android13/kernel-5.10/drivers/video/rockchip/mpp/mpp_common.h

909 lines
23 KiB
C

/* SPDX-License-Identifier: (GPL-2.0+ OR MIT) */
/*
* Copyright (c) 2019 Fuzhou Rockchip Electronics Co., Ltd
*
* author:
* Alpha Lin, alpha.lin@rock-chips.com
* Randy Li, randy.li@rock-chips.com
* Ding Wei, leo.ding@rock-chips.com
*
*/
#ifndef __ROCKCHIP_MPP_COMMON_H__
#define __ROCKCHIP_MPP_COMMON_H__
#include <linux/cdev.h>
#include <linux/clk.h>
#include <linux/dma-buf.h>
#include <linux/kfifo.h>
#include <linux/types.h>
#include <linux/time.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <linux/reset.h>
#include <linux/irqreturn.h>
#include <linux/poll.h>
#include <linux/platform_device.h>
#include <soc/rockchip/pm_domains.h>
#define MHZ (1000 * 1000)
#define MPP_WORK_TIMEOUT_DELAY (500)
#define MPP_MAX_MSG_NUM (16)
#define MPP_MAX_REG_TRANS_NUM (60)
#define MPP_MAX_TASK_CAPACITY (16)
/* define flags for mpp_request */
#define MPP_FLAGS_MULTI_MSG (0x00000001)
#define MPP_FLAGS_LAST_MSG (0x00000002)
#define MPP_FLAGS_REG_FD_NO_TRANS (0x00000004)
#define MPP_FLAGS_SCL_FD_NO_TRANS (0x00000008)
#define MPP_FLAGS_REG_NO_OFFSET (0x00000010)
#define MPP_FLAGS_SECURE_MODE (0x00010000)
/* grf mask for get value */
#define MPP_GRF_VAL_MASK (0xFFFF)
/* max 4 cores supported */
#define MPP_MAX_CORE_NUM (4)
/**
* Device type: classified by hardware feature
*/
enum MPP_DEVICE_TYPE {
MPP_DEVICE_VDPU1 = 0, /* 0x00000001 */
MPP_DEVICE_VDPU2 = 1, /* 0x00000002 */
MPP_DEVICE_VDPU1_PP = 2, /* 0x00000004 */
MPP_DEVICE_VDPU2_PP = 3, /* 0x00000008 */
MPP_DEVICE_AV1DEC = 4, /* 0x00000010 */
MPP_DEVICE_HEVC_DEC = 8, /* 0x00000100 */
MPP_DEVICE_RKVDEC = 9, /* 0x00000200 */
MPP_DEVICE_AVSPLUS_DEC = 12, /* 0x00001000 */
MPP_DEVICE_RKJPEGD = 13, /* 0x00002000 */
MPP_DEVICE_RKVENC = 16, /* 0x00010000 */
MPP_DEVICE_VEPU1 = 17, /* 0x00020000 */
MPP_DEVICE_VEPU2 = 18, /* 0x00040000 */
MPP_DEVICE_VEPU2_JPEG = 19, /* 0x00080000 */
MPP_DEVICE_VEPU22 = 24, /* 0x01000000 */
MPP_DEVICE_IEP2 = 28, /* 0x10000000 */
MPP_DEVICE_VDPP = 29, /* 0x20000000 */
MPP_DEVICE_BUTT,
};
/**
* Driver type: classified by driver
*/
enum MPP_DRIVER_TYPE {
MPP_DRIVER_NULL = 0,
MPP_DRIVER_VDPU1,
MPP_DRIVER_VEPU1,
MPP_DRIVER_VDPU2,
MPP_DRIVER_VEPU2,
MPP_DRIVER_VEPU22,
MPP_DRIVER_RKVDEC,
MPP_DRIVER_RKVENC,
MPP_DRIVER_IEP,
MPP_DRIVER_IEP2,
MPP_DRIVER_JPGDEC,
MPP_DRIVER_RKVDEC2,
MPP_DRIVER_RKVENC2,
MPP_DRIVER_AV1DEC,
MPP_DRIVER_VDPP,
MPP_DRIVER_BUTT,
};
/**
* Command type: keep the same as user space
*/
enum MPP_DEV_COMMAND_TYPE {
MPP_CMD_QUERY_BASE = 0,
MPP_CMD_QUERY_HW_SUPPORT = MPP_CMD_QUERY_BASE + 0,
MPP_CMD_QUERY_HW_ID = MPP_CMD_QUERY_BASE + 1,
MPP_CMD_QUERY_CMD_SUPPORT = MPP_CMD_QUERY_BASE + 2,
MPP_CMD_QUERY_BUTT,
MPP_CMD_INIT_BASE = 0x100,
MPP_CMD_INIT_CLIENT_TYPE = MPP_CMD_INIT_BASE + 0,
MPP_CMD_INIT_DRIVER_DATA = MPP_CMD_INIT_BASE + 1,
MPP_CMD_INIT_TRANS_TABLE = MPP_CMD_INIT_BASE + 2,
MPP_CMD_INIT_BUTT,
MPP_CMD_SEND_BASE = 0x200,
MPP_CMD_SET_REG_WRITE = MPP_CMD_SEND_BASE + 0,
MPP_CMD_SET_REG_READ = MPP_CMD_SEND_BASE + 1,
MPP_CMD_SET_REG_ADDR_OFFSET = MPP_CMD_SEND_BASE + 2,
MPP_CMD_SET_RCB_INFO = MPP_CMD_SEND_BASE + 3,
MPP_CMD_SET_SESSION_FD = MPP_CMD_SEND_BASE + 4,
MPP_CMD_SEND_BUTT,
MPP_CMD_POLL_BASE = 0x300,
MPP_CMD_POLL_HW_FINISH = MPP_CMD_POLL_BASE + 0,
MPP_CMD_POLL_HW_IRQ = MPP_CMD_POLL_BASE + 1,
MPP_CMD_POLL_BUTT,
MPP_CMD_CONTROL_BASE = 0x400,
MPP_CMD_RESET_SESSION = MPP_CMD_CONTROL_BASE + 0,
MPP_CMD_TRANS_FD_TO_IOVA = MPP_CMD_CONTROL_BASE + 1,
MPP_CMD_RELEASE_FD = MPP_CMD_CONTROL_BASE + 2,
MPP_CMD_SEND_CODEC_INFO = MPP_CMD_CONTROL_BASE + 3,
MPP_CMD_CONTROL_BUTT,
MPP_CMD_BUTT,
};
enum MPP_CLOCK_MODE {
CLK_MODE_BASE = 0,
CLK_MODE_DEFAULT = CLK_MODE_BASE,
CLK_MODE_DEBUG,
CLK_MODE_REDUCE,
CLK_MODE_NORMAL,
CLK_MODE_ADVANCED,
CLK_MODE_BUTT,
};
enum MPP_RESET_TYPE {
RST_TYPE_BASE = 0,
RST_TYPE_A = RST_TYPE_BASE,
RST_TYPE_H,
RST_TYPE_NIU_A,
RST_TYPE_NIU_H,
RST_TYPE_CORE,
RST_TYPE_CABAC,
RST_TYPE_HEVC_CABAC,
RST_TYPE_BUTT,
};
enum ENC_INFO_TYPE {
ENC_INFO_BASE = 0,
ENC_INFO_WIDTH,
ENC_INFO_HEIGHT,
ENC_INFO_FORMAT,
ENC_INFO_FPS_IN,
ENC_INFO_FPS_OUT,
ENC_INFO_RC_MODE,
ENC_INFO_BITRATE,
ENC_INFO_GOP_SIZE,
ENC_INFO_FPS_CALC,
ENC_INFO_PROFILE,
ENC_INFO_BUTT,
};
enum DEC_INFO_TYPE {
DEC_INFO_BASE = 0,
DEC_INFO_WIDTH,
DEC_INFO_HEIGHT,
DEC_INFO_FORMAT,
DEC_INFO_BITDEPTH,
DEC_INFO_FPS,
DEC_INFO_BUTT,
};
enum CODEC_INFO_FLAGS {
CODEC_INFO_FLAG_NULL = 0,
CODEC_INFO_FLAG_NUMBER,
CODEC_INFO_FLAG_STRING,
CODEC_INFO_FLAG_BUTT,
};
struct mpp_task;
struct mpp_session;
struct mpp_dma_session;
struct mpp_taskqueue;
struct iommu_domain;
/* data common struct for parse out */
struct mpp_request {
__u32 cmd;
__u32 flags;
__u32 size;
__u32 offset;
void __user *data;
};
/* struct use to collect task set and poll message */
struct mpp_task_msgs {
/* for ioctl msgs bat process */
struct list_head list;
struct list_head list_session;
struct mpp_session *session;
struct mpp_taskqueue *queue;
struct mpp_task *task;
struct mpp_dev *mpp;
/* for fd reference */
int ext_fd;
struct fd f;
u32 flags;
u32 req_cnt;
u32 set_cnt;
u32 poll_cnt;
struct mpp_request reqs[MPP_MAX_MSG_NUM];
struct mpp_request *poll_req;
};
struct mpp_grf_info {
u32 offset;
u32 val;
struct regmap *grf;
};
/**
* struct for hardware info
*/
struct mpp_hw_info {
/* register number */
u32 reg_num;
/* hardware id */
int reg_id;
u32 hw_id;
/* start index of register */
u32 reg_start;
/* end index of register */
u32 reg_end;
/* register of enable hardware */
int reg_en;
void *link_info;
};
struct mpp_trans_info {
const int count;
const u16 * const table;
};
struct reg_offset_elem {
u32 index;
u32 offset;
};
struct reg_offset_info {
u32 cnt;
struct reg_offset_elem elem[MPP_MAX_REG_TRANS_NUM];
};
struct codec_info_elem {
__u32 type;
__u32 flag;
__u64 data;
};
struct mpp_clk_info {
struct clk *clk;
/* debug rate, from debug */
u32 debug_rate_hz;
/* normal rate, from dtsi */
u32 normal_rate_hz;
/* high performance rate, from dtsi */
u32 advanced_rate_hz;
u32 default_rate_hz;
u32 reduce_rate_hz;
/* record last used rate */
u32 used_rate_hz;
u32 real_rate_hz;
};
struct mpp_dev_var {
enum MPP_DEVICE_TYPE device_type;
/* info for each hardware */
struct mpp_hw_info *hw_info;
struct mpp_trans_info *trans_info;
struct mpp_hw_ops *hw_ops;
struct mpp_dev_ops *dev_ops;
};
struct mpp_mem_region {
struct list_head reg_link;
/* address for iommu */
dma_addr_t iova;
unsigned long len;
u32 reg_idx;
void *hdl;
int fd;
/* whether is dup import entity */
bool is_dup;
};
struct mpp_dev {
struct device *dev;
const struct mpp_dev_var *var;
struct mpp_hw_ops *hw_ops;
struct mpp_dev_ops *dev_ops;
/* per-device work for attached taskqueue */
struct kthread_work work;
/* the flag for get/get/reduce freq */
bool auto_freq_en;
/* the flag for pmu idle request before device reset */
bool skip_idle;
/*
* The task capacity is the task queue length that hardware can accept.
* Default 1 means normal hardware can only accept one task at once.
*/
u32 task_capacity;
/*
* The message capacity is the max message parallel process capacity.
* Default 1 means normal hardware can only accept one message at one
* shot ioctl.
* Multi-core hardware can accept more message at one shot ioctl.
*/
u32 msgs_cap;
int irq;
bool is_irq_startup;
u32 irq_status;
void __iomem *reg_base;
struct mpp_grf_info *grf_info;
struct mpp_iommu_info *iommu_info;
int (*fault_handler)(struct iommu_domain *iommu, struct device *iommu_dev,
unsigned long iova, int status, void *arg);
resource_size_t io_base;
atomic_t reset_request;
atomic_t session_index;
atomic_t task_count;
atomic_t task_index;
/* current task in running */
struct mpp_task *cur_task;
/* set session max buffers */
u32 session_max_buffers;
struct mpp_taskqueue *queue;
struct mpp_reset_group *reset_group;
/* point to MPP Service */
struct mpp_service *srv;
/* multi-core data */
struct list_head queue_link;
s32 core_id;
/* common per-device procfs */
u32 disable;
u32 timing_check;
};
struct mpp_session {
enum MPP_DEVICE_TYPE device_type;
u32 index;
/* the session related device private data */
struct mpp_service *srv;
struct mpp_dev *mpp;
struct mpp_dma_session *dma;
/* lock for session task pending list */
struct mutex pending_lock;
/* task pending list in session */
struct list_head pending_list;
pid_t pid;
atomic_t task_count;
atomic_t release_request;
/* trans info set by user */
int trans_count;
u16 trans_table[MPP_MAX_REG_TRANS_NUM];
u32 msg_flags;
/* link to mpp_service session_list */
struct list_head service_link;
/* link to mpp_workqueue session_attach / session_detach */
struct list_head session_link;
/* private data */
void *priv;
/*
* session handler from mpp_dev_ops
* process_task - handle messages of sending task
* wait_result - handle messages of polling task
* deinit - handle session deinit
*/
int (*process_task)(struct mpp_session *session,
struct mpp_task_msgs *msgs);
int (*wait_result)(struct mpp_session *session,
struct mpp_task_msgs *msgs);
void (*deinit)(struct mpp_session *session);
/* max message count */
int msgs_cnt;
struct list_head list_msgs;
struct list_head list_msgs_idle;
spinlock_t lock_msgs;
};
/* task state in work thread */
enum mpp_task_state {
TASK_STATE_PENDING = 0,
TASK_STATE_RUNNING = 1,
TASK_STATE_START = 2,
TASK_STATE_HANDLE = 3,
TASK_STATE_IRQ = 4,
TASK_STATE_FINISH = 5,
TASK_STATE_TIMEOUT = 6,
TASK_STATE_DONE = 7,
TASK_STATE_PREPARE = 8,
TASK_STATE_ABORT = 9,
TASK_STATE_ABORT_READY = 10,
TASK_STATE_PROC_DONE = 11,
/* timing debug state */
TASK_TIMING_CREATE = 16,
TASK_TIMING_CREATE_END = 17,
TASK_TIMING_PENDING = 18,
TASK_TIMING_RUN = 19,
TASK_TIMING_TO_SCHED = 20,
TASK_TIMING_RUN_END = 21,
TASK_TIMING_IRQ = 22,
TASK_TIMING_TO_CANCEL = 23,
TASK_TIMING_ISR = 24,
TASK_TIMING_FINISH = 25,
};
/* The context for the a task */
struct mpp_task {
/* context belong to */
struct mpp_session *session;
/* link to pending list in session */
struct list_head pending_link;
/* link to done list in session */
struct list_head done_link;
/* link to list in taskqueue */
struct list_head queue_link;
/* The DMA buffer used in this task */
struct list_head mem_region_list;
u32 mem_count;
struct mpp_mem_region mem_regions[MPP_MAX_REG_TRANS_NUM];
/* state in the taskqueue */
unsigned long state;
atomic_t abort_request;
/* delayed work for hardware timeout */
struct delayed_work timeout_work;
struct kref ref;
/* record context running start time */
ktime_t start;
ktime_t part;
/* debug timing */
ktime_t on_create;
ktime_t on_create_end;
ktime_t on_pending;
ktime_t on_run;
ktime_t on_sched_timeout;
ktime_t on_run_end;
ktime_t on_irq;
ktime_t on_cancel_timeout;
ktime_t on_isr;
ktime_t on_finish;
/* hardware info for current task */
struct mpp_hw_info *hw_info;
u32 task_index;
u32 task_id;
u32 *reg;
/* event for session wait thread */
wait_queue_head_t wait;
/* for multi-core */
struct mpp_dev *mpp;
s32 core_id;
/* hw cycles */
u32 hw_cycles;
};
struct mpp_taskqueue {
/* kworker for attached taskqueue */
struct kthread_worker worker;
/* task for work queue */
struct task_struct *kworker_task;
/* lock for session attach and session_detach */
struct mutex session_lock;
/* link to session session_link for attached sessions */
struct list_head session_attach;
/* link to session session_link for detached sessions */
struct list_head session_detach;
atomic_t detach_count;
atomic_t task_id;
/* lock for pending list */
struct mutex pending_lock;
struct list_head pending_list;
/* lock for running list */
spinlock_t running_lock;
struct list_head running_list;
/* point to MPP Service */
struct mpp_service *srv;
/* lock for mmu list */
struct mutex mmu_lock;
struct list_head mmu_list;
/* lock for dev list */
struct mutex dev_lock;
struct list_head dev_list;
/*
* task_capacity in taskqueue is the minimum task capacity of the
* device task capacity which is attached to the taskqueue
*/
u32 task_capacity;
/* multi-core task distribution */
atomic_t reset_request;
struct mpp_dev *cores[MPP_MAX_CORE_NUM];
unsigned long core_idle;
u32 core_id_max;
u32 core_count;
unsigned long dev_active_flags;
u32 iommu_fault;
};
struct mpp_reset_group {
/* the flag for whether use rw_sem */
u32 rw_sem_on;
struct rw_semaphore rw_sem;
struct reset_control *resets[RST_TYPE_BUTT];
/* for set rw_sem */
struct mpp_taskqueue *queue;
};
struct mpp_service {
struct class *cls;
struct device *dev;
dev_t dev_id;
struct cdev mpp_cdev;
struct device *child_dev;
#ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
struct proc_dir_entry *procfs;
#endif
unsigned long hw_support;
atomic_t shutdown_request;
/* follows for device probe */
struct mpp_grf_info grf_infos[MPP_DRIVER_BUTT];
struct platform_driver *sub_drivers[MPP_DRIVER_BUTT];
/* follows for attach service */
struct mpp_dev *sub_devices[MPP_DEVICE_BUTT];
u32 taskqueue_cnt;
struct mpp_taskqueue *task_queues[MPP_DEVICE_BUTT];
u32 reset_group_cnt;
struct mpp_reset_group *reset_groups[MPP_DEVICE_BUTT];
/* lock for session list */
struct mutex session_lock;
struct list_head session_list;
u32 session_count;
/* global timing record flag */
u32 timing_en;
};
/*
* struct mpp_hw_ops - context specific operations for device
* @init Do something when hardware probe.
* @exit Do something when hardware remove.
* @clk_on Enable clocks.
* @clk_off Disable clocks.
* @get_freq Get special freq for setting.
* @set_freq Set freq to hardware.
* @reduce_freq Reduce freq when hardware is not running.
* @reset When error, reset hardware.
*/
struct mpp_hw_ops {
int (*init)(struct mpp_dev *mpp);
int (*exit)(struct mpp_dev *mpp);
int (*clk_on)(struct mpp_dev *mpp);
int (*clk_off)(struct mpp_dev *mpp);
int (*get_freq)(struct mpp_dev *mpp,
struct mpp_task *mpp_task);
int (*set_freq)(struct mpp_dev *mpp,
struct mpp_task *mpp_task);
int (*reduce_freq)(struct mpp_dev *mpp);
int (*reset)(struct mpp_dev *mpp);
int (*set_grf)(struct mpp_dev *mpp);
};
/*
* struct mpp_dev_ops - context specific operations for task
* @alloc_task Alloc and set task.
* @prepare Check HW status for determining run next task or not.
* @run Start a single {en,de}coding run. Set registers to hardware.
* @irq Deal with hardware interrupt top-half.
* @isr Deal with hardware interrupt bottom-half.
* @finish Read back processing results and additional data from hardware.
* @result Read status to userspace.
* @free_task Release the resource allocate which alloc.
* @ioctl Special cammand from userspace.
* @init_session extra initialization on session init.
* @free_session extra cleanup on session deinit.
* @dump_session information dump for session.
* @dump_dev information dump for hardware device.
*/
struct mpp_dev_ops {
int (*process_task)(struct mpp_session *session,
struct mpp_task_msgs *msgs);
int (*wait_result)(struct mpp_session *session,
struct mpp_task_msgs *msgs);
void (*deinit)(struct mpp_session *session);
void (*task_worker)(struct kthread_work *work_s);
void *(*alloc_task)(struct mpp_session *session,
struct mpp_task_msgs *msgs);
void *(*prepare)(struct mpp_dev *mpp, struct mpp_task *task);
int (*run)(struct mpp_dev *mpp, struct mpp_task *task);
int (*irq)(struct mpp_dev *mpp);
int (*isr)(struct mpp_dev *mpp);
int (*finish)(struct mpp_dev *mpp, struct mpp_task *task);
int (*result)(struct mpp_dev *mpp, struct mpp_task *task,
struct mpp_task_msgs *msgs);
int (*free_task)(struct mpp_session *session,
struct mpp_task *task);
int (*ioctl)(struct mpp_session *session, struct mpp_request *req);
int (*init_session)(struct mpp_session *session);
int (*free_session)(struct mpp_session *session);
int (*dump_session)(struct mpp_session *session, struct seq_file *seq);
int (*dump_dev)(struct mpp_dev *mpp);
};
struct mpp_taskqueue *mpp_taskqueue_init(struct device *dev);
struct mpp_mem_region *
mpp_task_attach_fd(struct mpp_task *task, int fd);
int mpp_translate_reg_address(struct mpp_session *session,
struct mpp_task *task, int fmt,
u32 *reg, struct reg_offset_info *off_inf);
int mpp_check_req(struct mpp_request *req, int base,
int max_size, u32 off_s, u32 off_e);
int mpp_extract_reg_offset_info(struct reg_offset_info *off_inf,
struct mpp_request *req);
int mpp_query_reg_offset_info(struct reg_offset_info *off_inf,
u32 index);
int mpp_translate_reg_offset_info(struct mpp_task *task,
struct reg_offset_info *off_inf,
u32 *reg);
int mpp_task_init(struct mpp_session *session,
struct mpp_task *task);
int mpp_task_finish(struct mpp_session *session,
struct mpp_task *task);
void mpp_task_run_begin(struct mpp_task *task, u32 timing_en, u32 timeout);
void mpp_task_run_end(struct mpp_task *task, u32 timing_en);
int mpp_task_finalize(struct mpp_session *session,
struct mpp_task *task);
int mpp_task_dump_mem_region(struct mpp_dev *mpp,
struct mpp_task *task);
int mpp_task_dump_reg(struct mpp_dev *mpp,
struct mpp_task *task);
int mpp_task_dump_hw_reg(struct mpp_dev *mpp);
void mpp_task_dump_timing(struct mpp_task *task, s64 time_diff);
void mpp_reg_show(struct mpp_dev *mpp, u32 offset);
void mpp_reg_show_range(struct mpp_dev *mpp, u32 start, u32 end);
void mpp_free_task(struct kref *ref);
void mpp_session_deinit(struct mpp_session *session);
void mpp_session_cleanup_detach(struct mpp_taskqueue *queue,
struct kthread_work *work);
int mpp_taskqueue_pending_to_run(struct mpp_taskqueue *queue, struct mpp_task *task);
int mpp_dev_probe(struct mpp_dev *mpp,
struct platform_device *pdev);
int mpp_dev_remove(struct mpp_dev *mpp);
void mpp_dev_shutdown(struct platform_device *pdev);
int mpp_dev_register_srv(struct mpp_dev *mpp, struct mpp_service *srv);
int mpp_power_on(struct mpp_dev *mpp);
int mpp_power_off(struct mpp_dev *mpp);
int mpp_dev_reset(struct mpp_dev *mpp);
irqreturn_t mpp_dev_irq(int irq, void *param);
irqreturn_t mpp_dev_isr_sched(int irq, void *param);
struct reset_control *mpp_reset_control_get(struct mpp_dev *mpp,
enum MPP_RESET_TYPE type,
const char *name);
u32 mpp_get_grf(struct mpp_grf_info *grf_info);
bool mpp_grf_is_changed(struct mpp_grf_info *grf_info);
int mpp_set_grf(struct mpp_grf_info *grf_info);
int mpp_time_record(struct mpp_task *task);
int mpp_time_diff(struct mpp_task *task);
int mpp_time_diff_with_hw_time(struct mpp_task *task, u32 clk_hz);
int mpp_time_part_diff(struct mpp_task *task);
int mpp_write_req(struct mpp_dev *mpp, u32 *regs,
u32 start_idx, u32 end_idx, u32 en_idx);
int mpp_read_req(struct mpp_dev *mpp, u32 *regs,
u32 start_idx, u32 end_idx);
int mpp_get_clk_info(struct mpp_dev *mpp,
struct mpp_clk_info *clk_info,
const char *name);
int mpp_set_clk_info_rate_hz(struct mpp_clk_info *clk_info,
enum MPP_CLOCK_MODE mode,
unsigned long val);
unsigned long mpp_get_clk_info_rate_hz(struct mpp_clk_info *clk_info,
enum MPP_CLOCK_MODE mode);
int mpp_clk_set_rate(struct mpp_clk_info *clk_info,
enum MPP_CLOCK_MODE mode);
static inline int mpp_write(struct mpp_dev *mpp, u32 reg, u32 val)
{
int idx = reg / sizeof(u32);
mpp_debug(DEBUG_SET_REG,
"write reg[%03d]: %04x: 0x%08x\n", idx, reg, val);
writel(val, mpp->reg_base + reg);
return 0;
}
static inline int mpp_write_relaxed(struct mpp_dev *mpp, u32 reg, u32 val)
{
int idx = reg / sizeof(u32);
mpp_debug(DEBUG_SET_REG,
"write reg[%03d]: %04x: 0x%08x\n", idx, reg, val);
writel_relaxed(val, mpp->reg_base + reg);
return 0;
}
static inline u32 mpp_read(struct mpp_dev *mpp, u32 reg)
{
u32 val = 0;
int idx = reg / sizeof(u32);
val = readl(mpp->reg_base + reg);
mpp_debug(DEBUG_GET_REG,
"read reg[%03d]: %04x: 0x%08x\n", idx, reg, val);
return val;
}
static inline u32 mpp_read_relaxed(struct mpp_dev *mpp, u32 reg)
{
u32 val = 0;
int idx = reg / sizeof(u32);
val = readl_relaxed(mpp->reg_base + reg);
mpp_debug(DEBUG_GET_REG,
"read reg[%03d] %04x: 0x%08x\n", idx, reg, val);
return val;
}
static inline int mpp_safe_reset(struct reset_control *rst)
{
if (rst)
reset_control_assert(rst);
return 0;
}
static inline int mpp_safe_unreset(struct reset_control *rst)
{
if (rst)
reset_control_deassert(rst);
return 0;
}
static inline int mpp_clk_safe_enable(struct clk *clk)
{
if (clk)
clk_prepare_enable(clk);
return 0;
}
static inline int mpp_clk_safe_disable(struct clk *clk)
{
if (clk)
clk_disable_unprepare(clk);
return 0;
}
static inline int mpp_reset_down_read(struct mpp_reset_group *group)
{
if (group && group->rw_sem_on)
down_read(&group->rw_sem);
return 0;
}
static inline int mpp_reset_up_read(struct mpp_reset_group *group)
{
if (group && group->rw_sem_on)
up_read(&group->rw_sem);
return 0;
}
static inline int mpp_reset_down_write(struct mpp_reset_group *group)
{
if (group && group->rw_sem_on)
down_write(&group->rw_sem);
return 0;
}
static inline int mpp_reset_up_write(struct mpp_reset_group *group)
{
if (group && group->rw_sem_on)
up_write(&group->rw_sem);
return 0;
}
static inline int mpp_pmu_idle_request(struct mpp_dev *mpp, bool idle)
{
if (mpp->skip_idle)
return 0;
return rockchip_pmu_idle_request(mpp->dev, idle);
}
static inline struct mpp_dev *
mpp_get_task_used_device(const struct mpp_task *task,
const struct mpp_session *session)
{
return task->mpp ? task->mpp : session->mpp;
}
#ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
struct proc_dir_entry *
mpp_procfs_create_u32(const char *name, umode_t mode,
struct proc_dir_entry *parent, void *data);
void mpp_procfs_create_common(struct proc_dir_entry *parent, struct mpp_dev *mpp);
#else
static inline struct proc_dir_entry *
mpp_procfs_create_u32(const char *name, umode_t mode,
struct proc_dir_entry *parent, void *data)
{
return 0;
}
void mpp_procfs_create_common(struct proc_dir_entry *parent, struct mpp_dev *mpp)
{
}
#endif
#ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
extern const char *mpp_device_name[MPP_DEVICE_BUTT];
extern const char *enc_info_item_name[ENC_INFO_BUTT];
#endif
extern const struct file_operations rockchip_mpp_fops;
extern struct platform_driver rockchip_rkvdec_driver;
extern struct platform_driver rockchip_rkvenc_driver;
extern struct platform_driver rockchip_vdpu1_driver;
extern struct platform_driver rockchip_vepu1_driver;
extern struct platform_driver rockchip_vdpu2_driver;
extern struct platform_driver rockchip_vepu2_driver;
extern struct platform_driver rockchip_vepu22_driver;
extern struct platform_driver rockchip_iep2_driver;
extern struct platform_driver rockchip_jpgdec_driver;
extern struct platform_driver rockchip_rkvdec2_driver;
extern struct platform_driver rockchip_rkvenc2_driver;
extern struct platform_driver rockchip_av1dec_driver;
extern struct platform_driver rockchip_av1_iommu_driver;
extern int av1dec_driver_register(struct platform_driver *drv);
extern void av1dec_driver_unregister(struct platform_driver *drv);
extern struct bus_type av1dec_bus;
extern struct platform_driver rockchip_vdpp_driver;
#endif