp m;
int ret = 0;
m.type = id_msg_calib_temperature_t;
m.size = sizeof(struct msg_calib_temp) / 4;
m.camera_id = msg->id.camera_id;
rk1608_get_calib_version_temperature(&m.calib_version, &m.temp);
mutex_lock(&pdata->send_msg_lock);
ret = rk1608_msq_send_msg(pdata, pdata->spi, (struct msg *)&m);
mutex_unlock(&pdata->send_msg_lock);
return ret;
}
#endif
static void rk1608_dispatch_received_msg(struct rk1608_state *pdata,
struct msg *msg)
{
if (msg->type == id_msg_set_stream_out_on_ret_t) {
mutex_lock(&pdata->sensor_lock);
pdata->sensor_cnt++;
mutex_unlock(&pdata->sensor_lock);
}
if (msg->type == id_msg_rk1608_log_t)
rk1608_print_rk1608_log(pdata, msg);
else if (msg->type == id_msg_xfile_import_t)
rk1608_file_import(pdata, msg);
else if (msg->type == id_msg_xfile_export_t)
rk1608_file_export(pdata, msg);
else if (msg->type == id_msg_calib_temperature_req_t)
rk1608_send_calib_version_temperature(pdata, msg);
else
rk1608_dev_receive_msg(pdata, msg);
}
#define PREISP_DCROP_ITEM_NAME "calib_data.bin"
#define PREISP_DCROP_CALIB_RATIO 192
#define PREISP_DCROP_CALIB_XOFFSET 196
#define PREISP_DCROP_CALIB_YOFFSET 198
int rk1608_get_dcrop_cfg(struct v4l2_rect *crop_in,
struct v4l2_rect *crop_out)
{
struct file *fp;
int ret = 0;
loff_t pos = 0;
unsigned int file_size = 0;
char *file_data = NULL;
struct calib_head *head = NULL;
short xoffset, yoffset;
int left, top, width, height, temp;
int ratio;
int i;
fp = filp_open("/data/ref_data.img", O_RDONLY, 0);
if (IS_ERR(fp)) {
pr_err("%s: open /data/ref_data.img error\n", __func__);
return -1;
}
head = vmalloc(sizeof(struct calib_head));
if (!head) {
ret = -ENOMEM;
goto err;
}
pos = 0;
ret = kernel_read(fp, (char *)head, sizeof(*head), &pos);
if (ret <= 0) {
ret = -EFAULT;
pr_err("%s: read error: ret=%d\n", __func__, ret);
goto err;
}
if (strncmp(head->magic, PREISP_CALIB_MAGIC, sizeof(head->magic))) {
ret = -EFAULT;
pr_err("%s: magic(%s) is unmatch\n", __func__, head->magic);
goto err;
}
for (i = 0; i < head->items_number; i++) {
if (!strncmp(head->item[i].name, PREISP_DCROP_ITEM_NAME,
strlen(PREISP_DCROP_ITEM_NAME)))
break;
}
if (i >= head->items_number) {
ret = -EFAULT;
pr_err("%s: cannot find %s\n", __func__, PREISP_DCROP_ITEM_NAME);
goto err;
}
file_size = head->item[i].size;
if (file_size < (PREISP_DCROP_CALIB_YOFFSET + 2)) {
ret = -EFAULT;
pr_err("%s: file_size is not correct:%d\n", __func__, file_size);
goto err;
}
file_data = vmalloc(file_size);
if (!file_data) {
ret = -ENOMEM;
pr_err("%s: no memory\n", __func__);
goto err;
}
pos = head->item[i].offset;
ret = kernel_read(fp, file_data, head->item[i].size, &pos);
if (ret <= 0) {
ret = -EFAULT;
pr_err("%s: read error: ret=%d\n", __func__, ret);
goto err;
}
ratio = *(int *)(file_data + PREISP_DCROP_CALIB_RATIO);
xoffset = *(short *)(file_data + PREISP_DCROP_CALIB_XOFFSET);
yoffset = *(short *)(file_data + PREISP_DCROP_CALIB_YOFFSET);
pr_info("%s: item %s: file_size %d, ratio 0x%x, xoffset %d, yoffset %d\n",
__func__, head->item[i].name, file_size, ratio, xoffset, yoffset);
if (ratio > 0x10000 || ratio == 0) {
ret = -EFAULT;
goto err;
}
temp = xoffset * crop_in->width;
temp = temp / 2592 / 16;
left = (0x10000 - ratio) * crop_in->width / 0x10000 / 2 + temp;
top = (0x10000 - ratio) * crop_in->height / 0x10000 / 2;
width = crop_in->width * ratio / 0x10000;
height = crop_in->height * ratio / 0x10000;
width = (width + 1) & 0xFFFFFFFE;
height = (height + 1) & 0xFFFFFFFE;
pr_info("%s: calculate left %d, top %d, width %d, height %d, crop_in %d, %d\n",
__func__, left, top, width, height, crop_in->width, crop_in->height);
if ((left + width) > crop_in->width ||
(top + height) > crop_in->height ||
left < 0 || top < 0) {
ret = -EFAULT;
goto err;
}
ret = 0;
crop_out->left = left;
crop_out->top = top;
crop_out->width = width;
crop_out->height = height;
pr_info("%s: DEFRECT %d, %d, %d, %d\n",
__func__, crop_out->left, crop_out->top, crop_out->width, crop_out->height);
err:
if (file_data)
vfree(file_data);
if (fp)
filp_close(fp, NULL);
if (head)
vfree(head);
return ret;
}
EXPORT_SYMBOL(rk1608_get_dcrop_cfg);
static irqreturn_t rk1608_threaded_isr(int irq, void *ctx)
{
struct rk1608_state *pdata = ctx;
struct msg *msg;
while (!rk1608_msq_recv_msg(pdata, pdata->spi, &msg) && NULL != msg) {
rk1608_dispatch_received_msg(pdata, msg);
/* For kernel msg sync */
if (msg->type >= id_msg_init_sensor_ret_t &&
msg->type <= id_msg_set_stream_out_off_ret_t) {
dev_info(pdata->dev, "RK1608 kernel sync\n");
mutex_lock(&pdata->send_msg_lock);
pdata->msg_num--;
pdata->msg_done[pdata->msg_num] = 1;
mutex_unlock(&pdata->send_msg_lock);
wake_up(&pdata->msg_wait);
}
kfree(msg);
}
return IRQ_HANDLED;
}
static int rk1608_parse_dt_property(struct rk1608_state *pdata)
{
int i, ret = 0;
struct device *dev = pdata->dev;
struct device_node *node = dev->of_node;
if (!node)
return -ENODEV;
of_property_read_u32(node, "spi-max-frequency",
&pdata->max_speed_hz);
if (ret) {
dev_err(dev, "can not get spi-max-frequency!");
return -ENOENT;
}
ret = of_property_read_u32(node, "spi-min-frequency",
&pdata->min_speed_hz);
if (ret) {
dev_warn(dev, "can not get spi-min-frequency!");
pdata->min_speed_hz = pdata->max_speed_hz / 2;
}
ret = of_property_read_string(node, "firmware-names",
&pdata->firm_name);
if (ret) {
dev_warn(dev, "can not get firmware-names!");
pdata->firm_name = NULL;
}
pdata->pwren_gpio = devm_gpiod_get_optional(dev, "pwren",
GPIOD_OUT_HIGH);
if (IS_ERR(pdata->pwren_gpio)) {
dev_err(dev, "can not find pwren_gpio\n");
return PTR_ERR(pdata->pwren_gpio);
}
pdata->reset_gpio = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(pdata->reset_gpio)) {
dev_err(dev, "can not find reset-gpio\n");
return PTR_ERR(pdata->reset_gpio);
}
pdata->irq = -1;
pdata->irq_gpio = devm_gpiod_get(dev, "irq", GPIOD_IN);
if (IS_ERR(pdata->irq_gpio)) {
dev_err(dev, "can not find irq-gpio\n");
return -ENOENT;
}
pdata->wakeup_gpio = devm_gpiod_get_optional(dev, "wakeup",
GPIOD_OUT_LOW);
if (IS_ERR(pdata->wakeup_gpio)) {
dev_err(dev, "can not find wakeup_gpio\n");
return PTR_ERR(pdata->wakeup_gpio);
}
pdata->aesync_gpio = devm_gpiod_get_optional(dev, "aesync",
GPIOD_OUT_LOW);
if (IS_ERR(pdata->aesync_gpio)) {
dev_err(dev, "can not find aesync_gpio\n");
return PTR_ERR(pdata->aesync_gpio);
}
pdata->mclk = devm_clk_get(dev, "mclk");
if (IS_ERR(pdata->mclk))
dev_warn(dev, "Failed to get mclk, do you use ext 24M clk?\n");
pdata->msg_num = 0;
init_waitqueue_head(&pdata->msg_wait);
for (i = 0; i < 8; i++)
pdata->msg_done[i] = 0;
return ret;
}
static int rk1608_get_remote_node_dev(struct rk1608_state *pdev)
{
struct i2c_client *sensor_pdev = NULL;
struct platform_device *dphydev = NULL;
struct device *dev = pdev->dev;
struct device_node *parent = dev->of_node;
struct device_node *remote = NULL;
int ret = 0, dphys = 0, sensor_nums = 0;
int i;
for (i = 0; i < 2; i++) {
remote = of_graph_get_remote_node(parent, 0, i);
if (!remote)
continue;
dphydev = of_find_device_by_node(remote);
of_node_put(remote);
if (!dphydev) {
dev_err(dev, "Failed to get dhpy device(%s)\n",
of_node_full_name(remote));
continue;
} else {
pdev->dphy[dphys] = platform_get_drvdata(dphydev);
if (pdev->dphy[dphys]) {
dphydev = NULL;
pdev->dphy[dphys]->rk1608_sd = &pdev->sd;
pdev->sensor_nums[dphys] =
pdev->dphy[dphys]->cam_nums;
dphys++;
} else {
dev_err(dev, "Failed to get dhpy drvdata\n");
}
}
}
for (i = 0; i < 4; i++) {
remote = of_graph_get_remote_node(parent, 1, i);
if (!remote)
continue;
sensor_pdev = of_find_i2c_device_by_node(remote);
of_node_put(remote);
if (!sensor_pdev) {
dev_err(dev, "Failed to get sensor device(%s)\n",
of_node_full_name(remote));
continue;
} else {
pdev->sensor[sensor_nums] =
i2c_get_clientdata(sensor_pdev);
if (pdev->sensor[sensor_nums]) {
sensor_pdev = NULL;
sensor_nums++;
} else {
dev_err(dev, "Failed to get sensor drvdata\n");
}
}
}
if (dphys && sensor_nums)
dev_info(dev, "Get %d dphys, %d sensors!\n",
dphys, sensor_nums);
else
ret = -EINVAL;
return ret;
}
static int rk1608_probe(struct spi_device *spi)
{
struct rk1608_state *rk1608;
struct v4l2_subdev *sd;
int ret = 0;
dev_info(&spi->dev, "driver version: %02x.%02x.%02x",
RK1608_VERSION >> 16,
(RK1608_VERSION & 0xff00) >> 8,
RK1608_VERSION & 0x00ff);
rk1608 = devm_kzalloc(&spi->dev, sizeof(*rk1608), GFP_KERNEL);
if (!rk1608)
return -ENOMEM;
rk1608->dev = &spi->dev;
rk1608->spi = spi;
rk1608->log_level = LOG_INFO;
spi_set_drvdata(spi, rk1608);
ret = rk1608_parse_dt_property(rk1608);
if (ret) {
dev_err(rk1608->dev, "RK1608 parse dt property err %x\n", ret);
return ret;
}
ret = rk1608_get_remote_node_dev(rk1608);
if (ret)
dev_info(rk1608->dev, "remote node dev is NULL\n");
rk1608->sensor_cnt = 0;
mutex_init(&rk1608->sensor_lock);
mutex_init(&rk1608->send_msg_lock);
mutex_init(&rk1608->lock);
mutex_init(&rk1608->spi2apb_lock);
spin_lock_init(&rk1608->hdrae_lock);
sd = &rk1608->sd;
rk1608_initialize_controls(rk1608);
v4l2_spi_subdev_init(sd, spi, &rk1608_subdev_ops);
if (!IS_ERR(rk1608->irq_gpio)) {
rk1608->irq = gpiod_to_irq(rk1608->irq_gpio);
ret = devm_request_threaded_irq(
rk1608->dev,
rk1608->irq,
NULL,
rk1608_threaded_isr,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
"msg-irq",
rk1608);
if (ret) {
dev_err(rk1608->dev,
"cannot request thread irq: %d\n", ret);
v4l2_ctrl_handler_free(&rk1608->ctrl_handler);
return ret;
}
disable_irq(rk1608->irq);
}
rk1608_dev_register(rk1608);
return 0;
}
static int rk1608_remove(struct spi_device *spi)
{
struct rk1608_state *rk1608 = spi_get_drvdata(spi);
v4l2_ctrl_handler_free(&rk1608->ctrl_handler);
mutex_destroy(&rk1608->lock);
mutex_destroy(&rk1608->send_msg_lock);
mutex_destroy(&rk1608->sensor_lock);
mutex_destroy(&rk1608->spi2apb_lock);
rk1608_dev_unregister(rk1608);
return 0;
}
static const struct spi_device_id rk1608_id[] = {
{ "rk1608", 0 },
{ }
};
MODULE_DEVICE_TABLE(spi, rk1608_id);
#if IS_ENABLED(CONFIG_OF)
static const struct of_device_id rk1608_of_match[] = {
{ .compatible = "rockchip,rk1608" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, rk1608_of_match);
#endif
static struct spi_driver rk1608_driver = {
.driver = {
.of_match_table = of_match_ptr(rk1608_of_match),
.name = "rk1608",
},
.probe = rk1608_probe,
.remove = rk1608_remove,
.id_table = rk1608_id,
};
static int __init preisp_mod_init(void)
{
return spi_register_driver(&rk1608_driver);
}
static void __exit preisp_mod_exit(void)
{
spi_unregister_driver(&rk1608_driver);
}
late_initcall(preisp_mod_init);
module_exit(preisp_mod_exit);
MODULE_AUTHOR("Rockchip Camera/ISP team");
MODULE_DESCRIPTION("A DSP driver for rk1608 chip");
MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS(VFS_internal_I_am_really_a_filesystem_and_am_NOT_a_driver);