android13/kernel-5.10/drivers/video/rockchip/mpp/mpp_rkvdec.c

2040 lines
52 KiB
C

// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Copyright (c) 2019 Fuzhou Rockchip Electronics Co., Ltd
*
* author:
* Alpha Lin, alpha.lin@rock-chips.com
* Randy Li, randy.li@rock-chips.com
* Ding Wei, leo.ding@rock-chips.com
*
*/
#include <asm/cacheflush.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/devfreq.h>
#include <linux/devfreq_cooling.h>
#include <linux/gfp.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/regmap.h>
#include <linux/kernel.h>
#include <linux/thermal.h>
#include <linux/notifier.h>
#include <linux/proc_fs.h>
#include <linux/rockchip/rockchip_sip.h>
#include <linux/regulator/consumer.h>
#include <soc/rockchip/pm_domains.h>
#include <soc/rockchip/rockchip_sip.h>
#include <soc/rockchip/rockchip_opp_select.h>
#include "mpp_debug.h"
#include "mpp_common.h"
#include "mpp_iommu.h"
#include <soc/rockchip/rockchip_iommu.h>
#include "hack/mpp_hack_px30.h"
#define RKVDEC_DRIVER_NAME "mpp_rkvdec"
#define IOMMU_GET_BUS_ID(x) (((x) >> 6) & 0x1f)
#define IOMMU_PAGE_SIZE SZ_4K
#define RKVDEC_SESSION_MAX_BUFFERS 40
/* The maximum registers number of all the version */
#define HEVC_DEC_REG_NUM 68
#define HEVC_DEC_REG_HW_ID_INDEX 0
#define HEVC_DEC_REG_START_INDEX 0
#define HEVC_DEC_REG_END_INDEX 67
#define RKVDEC_V1_REG_NUM 78
#define RKVDEC_V1_REG_HW_ID_INDEX 0
#define RKVDEC_V1_REG_START_INDEX 0
#define RKVDEC_V1_REG_END_INDEX 77
#define RKVDEC_V2_REG_NUM 109
#define RKVDEC_V2_REG_HW_ID_INDEX 0
#define RKVDEC_V2_REG_START_INDEX 0
#define RKVDEC_V2_REG_END_INDEX 108
#define RKVDEC_REG_INT_EN 0x004
#define RKVDEC_REG_INT_EN_INDEX (1)
#define RKVDEC_WR_DDR_ALIGN_EN BIT(23)
#define RKVDEC_FORCE_SOFT_RESET_VALID BIT(21)
#define RKVDEC_SOFTWARE_RESET_EN BIT(20)
#define RKVDEC_INT_COLMV_REF_ERROR BIT(17)
#define RKVDEC_INT_BUF_EMPTY BIT(16)
#define RKVDEC_INT_TIMEOUT BIT(15)
#define RKVDEC_INT_STRM_ERROR BIT(14)
#define RKVDEC_INT_BUS_ERROR BIT(13)
#define RKVDEC_DEC_INT_RAW BIT(9)
#define RKVDEC_DEC_INT BIT(8)
#define RKVDEC_DEC_TIMEOUT_EN BIT(5)
#define RKVDEC_DEC_IRQ_DIS BIT(4)
#define RKVDEC_CLOCK_GATE_EN BIT(1)
#define RKVDEC_DEC_START BIT(0)
#define RKVDEC_REG_SYS_CTRL 0x008
#define RKVDEC_REG_SYS_CTRL_INDEX (2)
#define RKVDEC_RGE_WIDTH_INDEX (3)
#define RKVDEC_GET_FORMAT(x) (((x) >> 20) & 0x3)
#define REVDEC_GET_PROD_NUM(x) (((x) >> 16) & 0xffff)
#define RKVDEC_GET_WIDTH(x) (((x) & 0x3ff) << 4)
#define RKVDEC_FMT_H265D (0)
#define RKVDEC_FMT_H264D (1)
#define RKVDEC_FMT_VP9D (2)
#define RKVDEC_REG_RLC_BASE 0x010
#define RKVDEC_REG_RLC_BASE_INDEX (4)
#define RKVDEC_RGE_YSTRDE_INDEX (8)
#define RKVDEC_GET_YSTRDE(x) (((x) & 0x1fffff) << 4)
#define RKVDEC_REG_PPS_BASE 0x0a0
#define RKVDEC_REG_PPS_BASE_INDEX (42)
#define RKVDEC_REG_VP9_REFCOLMV_BASE 0x0d0
#define RKVDEC_REG_VP9_REFCOLMV_BASE_INDEX (52)
#define RKVDEC_REG_CACHE0_SIZE_BASE 0x41c
#define RKVDEC_REG_CACHE1_SIZE_BASE 0x45c
#define RKVDEC_REG_CLR_CACHE0_BASE 0x410
#define RKVDEC_REG_CLR_CACHE1_BASE 0x450
#define RKVDEC_CACHE_PERMIT_CACHEABLE_ACCESS BIT(0)
#define RKVDEC_CACHE_PERMIT_READ_ALLOCATE BIT(1)
#define RKVDEC_CACHE_LINE_SIZE_64_BYTES BIT(4)
#define RKVDEC_POWER_CTL_INDEX (99)
#define RKVDEC_POWER_CTL_BASE 0x018c
#define FALLBACK_STATIC_TEMPERATURE 55000
#define to_rkvdec_task(task) \
container_of(task, struct rkvdec_task, mpp_task)
#define to_rkvdec_dev(dev) \
container_of(dev, struct rkvdec_dev, mpp)
enum RKVDEC_MODE {
RKVDEC_MODE_NONE,
RKVDEC_MODE_ONEFRAME,
RKVDEC_MODE_BUTT
};
enum SET_CLK_EVENT {
EVENT_POWER_ON = 0,
EVENT_POWER_OFF,
EVENT_ADJUST,
EVENT_THERMAL,
EVENT_BUTT,
};
struct rkvdec_task {
struct mpp_task mpp_task;
enum RKVDEC_MODE link_mode;
enum MPP_CLOCK_MODE clk_mode;
u32 reg[RKVDEC_V2_REG_NUM];
struct reg_offset_info off_inf;
u32 strm_addr;
u32 irq_status;
/* req for current task */
u32 w_req_cnt;
struct mpp_request w_reqs[MPP_MAX_MSG_NUM];
u32 r_req_cnt;
struct mpp_request r_reqs[MPP_MAX_MSG_NUM];
/* ystride info */
u32 pixels;
};
struct rkvdec_dev {
struct mpp_dev mpp;
/* sip smc reset lock */
struct mutex sip_reset_lock;
struct mpp_clk_info aclk_info;
struct mpp_clk_info hclk_info;
struct mpp_clk_info core_clk_info;
struct mpp_clk_info cabac_clk_info;
struct mpp_clk_info hevc_cabac_clk_info;
u32 default_max_load;
#ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
struct proc_dir_entry *procfs;
#endif
struct reset_control *rst_a;
struct reset_control *rst_h;
struct reset_control *rst_niu_a;
struct reset_control *rst_niu_h;
struct reset_control *rst_core;
struct reset_control *rst_cabac;
struct reset_control *rst_hevc_cabac;
unsigned long aux_iova;
struct page *aux_page;
#ifdef CONFIG_PM_DEVFREQ
struct regulator *vdd;
struct devfreq *devfreq;
struct devfreq *parent_devfreq;
struct notifier_block devfreq_nb;
struct thermal_cooling_device *devfreq_cooling;
struct thermal_zone_device *thermal_zone;
u32 static_power_coeff;
s32 ts[4];
/* set clk lock */
struct mutex set_clk_lock;
unsigned int thermal_div;
unsigned long volt;
unsigned long devf_aclk_rate_hz;
unsigned long devf_core_rate_hz;
unsigned long devf_cabac_rate_hz;
#endif
/* record last infos */
u32 last_fmt;
bool had_reset;
bool grf_changed;
};
/*
* hardware information
*/
static struct mpp_hw_info rk_hevcdec_hw_info = {
.reg_num = HEVC_DEC_REG_NUM,
.reg_id = HEVC_DEC_REG_HW_ID_INDEX,
.reg_start = HEVC_DEC_REG_START_INDEX,
.reg_end = HEVC_DEC_REG_END_INDEX,
.reg_en = RKVDEC_REG_INT_EN_INDEX,
};
static struct mpp_hw_info rkvdec_v1_hw_info = {
.reg_num = RKVDEC_V1_REG_NUM,
.reg_id = RKVDEC_V1_REG_HW_ID_INDEX,
.reg_start = RKVDEC_V1_REG_START_INDEX,
.reg_end = RKVDEC_V1_REG_END_INDEX,
.reg_en = RKVDEC_REG_INT_EN_INDEX,
};
/*
* file handle translate information
*/
static const u16 trans_tbl_h264d[] = {
4, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 41, 42, 43, 48, 75
};
static const u16 trans_tbl_h265d[] = {
4, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 42, 43
};
static const u16 trans_tbl_vp9d[] = {
4, 6, 7, 11, 12, 13, 14, 15, 16
};
static struct mpp_trans_info rk_hevcdec_trans[] = {
[RKVDEC_FMT_H265D] = {
.count = ARRAY_SIZE(trans_tbl_h265d),
.table = trans_tbl_h265d,
},
};
static struct mpp_trans_info rkvdec_v1_trans[] = {
[RKVDEC_FMT_H265D] = {
.count = ARRAY_SIZE(trans_tbl_h265d),
.table = trans_tbl_h265d,
},
[RKVDEC_FMT_H264D] = {
.count = ARRAY_SIZE(trans_tbl_h264d),
.table = trans_tbl_h264d,
},
[RKVDEC_FMT_VP9D] = {
.count = ARRAY_SIZE(trans_tbl_vp9d),
.table = trans_tbl_vp9d,
},
};
#ifdef CONFIG_PM_DEVFREQ
static int rkvdec_devf_set_clk(struct rkvdec_dev *dec,
unsigned long aclk_rate_hz,
unsigned long core_rate_hz,
unsigned long cabac_rate_hz,
unsigned int event)
{
struct clk *aclk = dec->aclk_info.clk;
struct clk *clk_core = dec->core_clk_info.clk;
struct clk *clk_cabac = dec->cabac_clk_info.clk;
mutex_lock(&dec->set_clk_lock);
switch (event) {
case EVENT_POWER_ON:
clk_set_rate(aclk, dec->devf_aclk_rate_hz);
clk_set_rate(clk_core, dec->devf_core_rate_hz);
clk_set_rate(clk_cabac, dec->devf_cabac_rate_hz);
dec->thermal_div = 0;
break;
case EVENT_POWER_OFF:
clk_set_rate(aclk, aclk_rate_hz);
clk_set_rate(clk_core, core_rate_hz);
clk_set_rate(clk_cabac, cabac_rate_hz);
dec->thermal_div = 0;
break;
case EVENT_ADJUST:
if (!dec->thermal_div) {
clk_set_rate(aclk, aclk_rate_hz);
clk_set_rate(clk_core, core_rate_hz);
clk_set_rate(clk_cabac, cabac_rate_hz);
} else {
clk_set_rate(aclk,
aclk_rate_hz / dec->thermal_div);
clk_set_rate(clk_core,
core_rate_hz / dec->thermal_div);
clk_set_rate(clk_cabac,
cabac_rate_hz / dec->thermal_div);
}
dec->devf_aclk_rate_hz = aclk_rate_hz;
dec->devf_core_rate_hz = core_rate_hz;
dec->devf_cabac_rate_hz = cabac_rate_hz;
break;
case EVENT_THERMAL:
dec->thermal_div = dec->devf_aclk_rate_hz / aclk_rate_hz;
if (dec->thermal_div > 4)
dec->thermal_div = 4;
if (dec->thermal_div) {
clk_set_rate(aclk,
dec->devf_aclk_rate_hz / dec->thermal_div);
clk_set_rate(clk_core,
dec->devf_core_rate_hz / dec->thermal_div);
clk_set_rate(clk_cabac,
dec->devf_cabac_rate_hz / dec->thermal_div);
}
break;
}
mutex_unlock(&dec->set_clk_lock);
return 0;
}
static int devfreq_target(struct device *dev,
unsigned long *freq, u32 flags)
{
int ret = 0;
unsigned int clk_event;
struct dev_pm_opp *opp;
unsigned long target_volt, target_freq;
unsigned long aclk_rate_hz, core_rate_hz, cabac_rate_hz;
struct rkvdec_dev *dec = dev_get_drvdata(dev);
struct devfreq *devfreq = dec->devfreq;
struct devfreq_dev_status *stat = &devfreq->last_status;
unsigned long old_clk_rate = stat->current_frequency;
opp = devfreq_recommended_opp(dev, freq, flags);
if (IS_ERR(opp)) {
dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
return PTR_ERR(opp);
}
target_freq = dev_pm_opp_get_freq(opp);
target_volt = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
if (target_freq < *freq) {
clk_event = EVENT_THERMAL;
aclk_rate_hz = target_freq;
core_rate_hz = target_freq;
cabac_rate_hz = target_freq;
} else {
clk_event = stat->busy_time ? EVENT_POWER_ON : EVENT_POWER_OFF;
aclk_rate_hz = dec->devf_aclk_rate_hz;
core_rate_hz = dec->devf_core_rate_hz;
cabac_rate_hz = dec->devf_cabac_rate_hz;
}
if (old_clk_rate == target_freq) {
if (dec->volt == target_volt)
return ret;
ret = regulator_set_voltage(dec->vdd, target_volt, INT_MAX);
if (ret) {
dev_err(dev, "Cannot set voltage %lu uV\n",
target_volt);
return ret;
}
dec->volt = target_volt;
return 0;
}
if (old_clk_rate < target_freq) {
ret = regulator_set_voltage(dec->vdd, target_volt, INT_MAX);
if (ret) {
dev_err(dev, "set voltage %lu uV\n", target_volt);
return ret;
}
}
dev_dbg(dev, "%lu-->%lu\n", old_clk_rate, target_freq);
rkvdec_devf_set_clk(dec, aclk_rate_hz, core_rate_hz, cabac_rate_hz, clk_event);
stat->current_frequency = target_freq;
if (old_clk_rate > target_freq) {
ret = regulator_set_voltage(dec->vdd, target_volt, INT_MAX);
if (ret) {
dev_err(dev, "set vol %lu uV\n", target_volt);
return ret;
}
}
dec->volt = target_volt;
return ret;
}
static int devfreq_get_cur_freq(struct device *dev,
unsigned long *freq)
{
struct rkvdec_dev *dec = dev_get_drvdata(dev);
*freq = clk_get_rate(dec->aclk_info.clk);
return 0;
}
static int devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *stat)
{
struct rkvdec_dev *dec = dev_get_drvdata(dev);
struct devfreq *devfreq = dec->devfreq;
memcpy(stat, &devfreq->last_status, sizeof(*stat));
return 0;
}
static struct devfreq_dev_profile devfreq_profile = {
.target = devfreq_target,
.get_cur_freq = devfreq_get_cur_freq,
.get_dev_status = devfreq_get_dev_status,
};
static unsigned long
model_static_power(struct devfreq *devfreq,
unsigned long voltage)
{
struct device *dev = devfreq->dev.parent;
struct rkvdec_dev *dec = dev_get_drvdata(dev);
struct thermal_zone_device *tz = dec->thermal_zone;
int temperature;
unsigned long temp;
unsigned long temp_squared, temp_cubed, temp_scaling_factor;
const unsigned long voltage_cubed = (voltage * voltage * voltage) >> 10;
if (!IS_ERR_OR_NULL(tz) && tz->ops->get_temp) {
int ret;
ret = tz->ops->get_temp(tz, &temperature);
if (ret) {
dev_warn_ratelimited(dev, "ddr thermal zone failed\n");
temperature = FALLBACK_STATIC_TEMPERATURE;
}
} else {
temperature = FALLBACK_STATIC_TEMPERATURE;
}
/*
* Calculate the temperature scaling factor. To be applied to the
* voltage scaled power.
*/
temp = temperature / 1000;
temp_squared = temp * temp;
temp_cubed = temp_squared * temp;
temp_scaling_factor = (dec->ts[3] * temp_cubed)
+ (dec->ts[2] * temp_squared) + (dec->ts[1] * temp) + dec->ts[0];
return (((dec->static_power_coeff * voltage_cubed) >> 20)
* temp_scaling_factor) / 1000000;
}
static struct devfreq_cooling_power cooling_power_data = {
.get_static_power = model_static_power,
.dyn_power_coeff = 120,
};
static int power_model_simple_init(struct mpp_dev *mpp)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
struct device_node *np = mpp->dev->of_node;
u32 temp;
const char *tz_name;
struct device_node *power_model_node;
power_model_node = of_get_child_by_name(np, "vcodec_power_model");
if (!power_model_node) {
dev_err(mpp->dev, "could not find power_model node\n");
return -ENODEV;
}
if (of_property_read_string(power_model_node,
"thermal-zone",
&tz_name)) {
dev_err(mpp->dev, "ts in power_model not available\n");
return -EINVAL;
}
dec->thermal_zone = thermal_zone_get_zone_by_name(tz_name);
if (IS_ERR(dec->thermal_zone)) {
pr_warn("Error getting ddr thermal zone, not yet ready?\n");
dec->thermal_zone = NULL;
return -EPROBE_DEFER;
}
if (of_property_read_u32(power_model_node,
"static-power-coefficient",
&dec->static_power_coeff)) {
dev_err(mpp->dev, "static-power-coefficient not available\n");
return -EINVAL;
}
if (of_property_read_u32(power_model_node,
"dynamic-power-coefficient",
&temp)) {
dev_err(mpp->dev, "dynamic-power-coefficient not available\n");
return -EINVAL;
}
cooling_power_data.dyn_power_coeff = (unsigned long)temp;
if (of_property_read_u32_array(power_model_node,
"ts",
(u32 *)dec->ts,
4)) {
dev_err(mpp->dev, "ts in power_model not available\n");
return -EINVAL;
}
return 0;
}
static int devfreq_notifier_call(struct notifier_block *nb,
unsigned long event,
void *data)
{
struct rkvdec_dev *dec = container_of(nb,
struct rkvdec_dev,
devfreq_nb);
if (!dec)
return NOTIFY_OK;
if (event == DEVFREQ_PRECHANGE)
mutex_lock(&dec->sip_reset_lock);
else if (event == DEVFREQ_POSTCHANGE)
mutex_unlock(&dec->sip_reset_lock);
return NOTIFY_OK;
}
#endif
/*
* NOTE: rkvdec/rkhevc put scaling list address in pps buffer hardware will read
* it by pps id in video stream data.
*
* So we need to translate the address in iommu case. The address data is also
* 10bit fd + 22bit offset mode.
* Because userspace decoder do not give the pps id in the register file sets
* kernel driver need to translate each scaling list address in pps buffer which
* means 256 pps for H.264, 64 pps for H.265.
*
* In order to optimize the performance kernel driver ask userspace decoder to
* set all scaling list address in pps buffer to the same one which will be used
* on current decoding task. Then kernel driver can only translate the first
* address then copy it all pps buffer.
*/
static int fill_scaling_list_pps(struct rkvdec_task *task,
int fd, int offset, int count,
int pps_info_size, int sub_addr_offset)
{
struct dma_buf *dmabuf = NULL;
void *vaddr = NULL;
u8 *pps = NULL;
u32 scaling_fd = 0;
int ret = 0;
u32 base = sub_addr_offset;
dmabuf = dma_buf_get(fd);
if (IS_ERR_OR_NULL(dmabuf)) {
mpp_err("invliad pps buffer\n");
return -ENOENT;
}
ret = dma_buf_begin_cpu_access(dmabuf, DMA_FROM_DEVICE);
if (ret) {
mpp_err("can't access the pps buffer\n");
goto done;
}
vaddr = dma_buf_vmap(dmabuf);
if (!vaddr) {
mpp_err("can't access the pps buffer\n");
ret = -EIO;
goto done;
}
pps = vaddr + offset;
/* NOTE: scaling buffer in pps, have no offset */
memcpy(&scaling_fd, pps + base, sizeof(scaling_fd));
scaling_fd = le32_to_cpu(scaling_fd);
if (scaling_fd > 0) {
struct mpp_mem_region *mem_region = NULL;
u32 tmp = 0;
int i = 0;
mem_region = mpp_task_attach_fd(&task->mpp_task,
scaling_fd);
if (IS_ERR(mem_region)) {
mpp_err("scaling list fd %d attach failed\n", scaling_fd);
ret = PTR_ERR(mem_region);
goto done;
}
tmp = mem_region->iova & 0xffffffff;
tmp = cpu_to_le32(tmp);
mpp_debug(DEBUG_PPS_FILL,
"pps at %p, scaling fd: %3d => %pad + offset %10d\n",
pps, scaling_fd, &mem_region->iova, offset);
/* Fill the scaling list address in each pps entries */
for (i = 0; i < count; i++, base += pps_info_size)
memcpy(pps + base, &tmp, sizeof(tmp));
}
done:
dma_buf_vunmap(dmabuf, vaddr);
dma_buf_end_cpu_access(dmabuf, DMA_FROM_DEVICE);
dma_buf_put(dmabuf);
return ret;
}
static int rkvdec_process_scl_fd(struct mpp_session *session,
struct rkvdec_task *task,
struct mpp_task_msgs *msgs)
{
int ret = 0;
int pps_fd;
u32 pps_offset;
int idx = RKVDEC_REG_PPS_BASE_INDEX;
u32 fmt = RKVDEC_GET_FORMAT(task->reg[RKVDEC_REG_SYS_CTRL_INDEX]);
if (session->msg_flags & MPP_FLAGS_REG_NO_OFFSET) {
pps_fd = task->reg[idx];
pps_offset = 0;
} else {
pps_fd = task->reg[idx] & 0x3ff;
pps_offset = task->reg[idx] >> 10;
}
pps_offset += mpp_query_reg_offset_info(&task->off_inf, idx);
if (pps_fd > 0) {
int pps_info_offset;
int pps_info_count;
int pps_info_size;
int scaling_list_addr_offset;
switch (fmt) {
case RKVDEC_FMT_H264D:
pps_info_offset = pps_offset;
pps_info_count = 256;
pps_info_size = 32;
scaling_list_addr_offset = 23;
break;
case RKVDEC_FMT_H265D:
pps_info_offset = pps_offset;
pps_info_count = 64;
pps_info_size = 80;
scaling_list_addr_offset = 74;
break;
default:
pps_info_offset = 0;
pps_info_count = 0;
pps_info_size = 0;
scaling_list_addr_offset = 0;
break;
}
mpp_debug(DEBUG_PPS_FILL,
"scaling list filling parameter:\n");
mpp_debug(DEBUG_PPS_FILL,
"pps_info_offset %d\n", pps_info_offset);
mpp_debug(DEBUG_PPS_FILL,
"pps_info_count %d\n", pps_info_count);
mpp_debug(DEBUG_PPS_FILL,
"pps_info_size %d\n", pps_info_size);
mpp_debug(DEBUG_PPS_FILL,
"scaling_list_addr_offset %d\n",
scaling_list_addr_offset);
if (pps_info_count) {
ret = fill_scaling_list_pps(task, pps_fd,
pps_info_offset,
pps_info_count,
pps_info_size,
scaling_list_addr_offset);
if (ret) {
mpp_err("fill pps failed\n");
goto fail;
}
}
}
fail:
return ret;
}
static int rkvdec_process_reg_fd(struct mpp_session *session,
struct rkvdec_task *task,
struct mpp_task_msgs *msgs)
{
int ret = 0;
u32 fmt = RKVDEC_GET_FORMAT(task->reg[RKVDEC_REG_SYS_CTRL_INDEX]);
/*
* special offset scale case
*
* This translation is for fd + offset translation.
* One register has 32bits. We need to transfer both buffer file
* handle and the start address offset so we packet file handle
* and offset together using below format.
*
* 0~9 bit for buffer file handle range 0 ~ 1023
* 10~31 bit for offset range 0 ~ 4M
*
* But on 4K case the offset can be larger the 4M
* So on VP9 4K decoder colmv base we scale the offset by 16
*/
if (fmt == RKVDEC_FMT_VP9D) {
int fd;
u32 offset;
dma_addr_t iova = 0;
struct mpp_mem_region *mem_region = NULL;
int idx = RKVDEC_REG_VP9_REFCOLMV_BASE_INDEX;
if (session->msg_flags & MPP_FLAGS_REG_NO_OFFSET) {
fd = task->reg[idx];
offset = 0;
} else {
fd = task->reg[idx] & 0x3ff;
offset = task->reg[idx] >> 10 << 4;
}
mem_region = mpp_task_attach_fd(&task->mpp_task, fd);
if (IS_ERR(mem_region)) {
mpp_err("reg[%03d]: %08x fd %d attach failed\n",
idx, task->reg[idx], fd);
return -EFAULT;
}
iova = mem_region->iova;
task->reg[idx] = iova + offset;
}
ret = mpp_translate_reg_address(session, &task->mpp_task,
fmt, task->reg, &task->off_inf);
if (ret)
return ret;
mpp_translate_reg_offset_info(&task->mpp_task,
&task->off_inf, task->reg);
return 0;
}
static int rkvdec_extract_task_msg(struct rkvdec_task *task,
struct mpp_task_msgs *msgs)
{
u32 i;
int ret;
struct mpp_request *req;
struct mpp_hw_info *hw_info = task->mpp_task.hw_info;
for (i = 0; i < msgs->req_cnt; i++) {
u32 off_s, off_e;
req = &msgs->reqs[i];
if (!req->size)
continue;
switch (req->cmd) {
case MPP_CMD_SET_REG_WRITE: {
off_s = hw_info->reg_start * sizeof(u32);
off_e = hw_info->reg_end * sizeof(u32);
ret = mpp_check_req(req, 0, sizeof(task->reg),
off_s, off_e);
if (ret)
continue;
if (copy_from_user((u8 *)task->reg + req->offset,
req->data, req->size)) {
mpp_err("copy_from_user reg failed\n");
return -EIO;
}
memcpy(&task->w_reqs[task->w_req_cnt++],
req, sizeof(*req));
} break;
case MPP_CMD_SET_REG_READ: {
off_s = hw_info->reg_start * sizeof(u32);
off_e = hw_info->reg_end * sizeof(u32);
ret = mpp_check_req(req, 0, sizeof(task->reg),
off_s, off_e);
if (ret)
continue;
memcpy(&task->r_reqs[task->r_req_cnt++],
req, sizeof(*req));
} break;
case MPP_CMD_SET_REG_ADDR_OFFSET: {
mpp_extract_reg_offset_info(&task->off_inf, req);
} break;
default:
break;
}
}
mpp_debug(DEBUG_TASK_INFO, "w_req_cnt %d, r_req_cnt %d\n",
task->w_req_cnt, task->r_req_cnt);
return 0;
}
static void *rkvdec_alloc_task(struct mpp_session *session,
struct mpp_task_msgs *msgs)
{
int ret;
struct mpp_task *mpp_task = NULL;
struct rkvdec_task *task = NULL;
struct mpp_dev *mpp = session->mpp;
mpp_debug_enter();
task = kzalloc(sizeof(*task), GFP_KERNEL);
if (!task)
return NULL;
mpp_task = &task->mpp_task;
mpp_task_init(session, mpp_task);
mpp_task->hw_info = mpp->var->hw_info;
mpp_task->reg = task->reg;
/* extract reqs for current task */
ret = rkvdec_extract_task_msg(task, msgs);
if (ret)
goto fail;
/* process fd in pps for 264 and 265 */
if (!(msgs->flags & MPP_FLAGS_SCL_FD_NO_TRANS)) {
ret = rkvdec_process_scl_fd(session, task, msgs);
if (ret)
goto fail;
}
/* process fd in register */
if (!(msgs->flags & MPP_FLAGS_REG_FD_NO_TRANS)) {
ret = rkvdec_process_reg_fd(session, task, msgs);
if (ret)
goto fail;
}
task->strm_addr = task->reg[RKVDEC_REG_RLC_BASE_INDEX];
task->link_mode = RKVDEC_MODE_ONEFRAME;
task->clk_mode = CLK_MODE_NORMAL;
/* get resolution info */
task->pixels = RKVDEC_GET_YSTRDE(task->reg[RKVDEC_RGE_YSTRDE_INDEX]);
mpp_debug(DEBUG_TASK_INFO, "ystride=%d\n", task->pixels);
mpp_debug_leave();
return mpp_task;
fail:
mpp_task_dump_mem_region(mpp, mpp_task);
mpp_task_dump_reg(mpp, mpp_task);
mpp_task_finalize(session, mpp_task);
kfree(task);
return NULL;
}
static void *rkvdec_prepare_with_reset(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
unsigned long flags;
struct mpp_task *out_task = NULL;
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
spin_lock_irqsave(&mpp->queue->running_lock, flags);
out_task = list_empty(&mpp->queue->running_list) ? mpp_task : NULL;
spin_unlock_irqrestore(&mpp->queue->running_lock, flags);
if (out_task && !dec->had_reset) {
struct rkvdec_task *task = to_rkvdec_task(out_task);
u32 fmt = RKVDEC_GET_FORMAT(task->reg[RKVDEC_REG_SYS_CTRL_INDEX]);
/* in 3399 3228 and 3229 chips, when 264 switch vp9,
* hardware will timeout, and can't recover problem.
* so reset it when 264 switch vp9, before hardware run.
*/
if (dec->last_fmt == RKVDEC_FMT_H264D && fmt == RKVDEC_FMT_VP9D) {
mpp_power_on(mpp);
mpp_dev_reset(mpp);
mpp_power_off(mpp);
}
}
return out_task;
}
static int rkvdec_run(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
int i;
u32 reg_en;
struct rkvdec_task *task = NULL;
u32 timing_en = mpp->srv->timing_en;
mpp_debug_enter();
task = to_rkvdec_task(mpp_task);
reg_en = mpp_task->hw_info->reg_en;
switch (task->link_mode) {
case RKVDEC_MODE_ONEFRAME: {
u32 reg;
/* set cache size */
reg = RKVDEC_CACHE_PERMIT_CACHEABLE_ACCESS
| RKVDEC_CACHE_PERMIT_READ_ALLOCATE;
if (!mpp_debug_unlikely(DEBUG_CACHE_32B))
reg |= RKVDEC_CACHE_LINE_SIZE_64_BYTES;
mpp_write_relaxed(mpp, RKVDEC_REG_CACHE0_SIZE_BASE, reg);
mpp_write_relaxed(mpp, RKVDEC_REG_CACHE1_SIZE_BASE, reg);
/* clear cache */
mpp_write_relaxed(mpp, RKVDEC_REG_CLR_CACHE0_BASE, 1);
mpp_write_relaxed(mpp, RKVDEC_REG_CLR_CACHE1_BASE, 1);
/* set registers for hardware */
for (i = 0; i < task->w_req_cnt; i++) {
int s, e;
struct mpp_request *req = &task->w_reqs[i];
s = req->offset / sizeof(u32);
e = s + req->size / sizeof(u32);
mpp_write_req(mpp, task->reg, s, e, reg_en);
}
/* init current task */
mpp->cur_task = mpp_task;
mpp_task_run_begin(mpp_task, timing_en, MPP_WORK_TIMEOUT_DELAY);
/* Flush the register before the start the device */
wmb();
mpp_write(mpp, RKVDEC_REG_INT_EN,
task->reg[reg_en] | RKVDEC_DEC_START);
mpp_task_run_end(mpp_task, timing_en);
} break;
default:
break;
}
mpp_debug_leave();
return 0;
}
static int rkvdec_3328_run(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
u32 fmt = 0;
u32 cfg = 0;
struct rkvdec_task *task = NULL;
mpp_debug_enter();
task = to_rkvdec_task(mpp_task);
/*
* HW defeat workaround: VP9 and H.265 power save optimization cause decoding
* corruption, disable optimization here.
*/
fmt = RKVDEC_GET_FORMAT(task->reg[RKVDEC_REG_SYS_CTRL_INDEX]);
if (fmt == RKVDEC_FMT_VP9D || fmt == RKVDEC_FMT_H265D) {
cfg = task->reg[RKVDEC_POWER_CTL_INDEX] | 0xFFFF;
task->reg[RKVDEC_POWER_CTL_INDEX] = cfg & (~(1 << 12));
mpp_write_relaxed(mpp, RKVDEC_POWER_CTL_BASE,
task->reg[RKVDEC_POWER_CTL_INDEX]);
}
rkvdec_run(mpp, mpp_task);
mpp_debug_leave();
return 0;
}
static int rkvdec_1126_run(struct mpp_dev *mpp, struct mpp_task *mpp_task)
{
struct rkvdec_task *task = to_rkvdec_task(mpp_task);
if (task->link_mode == RKVDEC_MODE_ONEFRAME)
mpp_iommu_flush_tlb(mpp->iommu_info);
return rkvdec_run(mpp, mpp_task);
}
static int rkvdec_px30_run(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
mpp_iommu_flush_tlb(mpp->iommu_info);
return rkvdec_run(mpp, mpp_task);
}
static int rkvdec_irq(struct mpp_dev *mpp)
{
mpp->irq_status = mpp_read(mpp, RKVDEC_REG_INT_EN);
if (!(mpp->irq_status & RKVDEC_DEC_INT_RAW))
return IRQ_NONE;
mpp_write(mpp, RKVDEC_REG_INT_EN, 0);
return IRQ_WAKE_THREAD;
}
static int rkvdec_isr(struct mpp_dev *mpp)
{
u32 err_mask;
struct rkvdec_task *task = NULL;
struct mpp_task *mpp_task = mpp->cur_task;
mpp_debug_enter();
/* FIXME use a spin lock here */
if (!mpp_task) {
dev_err(mpp->dev, "no current task\n");
goto done;
}
mpp_time_diff(mpp_task);
mpp->cur_task = NULL;
task = to_rkvdec_task(mpp_task);
task->irq_status = mpp->irq_status;
switch (task->link_mode) {
case RKVDEC_MODE_ONEFRAME: {
mpp_debug(DEBUG_IRQ_STATUS, "irq_status: %08x\n", task->irq_status);
err_mask = RKVDEC_INT_BUF_EMPTY
| RKVDEC_INT_BUS_ERROR
| RKVDEC_INT_COLMV_REF_ERROR
| RKVDEC_INT_STRM_ERROR
| RKVDEC_INT_TIMEOUT;
if (err_mask & task->irq_status)
atomic_inc(&mpp->reset_request);
mpp_task_finish(mpp_task->session, mpp_task);
} break;
default:
break;
}
done:
mpp_debug_leave();
return IRQ_HANDLED;
}
static int rkvdec_3328_isr(struct mpp_dev *mpp)
{
u32 err_mask;
struct rkvdec_task *task = NULL;
struct mpp_task *mpp_task = mpp->cur_task;
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
mpp_debug_enter();
/* FIXME use a spin lock here */
if (!mpp_task) {
dev_err(mpp->dev, "no current task\n");
goto done;
}
mpp_time_diff(mpp_task);
mpp->cur_task = NULL;
task = to_rkvdec_task(mpp_task);
task->irq_status = mpp->irq_status;
mpp_debug(DEBUG_IRQ_STATUS, "irq_status: %08x\n", task->irq_status);
err_mask = RKVDEC_INT_BUF_EMPTY
| RKVDEC_INT_BUS_ERROR
| RKVDEC_INT_COLMV_REF_ERROR
| RKVDEC_INT_STRM_ERROR
| RKVDEC_INT_TIMEOUT;
if (err_mask & task->irq_status)
atomic_inc(&mpp->reset_request);
/* unmap reserve buffer */
if (dec->aux_iova != -1) {
iommu_unmap(mpp->iommu_info->domain, dec->aux_iova, IOMMU_PAGE_SIZE);
dec->aux_iova = -1;
}
mpp_task_finish(mpp_task->session, mpp_task);
done:
mpp_debug_leave();
return IRQ_HANDLED;
}
static int rkvdec_finish(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
u32 i;
u32 dec_get;
s32 dec_length;
struct rkvdec_task *task = to_rkvdec_task(mpp_task);
mpp_debug_enter();
switch (task->link_mode) {
case RKVDEC_MODE_ONEFRAME: {
u32 s, e;
struct mpp_request *req;
/* read register after running */
for (i = 0; i < task->r_req_cnt; i++) {
req = &task->r_reqs[i];
s = req->offset / sizeof(u32);
e = s + req->size / sizeof(u32);
mpp_read_req(mpp, task->reg, s, e);
}
/* revert hack for irq status */
task->reg[RKVDEC_REG_INT_EN_INDEX] = task->irq_status;
/* revert hack for decoded length */
dec_get = mpp_read_relaxed(mpp, RKVDEC_REG_RLC_BASE);
dec_length = dec_get - task->strm_addr;
task->reg[RKVDEC_REG_RLC_BASE_INDEX] = dec_length << 10;
mpp_debug(DEBUG_REGISTER,
"dec_get %08x dec_length %d\n", dec_get, dec_length);
} break;
default:
break;
}
mpp_debug_leave();
return 0;
}
static int rkvdec_finish_with_record_info(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
struct rkvdec_task *task = to_rkvdec_task(mpp_task);
rkvdec_finish(mpp, mpp_task);
dec->last_fmt = RKVDEC_GET_FORMAT(task->reg[RKVDEC_REG_SYS_CTRL_INDEX]);
dec->had_reset = (atomic_read(&mpp->reset_request) > 0) ? true : false;
return 0;
}
static int rkvdec_result(struct mpp_dev *mpp,
struct mpp_task *mpp_task,
struct mpp_task_msgs *msgs)
{
u32 i;
struct mpp_request *req;
struct rkvdec_task *task = to_rkvdec_task(mpp_task);
/* FIXME may overflow the kernel */
for (i = 0; i < task->r_req_cnt; i++) {
req = &task->r_reqs[i];
if (copy_to_user(req->data,
(u8 *)task->reg + req->offset,
req->size)) {
mpp_err("copy_to_user reg fail\n");
return -EIO;
}
}
return 0;
}
static int rkvdec_free_task(struct mpp_session *session,
struct mpp_task *mpp_task)
{
struct rkvdec_task *task = to_rkvdec_task(mpp_task);
mpp_task_finalize(session, mpp_task);
kfree(task);
return 0;
}
#ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
static int rkvdec_procfs_remove(struct mpp_dev *mpp)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
if (dec->procfs) {
proc_remove(dec->procfs);
dec->procfs = NULL;
}
return 0;
}
static int rkvdec_procfs_init(struct mpp_dev *mpp)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
dec->procfs = proc_mkdir(mpp->dev->of_node->name, mpp->srv->procfs);
if (IS_ERR_OR_NULL(dec->procfs)) {
mpp_err("failed on open procfs\n");
dec->procfs = NULL;
return -EIO;
}
/* for common mpp_dev options */
mpp_procfs_create_common(dec->procfs, mpp);
mpp_procfs_create_u32("aclk", 0644,
dec->procfs, &dec->aclk_info.debug_rate_hz);
mpp_procfs_create_u32("clk_core", 0644,
dec->procfs, &dec->core_clk_info.debug_rate_hz);
mpp_procfs_create_u32("clk_cabac", 0644,
dec->procfs, &dec->cabac_clk_info.debug_rate_hz);
mpp_procfs_create_u32("clk_hevc_cabac", 0644,
dec->procfs, &dec->hevc_cabac_clk_info.debug_rate_hz);
mpp_procfs_create_u32("session_buffers", 0644,
dec->procfs, &mpp->session_max_buffers);
return 0;
}
#else
static inline int rkvdec_procfs_remove(struct mpp_dev *mpp)
{
return 0;
}
static inline int rkvdec_procfs_init(struct mpp_dev *mpp)
{
return 0;
}
#endif
static int rkvdec_init(struct mpp_dev *mpp)
{
int ret;
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
mutex_init(&dec->sip_reset_lock);
mpp->grf_info = &mpp->srv->grf_infos[MPP_DRIVER_RKVDEC];
/* Get clock info from dtsi */
ret = mpp_get_clk_info(mpp, &dec->aclk_info, "aclk_vcodec");
if (ret)
mpp_err("failed on clk_get aclk_vcodec\n");
ret = mpp_get_clk_info(mpp, &dec->hclk_info, "hclk_vcodec");
if (ret)
mpp_err("failed on clk_get hclk_vcodec\n");
ret = mpp_get_clk_info(mpp, &dec->core_clk_info, "clk_core");
if (ret)
mpp_err("failed on clk_get clk_core\n");
ret = mpp_get_clk_info(mpp, &dec->cabac_clk_info, "clk_cabac");
if (ret)
mpp_err("failed on clk_get clk_cabac\n");
ret = mpp_get_clk_info(mpp, &dec->hevc_cabac_clk_info, "clk_hevc_cabac");
if (ret)
mpp_err("failed on clk_get clk_hevc_cabac\n");
/* Set default rates */
mpp_set_clk_info_rate_hz(&dec->aclk_info, CLK_MODE_DEFAULT, 300 * MHZ);
mpp_set_clk_info_rate_hz(&dec->core_clk_info, CLK_MODE_DEFAULT, 200 * MHZ);
mpp_set_clk_info_rate_hz(&dec->cabac_clk_info, CLK_MODE_DEFAULT, 200 * MHZ);
mpp_set_clk_info_rate_hz(&dec->hevc_cabac_clk_info, CLK_MODE_DEFAULT, 300 * MHZ);
/* Get normal max workload from dtsi */
of_property_read_u32(mpp->dev->of_node,
"rockchip,default-max-load", &dec->default_max_load);
/* Get reset control from dtsi */
dec->rst_a = mpp_reset_control_get(mpp, RST_TYPE_A, "video_a");
if (!dec->rst_a)
mpp_err("No aclk reset resource define\n");
dec->rst_h = mpp_reset_control_get(mpp, RST_TYPE_H, "video_h");
if (!dec->rst_h)
mpp_err("No hclk reset resource define\n");
dec->rst_niu_a = mpp_reset_control_get(mpp, RST_TYPE_NIU_A, "niu_a");
if (!dec->rst_niu_a)
mpp_err("No niu aclk reset resource define\n");
dec->rst_niu_h = mpp_reset_control_get(mpp, RST_TYPE_NIU_H, "niu_h");
if (!dec->rst_niu_h)
mpp_err("No niu hclk reset resource define\n");
dec->rst_core = mpp_reset_control_get(mpp, RST_TYPE_CORE, "video_core");
if (!dec->rst_core)
mpp_err("No core reset resource define\n");
dec->rst_cabac = mpp_reset_control_get(mpp, RST_TYPE_CABAC, "video_cabac");
if (!dec->rst_cabac)
mpp_err("No cabac reset resource define\n");
dec->rst_hevc_cabac = mpp_reset_control_get(mpp, RST_TYPE_HEVC_CABAC, "video_hevc_cabac");
if (!dec->rst_hevc_cabac)
mpp_err("No hevc cabac reset resource define\n");
return 0;
}
static int rkvdec_px30_init(struct mpp_dev *mpp)
{
rkvdec_init(mpp);
return px30_workaround_combo_init(mpp);
}
static int rkvdec_3036_init(struct mpp_dev *mpp)
{
rkvdec_init(mpp);
set_bit(mpp->var->device_type, &mpp->queue->dev_active_flags);
return 0;
}
static int rkvdec_3328_iommu_hdl(struct iommu_domain *iommu,
struct device *iommu_dev,
unsigned long iova,
int status, void *arg)
{
int ret = 0;
struct mpp_dev *mpp = (struct mpp_dev *)arg;
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
/*
* defeat workaround, invalidate address generated when rk322x
* hevc decoder tile mode pre-fetch colmv data.
*/
if (IOMMU_GET_BUS_ID(status) == 2) {
unsigned long page_iova = 0;
/* avoid another page fault occur after page fault */
if (dec->aux_iova != -1) {
iommu_unmap(mpp->iommu_info->domain, dec->aux_iova, IOMMU_PAGE_SIZE);
dec->aux_iova = -1;
}
page_iova = round_down(iova, IOMMU_PAGE_SIZE);
ret = iommu_map(mpp->iommu_info->domain, page_iova,
page_to_phys(dec->aux_page), IOMMU_PAGE_SIZE,
IOMMU_READ | IOMMU_WRITE);
if (!ret)
dec->aux_iova = page_iova;
}
return ret;
}
#ifdef CONFIG_PM_DEVFREQ
static int rkvdec_devfreq_remove(struct mpp_dev *mpp)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
devfreq_unregister_opp_notifier(mpp->dev, dec->devfreq);
dev_pm_opp_of_remove_table(mpp->dev);
return 0;
}
static int rkvdec_devfreq_init(struct mpp_dev *mpp)
{
int ret = 0;
struct devfreq_dev_status *stat;
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
mutex_init(&dec->set_clk_lock);
dec->parent_devfreq = devfreq_get_devfreq_by_phandle(mpp->dev, "rkvdec_devfreq", 0);
if (IS_ERR_OR_NULL(dec->parent_devfreq)) {
if (PTR_ERR(dec->parent_devfreq) == -EPROBE_DEFER) {
dev_warn(mpp->dev, "parent devfreq is not ready, retry\n");
return -EPROBE_DEFER;
}
} else {
dec->devfreq_nb.notifier_call = devfreq_notifier_call;
devm_devfreq_register_notifier(mpp->dev,
dec->parent_devfreq,
&dec->devfreq_nb,
DEVFREQ_TRANSITION_NOTIFIER);
}
dec->vdd = devm_regulator_get_optional(mpp->dev, "vcodec");
if (IS_ERR_OR_NULL(dec->vdd)) {
if (PTR_ERR(dec->vdd) == -EPROBE_DEFER) {
dev_warn(mpp->dev, "vcodec regulator not ready, retry\n");
return -EPROBE_DEFER;
}
dev_warn(mpp->dev, "no regulator for vcodec\n");
return 0;
}
ret = rockchip_init_opp_table(mpp->dev, NULL,
"rkvdec_leakage", "vcodec");
if (ret) {
dev_err(mpp->dev, "Failed to init_opp_table\n");
goto done;
}
dec->devfreq = devm_devfreq_add_device(mpp->dev, &devfreq_profile,
"userspace", NULL);
if (IS_ERR(dec->devfreq)) {
ret = PTR_ERR(dec->devfreq);
goto done;
}
stat = &dec->devfreq->last_status;
stat->current_frequency = clk_get_rate(dec->aclk_info.clk);
ret = devfreq_register_opp_notifier(mpp->dev, dec->devfreq);
if (ret)
goto done;
/* power simplle init */
ret = power_model_simple_init(mpp);
if (!ret && dec->devfreq) {
dec->devfreq_cooling =
of_devfreq_cooling_register_power(mpp->dev->of_node,
dec->devfreq,
&cooling_power_data);
if (IS_ERR_OR_NULL(dec->devfreq_cooling)) {
ret = -ENXIO;
dev_err(mpp->dev, "Failed to register cooling\n");
goto done;
}
}
done:
return ret;
}
#else
static inline int rkvdec_devfreq_remove(struct mpp_dev *mpp)
{
return 0;
}
static inline int rkvdec_devfreq_init(struct mpp_dev *mpp)
{
return 0;
}
#endif
static int rkvdec_3328_init(struct mpp_dev *mpp)
{
int ret = 0;
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
rkvdec_init(mpp);
/* warkaround for mmu pagefault */
dec->aux_page = alloc_page(GFP_KERNEL);
if (!dec->aux_page) {
dev_err(mpp->dev, "allocate a page for auxiliary usage\n");
ret = -ENOMEM;
goto done;
}
dec->aux_iova = -1;
mpp->fault_handler = rkvdec_3328_iommu_hdl;
ret = rkvdec_devfreq_init(mpp);
done:
return ret;
}
static int rkvdec_3328_exit(struct mpp_dev *mpp)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
if (dec->aux_page)
__free_page(dec->aux_page);
if (dec->aux_iova != -1) {
iommu_unmap(mpp->iommu_info->domain, dec->aux_iova, IOMMU_PAGE_SIZE);
dec->aux_iova = -1;
}
rkvdec_devfreq_remove(mpp);
return 0;
}
static int rkvdec_clk_on(struct mpp_dev *mpp)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
mpp_clk_safe_enable(dec->aclk_info.clk);
mpp_clk_safe_enable(dec->hclk_info.clk);
mpp_clk_safe_enable(dec->core_clk_info.clk);
mpp_clk_safe_enable(dec->cabac_clk_info.clk);
mpp_clk_safe_enable(dec->hevc_cabac_clk_info.clk);
return 0;
}
static int rkvdec_clk_off(struct mpp_dev *mpp)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
clk_disable_unprepare(dec->aclk_info.clk);
clk_disable_unprepare(dec->hclk_info.clk);
clk_disable_unprepare(dec->core_clk_info.clk);
clk_disable_unprepare(dec->cabac_clk_info.clk);
clk_disable_unprepare(dec->hevc_cabac_clk_info.clk);
return 0;
}
static int rkvdec_get_freq(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
u32 task_cnt;
u32 workload;
struct mpp_task *loop = NULL, *n;
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
struct rkvdec_task *task = to_rkvdec_task(mpp_task);
/* if not set max load, consider not have advanced mode */
if (!dec->default_max_load || !task->pixels)
return 0;
task_cnt = 1;
workload = task->pixels;
/* calc workload in pending list */
mutex_lock(&mpp->queue->pending_lock);
list_for_each_entry_safe(loop, n,
&mpp->queue->pending_list,
queue_link) {
struct rkvdec_task *loop_task = to_rkvdec_task(loop);
task_cnt++;
workload += loop_task->pixels;
}
mutex_unlock(&mpp->queue->pending_lock);
if (workload > dec->default_max_load)
task->clk_mode = CLK_MODE_ADVANCED;
mpp_debug(DEBUG_TASK_INFO, "pending task %d, workload %d, clk_mode=%d\n",
task_cnt, workload, task->clk_mode);
return 0;
}
static int rkvdec_3328_get_freq(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
u32 fmt;
u32 ddr_align_en;
struct rkvdec_task *task = to_rkvdec_task(mpp_task);
fmt = RKVDEC_GET_FORMAT(task->reg[RKVDEC_REG_SYS_CTRL_INDEX]);
ddr_align_en = task->reg[RKVDEC_REG_INT_EN_INDEX] & RKVDEC_WR_DDR_ALIGN_EN;
if (fmt == RKVDEC_FMT_H264D && ddr_align_en)
task->clk_mode = CLK_MODE_ADVANCED;
else
rkvdec_get_freq(mpp, mpp_task);
return 0;
}
static int rkvdec_3368_set_grf(struct mpp_dev *mpp)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
dec->grf_changed = mpp_grf_is_changed(mpp->grf_info);
mpp_set_grf(mpp->grf_info);
return 0;
}
static int rkvdec_3036_set_grf(struct mpp_dev *mpp)
{
int grf_changed;
struct mpp_dev *loop = NULL, *n;
struct mpp_taskqueue *queue = mpp->queue;
bool pd_is_on;
grf_changed = mpp_grf_is_changed(mpp->grf_info);
if (grf_changed) {
/*
* in this case, devices share the queue also share the same pd&clk,
* so use mpp->dev's pd to control all the process is okay
*/
pd_is_on = rockchip_pmu_pd_is_on(mpp->dev);
if (!pd_is_on)
rockchip_pmu_pd_on(mpp->dev);
mpp->hw_ops->clk_on(mpp);
list_for_each_entry_safe(loop, n, &queue->dev_list, queue_link) {
if (test_bit(loop->var->device_type, &queue->dev_active_flags)) {
mpp_set_grf(loop->grf_info);
if (loop->hw_ops->clk_on)
loop->hw_ops->clk_on(loop);
if (loop->hw_ops->reset)
loop->hw_ops->reset(loop);
rockchip_iommu_disable(loop->dev);
if (loop->hw_ops->clk_off)
loop->hw_ops->clk_off(loop);
clear_bit(loop->var->device_type, &queue->dev_active_flags);
}
}
mpp_set_grf(mpp->grf_info);
rockchip_iommu_enable(mpp->dev);
set_bit(mpp->var->device_type, &queue->dev_active_flags);
mpp->hw_ops->clk_off(mpp);
if (!pd_is_on)
rockchip_pmu_pd_off(mpp->dev);
}
return 0;
}
static int rkvdec_set_freq(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
struct rkvdec_task *task = to_rkvdec_task(mpp_task);
mpp_clk_set_rate(&dec->aclk_info, task->clk_mode);
mpp_clk_set_rate(&dec->core_clk_info, task->clk_mode);
mpp_clk_set_rate(&dec->cabac_clk_info, task->clk_mode);
mpp_clk_set_rate(&dec->hevc_cabac_clk_info, task->clk_mode);
return 0;
}
static int rkvdec_3368_set_freq(struct mpp_dev *mpp, struct mpp_task *mpp_task)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
struct rkvdec_task *task = to_rkvdec_task(mpp_task);
/* if grf changed, need reset iommu for rk3368 */
if (dec->grf_changed) {
mpp_iommu_refresh(mpp->iommu_info, mpp->dev);
dec->grf_changed = false;
}
mpp_clk_set_rate(&dec->aclk_info, task->clk_mode);
mpp_clk_set_rate(&dec->core_clk_info, task->clk_mode);
mpp_clk_set_rate(&dec->cabac_clk_info, task->clk_mode);
mpp_clk_set_rate(&dec->hevc_cabac_clk_info, task->clk_mode);
return 0;
}
static int rkvdec_3328_set_freq(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
struct rkvdec_task *task = to_rkvdec_task(mpp_task);
#ifdef CONFIG_PM_DEVFREQ
if (dec->devfreq) {
struct devfreq_dev_status *stat;
unsigned long aclk_rate_hz, core_rate_hz, cabac_rate_hz;
stat = &dec->devfreq->last_status;
stat->busy_time = 1;
stat->total_time = 1;
aclk_rate_hz = mpp_get_clk_info_rate_hz(&dec->aclk_info,
task->clk_mode);
core_rate_hz = mpp_get_clk_info_rate_hz(&dec->core_clk_info,
task->clk_mode);
cabac_rate_hz = mpp_get_clk_info_rate_hz(&dec->cabac_clk_info,
task->clk_mode);
rkvdec_devf_set_clk(dec, aclk_rate_hz,
core_rate_hz, cabac_rate_hz,
EVENT_ADJUST);
}
#else
mpp_clk_set_rate(&dec->aclk_info, task->clk_mode);
mpp_clk_set_rate(&dec->core_clk_info, task->clk_mode);
mpp_clk_set_rate(&dec->cabac_clk_info, task->clk_mode);
#endif
return 0;
}
static int rkvdec_reduce_freq(struct mpp_dev *mpp)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
mpp_clk_set_rate(&dec->aclk_info, CLK_MODE_REDUCE);
mpp_clk_set_rate(&dec->core_clk_info, CLK_MODE_REDUCE);
mpp_clk_set_rate(&dec->cabac_clk_info, CLK_MODE_REDUCE);
mpp_clk_set_rate(&dec->hevc_cabac_clk_info, CLK_MODE_REDUCE);
return 0;
}
static int rkvdec_3328_reduce_freq(struct mpp_dev *mpp)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
#ifdef CONFIG_PM_DEVFREQ
if (dec->devfreq) {
struct devfreq_dev_status *stat;
unsigned long aclk_rate_hz, core_rate_hz, cabac_rate_hz;
stat = &dec->devfreq->last_status;
stat->busy_time = 0;
stat->total_time = 1;
aclk_rate_hz = mpp_get_clk_info_rate_hz(&dec->aclk_info,
CLK_MODE_REDUCE);
core_rate_hz = mpp_get_clk_info_rate_hz(&dec->core_clk_info,
CLK_MODE_REDUCE);
cabac_rate_hz = mpp_get_clk_info_rate_hz(&dec->cabac_clk_info,
CLK_MODE_REDUCE);
rkvdec_devf_set_clk(dec, aclk_rate_hz,
core_rate_hz, cabac_rate_hz,
EVENT_ADJUST);
}
#else
mpp_clk_set_rate(&dec->aclk_info, CLK_MODE_REDUCE);
mpp_clk_set_rate(&dec->core_clk_info, CLK_MODE_REDUCE);
mpp_clk_set_rate(&dec->cabac_clk_info, CLK_MODE_REDUCE);
#endif
return 0;
}
static int rkvdec_reset(struct mpp_dev *mpp)
{
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
mpp_debug_enter();
if (dec->rst_a && dec->rst_h) {
mpp_pmu_idle_request(mpp, true);
mpp_safe_reset(dec->rst_niu_a);
mpp_safe_reset(dec->rst_niu_h);
mpp_safe_reset(dec->rst_a);
mpp_safe_reset(dec->rst_h);
mpp_safe_reset(dec->rst_core);
mpp_safe_reset(dec->rst_cabac);
mpp_safe_reset(dec->rst_hevc_cabac);
udelay(5);
mpp_safe_unreset(dec->rst_niu_h);
mpp_safe_unreset(dec->rst_niu_a);
mpp_safe_unreset(dec->rst_a);
mpp_safe_unreset(dec->rst_h);
mpp_safe_unreset(dec->rst_core);
mpp_safe_unreset(dec->rst_cabac);
mpp_safe_unreset(dec->rst_hevc_cabac);
mpp_pmu_idle_request(mpp, false);
}
mpp_debug_leave();
return 0;
}
static int rkvdec_sip_reset(struct mpp_dev *mpp)
{
if (IS_REACHABLE(CONFIG_ROCKCHIP_SIP)) {
/* The reset flow in arm trustzone firmware */
struct rkvdec_dev *dec = to_rkvdec_dev(mpp);
mutex_lock(&dec->sip_reset_lock);
sip_smc_vpu_reset(0, 0, 0);
mutex_unlock(&dec->sip_reset_lock);
return 0;
} else {
return rkvdec_reset(mpp);
}
}
static struct mpp_hw_ops rkvdec_v1_hw_ops = {
.init = rkvdec_init,
.clk_on = rkvdec_clk_on,
.clk_off = rkvdec_clk_off,
.get_freq = rkvdec_get_freq,
.set_freq = rkvdec_set_freq,
.reduce_freq = rkvdec_reduce_freq,
.reset = rkvdec_reset,
};
static struct mpp_hw_ops rkvdec_px30_hw_ops = {
.init = rkvdec_px30_init,
.clk_on = rkvdec_clk_on,
.clk_off = rkvdec_clk_off,
.get_freq = rkvdec_get_freq,
.set_freq = rkvdec_set_freq,
.reduce_freq = rkvdec_reduce_freq,
.reset = rkvdec_reset,
.set_grf = px30_workaround_combo_switch_grf,
};
static struct mpp_hw_ops rkvdec_3036_hw_ops = {
.init = rkvdec_3036_init,
.clk_on = rkvdec_clk_on,
.clk_off = rkvdec_clk_off,
.get_freq = rkvdec_get_freq,
.set_freq = rkvdec_set_freq,
.reduce_freq = rkvdec_reduce_freq,
.reset = rkvdec_reset,
.set_grf = rkvdec_3036_set_grf,
};
static struct mpp_hw_ops rkvdec_3399_hw_ops = {
.init = rkvdec_init,
.clk_on = rkvdec_clk_on,
.clk_off = rkvdec_clk_off,
.get_freq = rkvdec_get_freq,
.set_freq = rkvdec_set_freq,
.reduce_freq = rkvdec_reduce_freq,
.reset = rkvdec_reset,
};
static struct mpp_hw_ops rkvdec_3368_hw_ops = {
.init = rkvdec_init,
.clk_on = rkvdec_clk_on,
.clk_off = rkvdec_clk_off,
.get_freq = rkvdec_get_freq,
.set_freq = rkvdec_3368_set_freq,
.reduce_freq = rkvdec_reduce_freq,
.reset = rkvdec_reset,
.set_grf = rkvdec_3368_set_grf,
};
static struct mpp_dev_ops rkvdec_v1_dev_ops = {
.alloc_task = rkvdec_alloc_task,
.run = rkvdec_run,
.irq = rkvdec_irq,
.isr = rkvdec_isr,
.finish = rkvdec_finish,
.result = rkvdec_result,
.free_task = rkvdec_free_task,
};
static struct mpp_dev_ops rkvdec_px30_dev_ops = {
.alloc_task = rkvdec_alloc_task,
.run = rkvdec_px30_run,
.irq = rkvdec_irq,
.isr = rkvdec_isr,
.finish = rkvdec_finish,
.result = rkvdec_result,
.free_task = rkvdec_free_task,
};
static struct mpp_hw_ops rkvdec_3328_hw_ops = {
.init = rkvdec_3328_init,
.exit = rkvdec_3328_exit,
.clk_on = rkvdec_clk_on,
.clk_off = rkvdec_clk_off,
.get_freq = rkvdec_3328_get_freq,
.set_freq = rkvdec_3328_set_freq,
.reduce_freq = rkvdec_3328_reduce_freq,
.reset = rkvdec_sip_reset,
};
static struct mpp_dev_ops rkvdec_3328_dev_ops = {
.alloc_task = rkvdec_alloc_task,
.run = rkvdec_3328_run,
.irq = rkvdec_irq,
.isr = rkvdec_3328_isr,
.finish = rkvdec_finish,
.result = rkvdec_result,
.free_task = rkvdec_free_task,
};
static struct mpp_dev_ops rkvdec_3399_dev_ops = {
.alloc_task = rkvdec_alloc_task,
.prepare = rkvdec_prepare_with_reset,
.run = rkvdec_run,
.irq = rkvdec_irq,
.isr = rkvdec_isr,
.finish = rkvdec_finish_with_record_info,
.result = rkvdec_result,
.free_task = rkvdec_free_task,
};
static struct mpp_dev_ops rkvdec_1126_dev_ops = {
.alloc_task = rkvdec_alloc_task,
.run = rkvdec_1126_run,
.irq = rkvdec_irq,
.isr = rkvdec_isr,
.finish = rkvdec_finish,
.result = rkvdec_result,
.free_task = rkvdec_free_task,
};
static const struct mpp_dev_var rk_hevcdec_data = {
.device_type = MPP_DEVICE_HEVC_DEC,
.hw_info = &rk_hevcdec_hw_info,
.trans_info = rk_hevcdec_trans,
.hw_ops = &rkvdec_v1_hw_ops,
.dev_ops = &rkvdec_v1_dev_ops,
};
static const struct mpp_dev_var rk_hevcdec_3036_data = {
.device_type = MPP_DEVICE_HEVC_DEC,
.hw_info = &rk_hevcdec_hw_info,
.trans_info = rk_hevcdec_trans,
.hw_ops = &rkvdec_3036_hw_ops,
.dev_ops = &rkvdec_v1_dev_ops,
};
static const struct mpp_dev_var rk_hevcdec_3368_data = {
.device_type = MPP_DEVICE_HEVC_DEC,
.hw_info = &rk_hevcdec_hw_info,
.trans_info = rk_hevcdec_trans,
.hw_ops = &rkvdec_3368_hw_ops,
.dev_ops = &rkvdec_v1_dev_ops,
};
static const struct mpp_dev_var rk_hevcdec_px30_data = {
.device_type = MPP_DEVICE_HEVC_DEC,
.hw_info = &rk_hevcdec_hw_info,
.trans_info = rk_hevcdec_trans,
.hw_ops = &rkvdec_px30_hw_ops,
.dev_ops = &rkvdec_px30_dev_ops,
};
static const struct mpp_dev_var rkvdec_v1_data = {
.device_type = MPP_DEVICE_RKVDEC,
.hw_info = &rkvdec_v1_hw_info,
.trans_info = rkvdec_v1_trans,
.hw_ops = &rkvdec_v1_hw_ops,
.dev_ops = &rkvdec_v1_dev_ops,
};
static const struct mpp_dev_var rkvdec_3399_data = {
.device_type = MPP_DEVICE_RKVDEC,
.hw_info = &rkvdec_v1_hw_info,
.trans_info = rkvdec_v1_trans,
.hw_ops = &rkvdec_3399_hw_ops,
.dev_ops = &rkvdec_3399_dev_ops,
};
static const struct mpp_dev_var rkvdec_3328_data = {
.device_type = MPP_DEVICE_RKVDEC,
.hw_info = &rkvdec_v1_hw_info,
.trans_info = rkvdec_v1_trans,
.hw_ops = &rkvdec_3328_hw_ops,
.dev_ops = &rkvdec_3328_dev_ops,
};
static const struct mpp_dev_var rkvdec_1126_data = {
.device_type = MPP_DEVICE_RKVDEC,
.hw_info = &rkvdec_v1_hw_info,
.trans_info = rkvdec_v1_trans,
.hw_ops = &rkvdec_v1_hw_ops,
.dev_ops = &rkvdec_1126_dev_ops,
};
static const struct of_device_id mpp_rkvdec_dt_match[] = {
{
.compatible = "rockchip,hevc-decoder",
.data = &rk_hevcdec_data,
},
#ifdef CONFIG_CPU_PX30
{
.compatible = "rockchip,hevc-decoder-px30",
.data = &rk_hevcdec_px30_data,
},
#endif
#ifdef CONFIG_CPU_RK3036
{
.compatible = "rockchip,hevc-decoder-rk3036",
.data = &rk_hevcdec_3036_data,
},
#endif
#ifdef CONFIG_CPU_RK3368
{
.compatible = "rockchip,hevc-decoder-rk3368",
.data = &rk_hevcdec_3368_data,
},
#endif
{
.compatible = "rockchip,rkv-decoder-v1",
.data = &rkvdec_v1_data,
},
#ifdef CONFIG_CPU_RK3399
{
.compatible = "rockchip,rkv-decoder-rk3399",
.data = &rkvdec_3399_data,
},
#endif
#ifdef CONFIG_CPU_RK3328
{
.compatible = "rockchip,rkv-decoder-rk3328",
.data = &rkvdec_3328_data,
},
#endif
#ifdef CONFIG_CPU_RV1126
{
.compatible = "rockchip,rkv-decoder-rv1126",
.data = &rkvdec_1126_data,
},
#endif
{},
};
static int rkvdec_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rkvdec_dev *dec = NULL;
struct mpp_dev *mpp = NULL;
const struct of_device_id *match = NULL;
int ret = 0;
dev_info(dev, "probing start\n");
dec = devm_kzalloc(dev, sizeof(*dec), GFP_KERNEL);
if (!dec)
return -ENOMEM;
mpp = &dec->mpp;
platform_set_drvdata(pdev, mpp);
if (pdev->dev.of_node) {
match = of_match_node(mpp_rkvdec_dt_match,
pdev->dev.of_node);
if (match)
mpp->var = (struct mpp_dev_var *)match->data;
}
ret = mpp_dev_probe(mpp, pdev);
if (ret) {
dev_err(dev, "probe sub driver failed\n");
return ret;
}
ret = devm_request_threaded_irq(dev, mpp->irq,
mpp_dev_irq,
mpp_dev_isr_sched,
IRQF_SHARED,
dev_name(dev), mpp);
if (ret) {
dev_err(dev, "register interrupter runtime failed\n");
return -EINVAL;
}
mpp->session_max_buffers = RKVDEC_SESSION_MAX_BUFFERS;
rkvdec_procfs_init(mpp);
/* register current device to mpp service */
mpp_dev_register_srv(mpp, mpp->srv);
dev_info(dev, "probing finish\n");
return 0;
}
static int rkvdec_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rkvdec_dev *dec = platform_get_drvdata(pdev);
dev_info(dev, "remove device\n");
mpp_dev_remove(&dec->mpp);
rkvdec_procfs_remove(&dec->mpp);
return 0;
}
struct platform_driver rockchip_rkvdec_driver = {
.probe = rkvdec_probe,
.remove = rkvdec_remove,
.shutdown = mpp_dev_shutdown,
.driver = {
.name = RKVDEC_DRIVER_NAME,
.of_match_table = of_match_ptr(mpp_rkvdec_dt_match),
},
};
EXPORT_SYMBOL(rockchip_rkvdec_driver);