android13/kernel-5.10/drivers/thermal/rk_virtual_thermal.c

925 lines
21 KiB
C

/*
* rk virtual tsadc driver
*
* Copyright (C) 2017 Rockchip Electronics Co., Ltd
* Author: Rocky Hao <rocky.hao@rock-chips.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/thermal.h>
#include <linux/timer.h>
#include <linux/nvmem-consumer.h>
#include <linux/backlight.h>
#include <linux/cpufreq.h>
#include <linux/power_supply.h>
#include <linux/clk-provider.h>
#include <dt-bindings/clock/rk3128-cru.h>
#define GPU_TEMP_COMPENSION (6000)
#define VPU_TEMP_COMPENSION (3000)
#define LOWEST_TEMP (-273000)
#define BASE (1024)
#define BASE_SHIFT (10)
#define START_DEBOUNCE_COUNT (100)
#define HIGHER_DEBOUNCE_TEMP (30000)
#define LOWER_DEBOUNCE_TEMP (15000)
#define LEAKAGE_INVALID (0xff)
/*20ms as the unit, 60000 * 20ms = 20mins */
#define TEMP_STABLE_TIME (60000)
#define MINIMAL_DISCHARGE_CURRENT (-200000)
#define LOWEST_WORKING_TEMP (-40000)
static unsigned int logout;
module_param(logout, int, 0644);
MODULE_PARM_DESC(logout, "switch to control logout or not");
struct temp_frequency_entry {
unsigned int frequency;
s32 time2temp[2];
int time_bound;
s32 time2temp2[2];
int min_temp;
int stable_temp;
s32 temp2time[2];
int temp_bound;
s32 temp2time2[2];
};
static const struct temp_frequency_entry rk3126_table[] = {
{400000, {18, 446167,}, 6000, {2, 541167,}, 44616, 69000, {555, -23865},
56000, {5000, -272785},},
{816000, {18, 496167,}, 6000, {2, 591167,}, 49616, 74000, {555, -26640},
61000, {5000, -297785},},
{912000, {21, 525167,}, 6000, {2, 639167,}, 52516, 80000, {476, -25007},
65000, {5000, -319067},},
{1008000, {22, 563500,}, 6000, {3, 677500,}, 56350, 100000,
{454, -25613}, 70000, {3333, -227143},},
{1104000, {33, 570000,}, 6000, {5, 738000,}, 57000, 109000,
{303, -17272}, 77000, {2000, -147941},},
{1200000, {35, 620167,}, 6000, {5, 800167,}, 61016, 113000,
{285, -17719}, 83000, {2000, -160064},},
{CPUFREQ_TABLE_END, {0, 0,}, 0, {0, 0,}, 0, 0, {0, 0,}, 0, {0, 0,} },
};
struct thermal_tuning_info {
int load_slope;
int load_intercept;
int lkg_slope;
int lkg_intercept;
int cur_slope;
int cur_intercept;
int bn_slope;
int bn_intercept;
int bn_offsite;
int vpu_slope;
int gpu_slope;
const struct temp_frequency_entry *map_entries;
int vpu_ajust;
int gpu_ajust;
int fusing_step;
};
static const struct thermal_tuning_info rk3126_tuning_info = {
.load_slope = 102,
.load_intercept = 61800,
.lkg_slope = 107,
.lkg_intercept = 4713,
.cur_slope = 42,
.cur_intercept = 32661,
.bn_slope = 1517,
.bn_intercept = 199353,
.bn_offsite = 262000,
.vpu_slope = 5,
.gpu_slope = 5,
.map_entries = rk3126_table,
.vpu_ajust = GPU_TEMP_COMPENSION,
.gpu_ajust = VPU_TEMP_COMPENSION,
.fusing_step = 2,
};
struct virtual_thermal_data {
struct platform_device *pdev;
struct device *dev;
struct thermal_zone_device *tzd;
struct power_supply *psy_bat;
struct power_supply *psy_usb;
struct power_supply *psy_ac;
struct cpufreq_freqs current_freq;
const struct temp_frequency_entry *temp_freq;
int cmp_lkg_temp;
int sigma_time_20ms;
struct kobject virtual_thermal_kobj;
struct thermal_tuning_info *tuning_info;
struct clk *gpu_clk;
struct clk *vpu_clk;
};
static struct platform_device *platform_dev;
static int get_temp_by_freq_time(unsigned int freq, int time_20ms)
{
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
const struct temp_frequency_entry *table = ctx->tuning_info->map_entries;
int i = 0;
int milli_deg = 0;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
if (freq < table[i].frequency) {
ctx->temp_freq = &table[i];
break;
}
}
if (table[i].frequency == CPUFREQ_TABLE_END)
ctx->temp_freq = &table[i - 1];
if (time_20ms > TEMP_STABLE_TIME)
return ctx->temp_freq->stable_temp;
if (time_20ms < ctx->temp_freq->time_bound)
milli_deg =
time_20ms * ctx->temp_freq->time2temp[0] +
ctx->temp_freq->time2temp[1];
else
milli_deg =
time_20ms * ctx->temp_freq->time2temp2[0] +
ctx->temp_freq->time2temp2[1];
if (logout)
dev_info(&platform_dev->dev, "current freq: %u stable_temp: %d milli_deg %d\n",
freq, ctx->temp_freq->stable_temp, milli_deg / 10);
return milli_deg / 10;
}
static int get_time_by_temp(int milli_deg)
{
int time_20ms = 0;
int deg = milli_deg / 1000;
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
if (milli_deg > ctx->temp_freq->stable_temp)
return TEMP_STABLE_TIME;
if (milli_deg < ctx->temp_freq->temp_bound) {
time_20ms =
deg * ctx->temp_freq->temp2time[0] +
ctx->temp_freq->temp2time[1];
} else {
time_20ms =
deg * ctx->temp_freq->temp2time2[0] +
ctx->temp_freq->temp2time2[1];
}
if (logout)
dev_info(&platform_dev->dev, "estimate time %d, by milli_deg %d\n",
time_20ms, milli_deg);
return max(time_20ms, 0);
}
static u32 get_load(int cpu, int cpu_idx)
{
static u64 time_in_idle[NR_CPUS] = { 0 };
static u64 time_in_idle_timestamp[NR_CPUS] = { 0 };
u32 load;
u64 now, now_idle, delta_time, delta_idle;
now_idle = get_cpu_idle_time(cpu, &now, 0);
delta_idle = now_idle - time_in_idle[cpu_idx];
delta_time = now - time_in_idle_timestamp[cpu_idx];
if (delta_time <= delta_idle)
load = 0;
else
load = div64_u64(100 * (delta_time - delta_idle), delta_time);
time_in_idle[cpu_idx] = now_idle;
time_in_idle_timestamp[cpu_idx] = now;
return load;
}
static int get_all_load(void)
{
u32 total_load = 0;
int cpu;
int i = 0;
for_each_online_cpu(cpu) {
u32 load;
load = get_load(cpu, i);
total_load += load;
if (logout)
dev_info(&platform_dev->dev, "cpu %d, load %d\n", i,
load);
i++;
}
if (logout)
dev_info(&platform_dev->dev, "total cpu load %d\n", total_load);
return total_load;
}
static int predict_normal_temp(int milli_deg)
{
int cov_q = 18;
int cov_r = 542;
int gain;
int temp_mid;
int temp_now;
int prob_mid;
int prob_now;
static int temp_last = 50000;
static int prob_last = 20;
static int bounding_cnt;
if (bounding_cnt++ > START_DEBOUNCE_COUNT) {
bounding_cnt = START_DEBOUNCE_COUNT;
if (milli_deg - temp_last > HIGHER_DEBOUNCE_TEMP)
milli_deg = temp_last + HIGHER_DEBOUNCE_TEMP / 3;
if (temp_last - milli_deg > LOWER_DEBOUNCE_TEMP)
milli_deg = temp_last - LOWER_DEBOUNCE_TEMP / 3;
}
temp_mid = temp_last;
prob_mid = prob_last + cov_q;
gain = (prob_mid * BASE) / (prob_mid + cov_r);
temp_now = temp_mid + (gain * (milli_deg - temp_mid) >> BASE_SHIFT);
prob_now = ((BASE - gain) * prob_mid) >> BASE_SHIFT;
prob_last = prob_now;
temp_last = temp_now;
return temp_last;
}
static int predict_cur_temp(int milli_cur_temp)
{
int cov_q = 18;
int cov_r = 542;
int gain;
int temp_mid;
int temp_now;
int prob_mid;
int prob_now;
static int cur_last = 50000;
static int prob_last = 20;
static int bounding_cnt;
if (bounding_cnt++ > START_DEBOUNCE_COUNT) {
bounding_cnt = START_DEBOUNCE_COUNT;
if (milli_cur_temp - cur_last > HIGHER_DEBOUNCE_TEMP)
milli_cur_temp = cur_last + HIGHER_DEBOUNCE_TEMP / 3;
if (cur_last - milli_cur_temp > LOWER_DEBOUNCE_TEMP)
milli_cur_temp = cur_last - LOWER_DEBOUNCE_TEMP / 3;
}
temp_mid = cur_last;
prob_mid = prob_last + cov_q;
gain = (prob_mid * BASE) / (prob_mid + cov_r);
temp_now =
temp_mid + (gain * (milli_cur_temp - temp_mid) >> BASE_SHIFT);
prob_now = ((BASE - gain) * prob_mid) >> BASE_SHIFT;
prob_last = prob_now;
cur_last = temp_now;
return cur_last;
}
static void update_counting_time(void)
{
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
static ktime_t delta_last;
ktime_t delta;
unsigned long long duration;
ktime_t timestamp = ktime_get();
delta = ktime_sub(timestamp, delta_last);
duration = (unsigned long long)ktime_to_ns(delta) >> 20;
delta_last = timestamp;
if (duration < TEMP_STABLE_TIME)
ctx->sigma_time_20ms += div64_u64(duration, 20);
else
ctx->sigma_time_20ms = 0;
if (logout)
dev_info(&platform_dev->dev, "sigma heating time %d\n",
ctx->sigma_time_20ms);
}
static s64 update_working_time_for_gpu_vpu(void)
{
static ktime_t last_timestamp;
ktime_t delta;
s64 duration;
ktime_t timestamp = ktime_get();
delta = ktime_sub(timestamp, last_timestamp);
duration = (long long)ktime_to_ns(delta) >> 20;
last_timestamp = timestamp;
duration = div64_s64(duration, 20);
return duration;
}
static struct clk *clk_get_by_name(const char *clk_name)
{
const char *name;
struct clk *clk;
struct device_node *np;
struct of_phandle_args clkspec;
int i;
np = of_find_node_by_name(NULL, "clock-controller");
if (!np)
return ERR_PTR(-ENODEV);
clkspec.np = np;
clkspec.args_count = 1;
for (i = 1; i < CLK_NR_CLKS; i++) {
clkspec.args[0] = i;
clk = of_clk_get_from_provider(&clkspec);
if (IS_ERR_OR_NULL(clk))
continue;
name = __clk_get_name(clk);
if (strlen(name) != strlen(clk_name)) {
clk_put(clk);
continue;
}
if (!strncmp(name, clk_name, strlen(clk_name)))
break;
clk_put(clk);
}
of_node_put(np);
if (i == CLK_NR_CLKS)
clk = NULL;
return clk;
}
static int get_actual_brightness(void)
{
struct backlight_device *bd;
struct device_node *np;
int brightness = 0;
np = of_find_node_by_name(NULL, "backlight");
if (!np)
return 0;
bd = of_find_backlight_by_node(np);
if (!bd)
goto exit;
mutex_lock(&bd->ops_lock);
if (bd->ops && bd->ops->get_brightness)
brightness = bd->ops->get_brightness(bd);
else
brightness = bd->props.brightness;
mutex_unlock(&bd->ops_lock);
exit:
of_node_put(np);
return brightness;
}
static int compensate_brightness(int cur)
{
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
int slope = ctx->tuning_info->bn_slope;
int intercept = ctx->tuning_info->bn_slope;
int offsite = ctx->tuning_info->bn_offsite;
int brightness;
int cur_ajust = 0;
brightness = get_actual_brightness();
if (brightness == 0)
cur_ajust = cur - offsite;
else if (brightness > 0)
cur_ajust = cur - intercept + brightness * slope;
if (logout)
dev_info(&platform_dev->dev, "brightness %d cur %d cur_ajust %d\n",
brightness, cur, cur_ajust);
return cur_ajust;
}
static int rockchip_get_efuse_value(struct device_node *np, char *porp_name,
int *value)
{
struct nvmem_cell *cell;
unsigned char *buf;
size_t len;
cell = of_nvmem_cell_get(np, porp_name);
if (IS_ERR(cell))
return PTR_ERR(cell);
buf = (unsigned char *)nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(buf))
return PTR_ERR(buf);
if (buf[0] == LEAKAGE_INVALID) {
kfree(buf);
return -EINVAL;
}
*value = buf[0];
kfree(buf);
return 0;
}
static int ajust_temp_on_gpu_vpu(int temp)
{
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
int vpu_slope = ctx->tuning_info->vpu_slope;
int gpu_slope = ctx->tuning_info->gpu_slope;
int vpu_ajust = ctx->tuning_info->vpu_ajust;
int gpu_ajust = ctx->tuning_info->gpu_ajust;
int delta_gpu_temp = 0;
int delta_vpu_temp = 0;
int gpu_enabled = 0;
int vpu_enabled = 0;
int delta;
static int sigma_vpu_20ms;
static int sigma_gpu_20ms;
delta = (int)update_working_time_for_gpu_vpu();
if (__clk_is_enabled(ctx->gpu_clk)) {
gpu_enabled = 1;
sigma_gpu_20ms -= delta;
sigma_gpu_20ms = max(sigma_gpu_20ms, 0);
} else {
sigma_gpu_20ms += delta;
}
if (__clk_is_enabled(ctx->vpu_clk)) {
vpu_enabled = 1;
sigma_vpu_20ms -= delta;
sigma_vpu_20ms = max(sigma_vpu_20ms, 0);
} else {
sigma_vpu_20ms += delta;
}
delta_gpu_temp = sigma_gpu_20ms * gpu_slope;
delta_vpu_temp = sigma_vpu_20ms * vpu_slope;
if (delta_gpu_temp > gpu_ajust) {
delta_gpu_temp = gpu_ajust;
sigma_gpu_20ms = gpu_ajust / gpu_slope;
}
if (delta_vpu_temp > vpu_ajust) {
delta_vpu_temp = vpu_ajust;
sigma_vpu_20ms = vpu_ajust / vpu_slope;
}
if (logout)
dev_info(&platform_dev->dev, "temp %d delta_vpu_temp %d delta_vpu_temp %d\n",
temp, delta_vpu_temp, delta_vpu_temp);
temp = temp - delta_gpu_temp - delta_vpu_temp;
return temp;
}
static int ps_get_cur_current(struct power_supply *psy, int *power_cur)
{
union power_supply_propval val;
int ret;
ret = psy->desc->get_property(psy, POWER_SUPPLY_PROP_CURRENT_NOW, &val);
if (!ret)
*power_cur = val.intval;
return ret;
}
static int map_temp_from_current(int cur)
{
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
int slope = ctx->tuning_info->cur_slope;
int intercept = ctx->tuning_info->cur_intercept;
int milli_degree = cur * slope + intercept;
milli_degree = predict_cur_temp(milli_degree);
return milli_degree;
}
static int get_temp_by_current(void)
{
int cur = 0;
int temp = LOWEST_TEMP;
int ret = -1;
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
if (ctx->psy_bat)
ret = ps_get_cur_current(ctx->psy_bat, &cur);
if (ret)
return temp;
cur = compensate_brightness(cur);
if (cur < MINIMAL_DISCHARGE_CURRENT) {
cur = -cur;
temp = map_temp_from_current(cur / 1000);
}
return temp;
}
static int ajudt_temp_by_load(int temp_delta)
{
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
int slope = ctx->tuning_info->load_slope;
int intercept = ctx->tuning_info->load_intercept;
int load_rate;
int total_load = 0;
int temp_delta_ajust;
total_load = get_all_load();
load_rate = (total_load * slope + intercept) / 1000;
load_rate = min(load_rate, 100);
if (temp_delta > 0)
temp_delta_ajust = temp_delta * load_rate / 100;
else
temp_delta_ajust = temp_delta * 100 / load_rate;
if (logout)
dev_info(&platform_dev->dev, "temp_delta %d load_rate %d temp_delta_ajust %d\n",
temp_delta, load_rate, temp_delta_ajust);
return temp_delta_ajust;
}
static int is_charger_pluged_in(void)
{
union power_supply_propval val;
int ret = 0;
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
struct power_supply *psy_usb = ctx->psy_usb;
struct power_supply *psy_ac = ctx->psy_ac;
if (psy_usb && psy_usb->desc && psy_usb->desc->get_property) {
ret = psy_usb->desc->get_property(psy_usb,
POWER_SUPPLY_PROP_ONLINE,
&val);
if (!ret && val.intval)
return 1;
}
if (psy_ac && psy_ac->desc && psy_ac->desc->get_property) {
ret = psy_ac->desc->get_property(psy_ac,
POWER_SUPPLY_PROP_ONLINE,
&val);
if (!ret && val.intval)
return 1;
}
return 0;
}
static int estimate_temp_internal(void)
{
int temp = 0;
static int last_temp = LOWEST_TEMP;
int temp_delta;
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
struct cpufreq_freqs *current_freq = &ctx->current_freq;
update_counting_time();
temp = get_temp_by_freq_time(current_freq->new, ctx->sigma_time_20ms);
temp = ajust_temp_on_gpu_vpu(temp);
if (last_temp == LOWEST_TEMP)
temp_delta = 0;
else
temp_delta = temp - last_temp;
temp_delta = ajudt_temp_by_load(temp_delta);
if (last_temp != LOWEST_TEMP)
temp = last_temp + temp_delta;
last_temp = temp;
temp = clamp(temp, ctx->temp_freq->min_temp, ctx->temp_freq->stable_temp);
temp += ctx->cmp_lkg_temp;
temp = predict_normal_temp(temp);
ctx->sigma_time_20ms = get_time_by_temp(temp);
if (logout)
dev_info(&platform_dev->dev, "Temp1 %d cmp_lkg_temp %d sigma %d\n",
temp, ctx->cmp_lkg_temp, ctx->sigma_time_20ms);
if (!is_charger_pluged_in()) {
int temp_from_current = 0;
int fusion_diff = 0;
int fusing_step = ctx->tuning_info->fusing_step;
temp_from_current = get_temp_by_current();
if (temp_from_current > LOWEST_WORKING_TEMP) {
fusion_diff = temp_from_current - temp;
temp = temp + fusion_diff / fusing_step;
ctx->sigma_time_20ms = get_time_by_temp(temp);
if (logout)
dev_info(&platform_dev->dev, "Temp2 %d temp_from_current %d sigma %d\n",
temp, temp_from_current,
ctx->sigma_time_20ms);
}
}
return temp;
}
static int virtual_thermal_set_trips(void *_sensor, int low, int high)
{
return 0;
}
static int virtual_thermal_get_temp(void *_sensor, int *out_temp)
{
*out_temp = estimate_temp_internal();
return 0;
}
static const struct thermal_zone_of_device_ops virtual_of_thermal_ops = {
.get_temp = virtual_thermal_get_temp,
.set_trips = virtual_thermal_set_trips,
};
static const struct of_device_id of_virtual_thermal_match[] = {
{
.compatible = "rockchip,rk3126-tsadc-virtual",
.data = (void *)&rk3126_tuning_info,
},
{ /* end */ },
};
MODULE_DEVICE_TABLE(of, of_virtual_thermal_match);
static int temp_interactive_notifier(struct notifier_block *nb,
unsigned long val, void *data)
{
struct cpufreq_freqs *freq = data;
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
if (!ctx)
return 0;
if (val == CPUFREQ_POSTCHANGE) {
ctx->current_freq.new = freq->new;
ctx->current_freq.old = freq->old;
}
return 0;
}
static struct notifier_block temp_notifier_block = {
.notifier_call = temp_interactive_notifier,
};
static int compensate_leakage(int lkg)
{
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
int slope = ctx->tuning_info->lkg_slope;
int intercept = ctx->tuning_info->lkg_slope;
int milli_degree = 0;
if (lkg == 0)
milli_degree = 0;
else
milli_degree = slope * lkg - intercept;
return milli_degree;
}
void dump_virtual_temperature(void)
{
struct virtual_thermal_data *ctx = platform_get_drvdata(platform_dev);
struct thermal_zone_device *tz = ctx->tzd;
if (tz->temperature != THERMAL_TEMP_INVALID)
dev_warn(&platform_dev->dev, "virtual temperature(%d C)\n",
tz->temperature / 1000);
}
EXPORT_SYMBOL_GPL(dump_virtual_temperature);
static int virtual_thermal_panic(struct notifier_block *this,
unsigned long ev, void *ptr)
{
dump_virtual_temperature();
return NOTIFY_DONE;
}
static struct notifier_block virtual_thermal_panic_block = {
.notifier_call = virtual_thermal_panic,
};
static int virtual_thermal_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
int ret;
int leakage = 0;
struct virtual_thermal_data *ctx;
const struct of_device_id *match;
match = of_match_node(of_virtual_thermal_match, np);
if (!match)
return -ENXIO;
ctx = devm_kzalloc(&pdev->dev, sizeof(struct virtual_thermal_data),
GFP_KERNEL);
ctx->pdev = pdev;
ctx->dev = &pdev->dev;
platform_set_drvdata(pdev, ctx);
platform_dev = pdev;
ctx->tuning_info = (struct thermal_tuning_info *)match->data;
if (!ctx->tuning_info) {
dev_err(&pdev->dev,
"failed to allocate memory for tuning info.\n");
return -EINVAL;
}
ret = rockchip_get_efuse_value(np, "cpu_leakage", &leakage);
if (!ret)
dev_info(&pdev->dev, "leakage=%d\n", leakage);
ctx->cmp_lkg_temp = compensate_leakage(leakage);
ctx->psy_bat = power_supply_get_by_name("battery");
ctx->psy_usb = power_supply_get_by_name("usb");
ctx->psy_ac = power_supply_get_by_name("ac");
ret = cpufreq_register_notifier(&temp_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
if (ret) {
dev_err(&pdev->dev, "failed to register cpufreq notifier: %d\n",
ret);
return ret;
}
ctx->gpu_clk = clk_get_by_name("aclk_gpu");
if (IS_ERR_OR_NULL(ctx->gpu_clk)) {
ret = PTR_ERR(ctx->gpu_clk);
ctx->gpu_clk = NULL;
dev_warn(&pdev->dev, "failed to get gpu's clock: %d\n", ret);
}
ctx->vpu_clk = clk_get_by_name("aclk_vdpu");
if (IS_ERR_OR_NULL(ctx->vpu_clk)) {
ret = PTR_ERR(ctx->vpu_clk);
ctx->vpu_clk = NULL;
dev_warn(&pdev->dev, "failed to get vpu's clock: %d\n", ret);
}
ctx->tzd = devm_thermal_zone_of_sensor_register(&pdev->dev, 0,
NULL,
&virtual_of_thermal_ops);
if (IS_ERR(ctx->tzd)) {
ret = PTR_ERR(ctx->tzd);
dev_err(&pdev->dev, "failed to register sensor 0: %d\n", ret);
goto err_unreg_cpufreq_notifier;
}
ret = atomic_notifier_chain_register(&panic_notifier_list,
&virtual_thermal_panic_block);
if (ret) {
dev_err(&pdev->dev, "failed to register panic notifier: %d\n",
ret);
goto err_unreg_cpufreq_notifier;
}
dev_info(&pdev->dev, "virtual tsadc probed successfully\n");
return 0;
err_unreg_cpufreq_notifier:
cpufreq_unregister_notifier(&temp_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
if (ctx->gpu_clk)
clk_put(ctx->gpu_clk);
if (ctx->vpu_clk)
clk_put(ctx->vpu_clk);
return ret;
}
static int virtual_thermal_remove(struct platform_device *pdev)
{
struct virtual_thermal_data *ctx = platform_get_drvdata(pdev);
atomic_notifier_chain_unregister(&panic_notifier_list,
&virtual_thermal_panic_block);
cpufreq_unregister_notifier(&temp_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
if (ctx->gpu_clk)
clk_put(ctx->gpu_clk);
if (ctx->vpu_clk)
clk_put(ctx->vpu_clk);
return 0;
}
static struct platform_driver virtual_thermal_driver = {
.driver = {
.name = "virtual-thermal",
.of_match_table = of_virtual_thermal_match,
},
.probe = virtual_thermal_probe,
.remove = virtual_thermal_remove,
};
static int __init virtual_thermal_init_driver(void)
{
return platform_driver_register(&virtual_thermal_driver);
}
late_initcall(virtual_thermal_init_driver);
MODULE_DESCRIPTION("ROCKCHIP THERMAL Driver");
MODULE_AUTHOR("Rockchip, Inc.");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:virtual-thermal");