android13/kernel-5.10/drivers/rkflash/sfc_nand_mtd.c

424 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018 Rockchip Electronics Co. Ltd. */
#include <linux/kernel.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "rkflash_blk.h"
#include "rkflash_debug.h"
#include "sfc_nand.h"
#include "sfc_nand_mtd.h"
#ifdef CONFIG_RK_SFC_NAND_MTD
static struct mtd_partition nand_parts[MAX_PART_COUNT];
static inline struct snand_mtd_dev *mtd_to_priv(struct mtd_info *ptr_mtd)
{
return (struct snand_mtd_dev *)((char *)ptr_mtd -
offsetof(struct snand_mtd_dev, mtd));
}
int sfc_nand_erase_mtd(struct mtd_info *mtd, u32 addr)
{
int ret;
ret = sfc_nand_erase_block(0, addr >> mtd->writesize_shift);
if (ret) {
rkflash_print_error("%s fail ret= %d\n", __func__, ret);
ret = -EIO;
}
return ret;
}
static int sfc_nand_write_mtd(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct snand_mtd_dev *p_dev = mtd_to_priv(mtd);
u8 *data = (u8 *)ops->datbuf;
size_t remaining = ops->len;
u32 ret = 0;
rkflash_print_dio("%s addr= %llx len= %x\n", __func__, to, (u32)remaining);
if ((to + remaining) > mtd->size || to & mtd->writesize_mask ||
remaining & mtd->writesize_mask || ops->ooblen) {
rkflash_print_error("%s input error, %llx %x\n", __func__, to, (u32)remaining);
return -EINVAL;
}
ops->retlen = 0;
while (remaining) {
memcpy(p_dev->dma_buf, data, mtd->writesize);
memset(p_dev->dma_buf + mtd->writesize, 0xff, mtd->oobsize);
ret = sfc_nand_prog_page_raw(0, to >> mtd->writesize_shift,
(u32 *)p_dev->dma_buf);
if (ret != SFC_OK) {
rkflash_print_error("%s addr %llx ret= %d\n",
__func__, to, ret);
ret = -EIO;
break;
}
data += mtd->writesize;
ops->retlen += mtd->writesize;
remaining -= mtd->writesize;
to += mtd->writesize;
}
return ret;
}
static int sfc_nand_read_mtd(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
u8 *data = (u8 *)ops->datbuf;
size_t remaining = ops->len;
u32 ret = 0;
bool ecc_failed = false;
size_t page, off, real_size;
int max_bitflips = 0;
rkflash_print_dio("%s addr= %llx len= %x\n", __func__, from, (u32)remaining);
if ((from + remaining) > mtd->size || ops->ooblen) {
rkflash_print_error("%s input error, from= %llx len= %x oob= %x\n",
__func__, from, (u32)remaining, (u32)ops->ooblen);
return -EINVAL;
}
ops->retlen = 0;
while (remaining) {
page = from >> mtd->writesize_shift;
off = from & mtd->writesize_mask;
real_size = min_t(u32, remaining, mtd->writesize - off);
ret = sfc_nand_read(page, (u32 *)data, off, real_size);
if (ret == SFC_NAND_HW_ERROR) {
rkflash_print_error("%s addr %llx ret= %d\n",
__func__, from, ret);
ret = -EIO;
break;
} else if (ret == SFC_NAND_ECC_ERROR) {
rkflash_print_error("%s addr %llx ret= %d\n",
__func__, from, ret);
ecc_failed = true;
mtd->ecc_stats.failed++;
} else if (ret == SFC_NAND_ECC_REFRESH) {
rkflash_print_dio("%s addr %llx ret= %d\n",
__func__, from, ret);
mtd->ecc_stats.corrected += 1;
max_bitflips = 1;
}
ret = 0;
data += real_size;
ops->retlen += real_size;
remaining -= real_size;
from += real_size;
}
if (ecc_failed && !ret)
ret = -EBADMSG;
return ret ? ret : max_bitflips;
}
int sfc_nand_isbad_mtd(struct mtd_info *mtd, loff_t ofs)
{
int ret;
struct snand_mtd_dev *p_dev = mtd_to_priv(mtd);
rkflash_print_dio("%s %llx\n", __func__, ofs);
if (ofs & mtd->writesize_mask) {
rkflash_print_error("%s %llx input error\n", __func__, ofs);
return -EINVAL;
}
if (snanddev_bbt_is_initialized(p_dev)) {
unsigned int entry;
int status;
entry = snanddev_bbt_pos_to_entry(p_dev, ofs);
status = snanddev_bbt_get_block_status(p_dev, entry);
/* Lazy block status retrieval */
if (status == NAND_BBT_BLOCK_STATUS_UNKNOWN) {
if ((int)sfc_nand_check_bad_block(0, ofs >> mtd->writesize_shift))
status = NAND_BBT_BLOCK_FACTORY_BAD;
else
status = NAND_BBT_BLOCK_GOOD;
snanddev_bbt_set_block_status(p_dev, entry, status);
}
if (status == NAND_BBT_BLOCK_WORN ||
status == NAND_BBT_BLOCK_FACTORY_BAD)
return true;
return false;
}
ret = (int)sfc_nand_check_bad_block(0, ofs >> mtd->writesize_shift);
if (ret)
pr_err("%s %llx is bad block\n", __func__, ofs);
return ret;
}
static int sfc_nand_markbad_mtd(struct mtd_info *mtd, loff_t ofs)
{
u32 ret;
struct snand_mtd_dev *p_dev = mtd_to_priv(mtd);
unsigned int entry;
rkflash_print_error("%s %llx\n", __func__, ofs);
if (ofs & mtd->erasesize_mask) {
rkflash_print_error("%s %llx input error\n", __func__, ofs);
return -EINVAL;
}
if (sfc_nand_isbad_mtd(mtd, ofs))
return 0;
/* Erase block before marking it bad. */
ret = sfc_nand_erase_block(0, ofs >> mtd->writesize_shift);
if (ret)
rkflash_print_error("%s erase fail ofs 0x%llx ret=%d\n",
__func__, ofs, ret);
/* Mark bad. */
ret = sfc_nand_mark_bad_block(0, ofs >> mtd->writesize_shift);
if (ret)
rkflash_print_error("%s mark fail ofs 0x%llx ret=%d\n",
__func__, ofs, ret);
if (!snanddev_bbt_is_initialized(p_dev))
goto out;
entry = snanddev_bbt_pos_to_entry(p_dev, ofs);
ret = snanddev_bbt_set_block_status(p_dev, entry, NAND_BBT_BLOCK_WORN);
if (ret)
goto out;
ret = snanddev_bbt_update(p_dev);
out:
/* Mark bad recheck */
if (sfc_nand_check_bad_block(0, ofs >> mtd->writesize_shift)) {
mtd->ecc_stats.badblocks++;
ret = 0;
} else {
rkflash_print_error("%s recheck fail ofs 0x%llx ret=%d\n",
__func__, ofs, ret);
ret = -EIO;
}
return ret;
}
static int sfc_erase_mtd(struct mtd_info *mtd, struct erase_info *instr)
{
struct snand_mtd_dev *p_dev = mtd_to_priv(mtd);
struct snand_mtd_dev *nand = mtd_to_snanddev(mtd);
u64 addr, remaining;
int ret = 0;
mutex_lock(p_dev->lock);
addr = instr->addr;
remaining = instr->len;
rkflash_print_dio("%s addr= %llx len= %llx\n", __func__, addr, remaining);
if ((addr + remaining) > mtd->size || addr & mtd->erasesize_mask) {
ret = -EINVAL;
goto out;
}
while (remaining) {
ret = snanddev_bbt_get_block_status(nand, addr >> mtd->erasesize_shift);
if (ret == NAND_BBT_BLOCK_WORN ||
ret == NAND_BBT_BLOCK_FACTORY_BAD) {
rkflash_print_error("attempt to erase a bad/reserved block @%llx\n",
addr >> mtd->erasesize_shift);
addr += mtd->erasesize;
remaining -= mtd->erasesize;
continue;
}
ret = sfc_nand_erase_mtd(mtd, addr);
if (ret) {
rkflash_print_error("%s fail addr 0x%llx ret=%d\n",
__func__, addr, ret);
instr->fail_addr = addr;
ret = -EIO;
goto out;
}
addr += mtd->erasesize;
remaining -= mtd->erasesize;
}
out:
mutex_unlock(p_dev->lock);
return ret;
}
static int sfc_write_mtd(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
int ret;
struct snand_mtd_dev *p_dev = mtd_to_priv(mtd);
struct mtd_oob_ops ops;
mutex_lock(p_dev->lock);
memset(&ops, 0, sizeof(struct mtd_oob_ops));
ops.datbuf = (u8 *)buf;
ops.len = len;
ret = sfc_nand_write_mtd(mtd, to, &ops);
*retlen = ops.retlen;
mutex_unlock(p_dev->lock);
return ret;
}
static int sfc_read_mtd(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
int ret;
struct snand_mtd_dev *p_dev = mtd_to_priv(mtd);
struct mtd_oob_ops ops;
mutex_lock(p_dev->lock);
memset(&ops, 0, sizeof(struct mtd_oob_ops));
ops.datbuf = buf;
ops.len = len;
ret = sfc_nand_read_mtd(mtd, from, &ops);
*retlen = ops.retlen;
mutex_unlock(p_dev->lock);
return ret;
}
static int sfc_isbad_mtd(struct mtd_info *mtd, loff_t ofs)
{
int ret;
struct snand_mtd_dev *p_dev = mtd_to_priv(mtd);
mutex_lock(p_dev->lock);
ret = sfc_nand_isbad_mtd(mtd, ofs);
mutex_unlock(p_dev->lock);
return ret;
}
static int sfc_markbad_mtd(struct mtd_info *mtd, loff_t ofs)
{
u32 ret;
struct snand_mtd_dev *p_dev = mtd_to_priv(mtd);
mutex_lock(p_dev->lock);
ret = sfc_nand_markbad_mtd(mtd, ofs);
mutex_unlock(p_dev->lock);
return ret;
}
/*
* if not support rk_partition and partition is confirmed, you can define
* strust def_nand_part by adding new partition like following example:
* {"u-boot", 0x1000 * 512, 0x2000 * 512},
* Note.
* 1. New partition format {name. size, offset}
* 2. Unit:Byte
* 3. Last partition 'size' can be set 0xFFFFFFFFF to fully user left space.
*/
static struct mtd_partition def_nand_part[] = {};
int sfc_nand_mtd_init(struct SFNAND_DEV *p_dev, struct mutex *lock)
{
int ret, i, part_num = 0;
int capacity;
struct snand_mtd_dev *nand = kzalloc(sizeof(*nand), GFP_KERNEL);
if (!nand) {
rkflash_print_error("%s %d alloc failed\n", __func__, __LINE__);
return -ENOMEM;
}
nand->snand = p_dev;
capacity = (1 << p_dev->capacity) << 9;
nand->mtd.name = "spi-nand0";
nand->mtd.type = MTD_NANDFLASH;
nand->mtd.writesize = p_dev->page_size * SFC_NAND_SECTOR_SIZE;
nand->mtd.flags = MTD_CAP_NANDFLASH;
nand->mtd.size = capacity;
nand->mtd._erase = sfc_erase_mtd;
nand->mtd._read = sfc_read_mtd;
nand->mtd._write = sfc_write_mtd;
nand->mtd._block_isbad = sfc_isbad_mtd;
nand->mtd._block_markbad = sfc_markbad_mtd;
nand->mtd.oobsize = 16 * p_dev->page_size;
nand->mtd.bitflip_threshold = 2;
nand->mtd.erasesize = p_dev->block_size * SFC_NAND_SECTOR_SIZE;
nand->mtd.writebufsize = p_dev->page_size * SFC_NAND_SECTOR_SIZE;
nand->mtd.erasesize_shift = ffs(nand->mtd.erasesize) - 1;
nand->mtd.erasesize_mask = (1 << nand->mtd.erasesize_shift) - 1;
nand->mtd.writesize_shift = ffs(nand->mtd.writesize) - 1;
nand->mtd.writesize_mask = (1 << nand->mtd.writesize_shift) - 1;
nand->mtd.bitflip_threshold = 1;
nand->mtd.priv = nand;
nand->lock = lock;
nand->dma_buf = kmalloc(SFC_NAND_PAGE_MAX_SIZE, GFP_KERNEL | GFP_DMA);
if (!nand->dma_buf) {
rkflash_print_error("%s dma_buf alloc failed\n", __func__);
ret = -ENOMEM;
goto error_out;
}
nand->bbt.option |= NANDDEV_BBT_USE_FLASH;
ret = snanddev_bbt_init(nand);
if (ret) {
rkflash_print_error("snanddev_bbt_init failed, ret= %d\n", ret);
return ret;
}
part_num = ARRAY_SIZE(def_nand_part);
for (i = 0; i < part_num; i++) {
nand_parts[i].name =
kstrdup(def_nand_part[i].name,
GFP_KERNEL);
if (def_nand_part[i].size == 0xFFFFFFFF)
def_nand_part[i].size = capacity -
def_nand_part[i].offset;
nand_parts[i].offset =
def_nand_part[i].offset;
nand_parts[i].size =
def_nand_part[i].size;
nand_parts[i].mask_flags = 0;
}
ret = mtd_device_register(&nand->mtd, nand_parts, part_num);
if (ret) {
pr_err("%s register mtd fail %d\n", __func__, ret);
} else {
pr_info("%s register mtd succuss\n", __func__);
return 0;
}
kfree(nand->dma_buf);
error_out:
kfree(nand);
return ret;
}
#endif