android13/kernel-5.10/drivers/video/rockchip/mpp/mpp_rkvdec2_link.c

2519 lines
67 KiB
C

// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Copyright (c) 2021 Rockchip Electronics Co., Ltd
*
* author:
* Herman Chen <herman.chen@rock-chips.com>
*/
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <soc/rockchip/pm_domains.h>
#include <soc/rockchip/rockchip_dmc.h>
#include <soc/rockchip/rockchip_iommu.h>
#include "mpp_rkvdec2_link.h"
#include "hack/mpp_rkvdec2_link_hack_rk3568.c"
#define RKVDEC2_LINK_HACK_TASK_FLAG (0xff)
/* vdpu381 link hw info for rk3588 */
struct rkvdec_link_info rkvdec_link_v2_hw_info = {
.tb_reg_num = 218,
.tb_reg_next = 0,
.tb_reg_r = 1,
.tb_reg_second_en = 8,
.part_w_num = 6,
.part_r_num = 2,
.part_w[0] = {
.tb_reg_off = 4,
.reg_start = 8,
.reg_num = 28,
},
.part_w[1] = {
.tb_reg_off = 32,
.reg_start = 64,
.reg_num = 52,
},
.part_w[2] = {
.tb_reg_off = 84,
.reg_start = 128,
.reg_num = 16,
},
.part_w[3] = {
.tb_reg_off = 100,
.reg_start = 160,
.reg_num = 48,
},
.part_w[4] = {
.tb_reg_off = 148,
.reg_start = 224,
.reg_num = 16,
},
.part_w[5] = {
.tb_reg_off = 164,
.reg_start = 256,
.reg_num = 16,
},
.part_r[0] = {
.tb_reg_off = 180,
.reg_start = 224,
.reg_num = 10,
},
.part_r[1] = {
.tb_reg_off = 190,
.reg_start = 258,
.reg_num = 28,
},
.tb_reg_int = 180,
.tb_reg_cycle = 195,
.hack_setup = 0,
.reg_status = {
.dec_num_mask = 0x3fffffff,
.err_flag_base = 0x010,
.err_flag_bit = BIT(31),
},
};
/* vdpu34x link hw info for rk356x */
struct rkvdec_link_info rkvdec_link_rk356x_hw_info = {
.tb_reg_num = 202,
.tb_reg_next = 0,
.tb_reg_r = 1,
.tb_reg_second_en = 8,
.part_w_num = 6,
.part_r_num = 2,
.part_w[0] = {
.tb_reg_off = 4,
.reg_start = 8,
.reg_num = 20,
},
.part_w[1] = {
.tb_reg_off = 24,
.reg_start = 64,
.reg_num = 52,
},
.part_w[2] = {
.tb_reg_off = 76,
.reg_start = 128,
.reg_num = 16,
},
.part_w[3] = {
.tb_reg_off = 92,
.reg_start = 160,
.reg_num = 40,
},
.part_w[4] = {
.tb_reg_off = 132,
.reg_start = 224,
.reg_num = 16,
},
.part_w[5] = {
.tb_reg_off = 148,
.reg_start = 256,
.reg_num = 16,
},
.part_r[0] = {
.tb_reg_off = 164,
.reg_start = 224,
.reg_num = 10,
},
.part_r[1] = {
.tb_reg_off = 174,
.reg_start = 258,
.reg_num = 28,
},
.tb_reg_int = 164,
.tb_reg_cycle = 179,
.hack_setup = 1,
.reg_status = {
.dec_num_mask = 0x3fffffff,
.err_flag_base = 0x010,
.err_flag_bit = BIT(31),
},
};
/* vdpu382 link hw info */
struct rkvdec_link_info rkvdec_link_vdpu382_hw_info = {
.tb_reg_num = 222,
.tb_reg_next = 0,
.tb_reg_r = 1,
.tb_reg_second_en = 8,
.part_w_num = 6,
.part_r_num = 2,
.part_w[0] = {
.tb_reg_off = 4,
.reg_start = 8,
.reg_num = 28,
},
.part_w[1] = {
.tb_reg_off = 32,
.reg_start = 64,
.reg_num = 52,
},
.part_w[2] = {
.tb_reg_off = 84,
.reg_start = 128,
.reg_num = 16,
},
.part_w[3] = {
.tb_reg_off = 100,
.reg_start = 160,
.reg_num = 48,
},
.part_w[4] = {
.tb_reg_off = 148,
.reg_start = 224,
.reg_num = 16,
},
.part_w[5] = {
.tb_reg_off = 164,
.reg_start = 256,
.reg_num = 16,
},
.part_r[0] = {
.tb_reg_off = 180,
.reg_start = 224,
.reg_num = 12,
},
.part_r[1] = {
.tb_reg_off = 192,
.reg_start = 258,
.reg_num = 30,
},
.tb_reg_int = 180,
.hack_setup = 0,
.tb_reg_cycle = 197,
.reg_status = {
.dec_num_mask = 0x000fffff,
.err_flag_base = 0x024,
.err_flag_bit = BIT(8),
},
};
static void rkvdec2_link_free_task(struct kref *ref);
static void rkvdec2_link_timeout_proc(struct work_struct *work_s);
static int rkvdec2_link_iommu_fault_handle(struct iommu_domain *iommu,
struct device *iommu_dev,
unsigned long iova,
int status, void *arg);
static void rkvdec_link_status_update(struct rkvdec_link_dev *dev)
{
void __iomem *reg_base = dev->reg_base;
u32 error_ff0, error_ff1;
u32 enable_ff0, enable_ff1;
u32 loop_count = 10;
u32 val;
struct rkvdec_link_info *link_info = dev->info;
u32 dec_num_mask = link_info->reg_status.dec_num_mask;
u32 err_flag_base = link_info->reg_status.err_flag_base;
u32 err_flag_bit = link_info->reg_status.err_flag_bit;
error_ff1 = (readl(reg_base + err_flag_base) & err_flag_bit) ? 1 : 0;
enable_ff1 = readl(reg_base + RKVDEC_LINK_EN_BASE);
dev->irq_status = readl(reg_base + RKVDEC_LINK_IRQ_BASE);
dev->iova_curr = readl(reg_base + RKVDEC_LINK_CFG_ADDR_BASE);
dev->link_mode = readl(reg_base + RKVDEC_LINK_MODE_BASE);
dev->total = readl(reg_base + RKVDEC_LINK_TOTAL_NUM_BASE);
dev->iova_next = readl(reg_base + RKVDEC_LINK_NEXT_ADDR_BASE);
do {
val = readl(reg_base + RKVDEC_LINK_DEC_NUM_BASE);
error_ff0 = (readl(reg_base + err_flag_base) & err_flag_bit) ? 1 : 0;
enable_ff0 = readl(reg_base + RKVDEC_LINK_EN_BASE);
if (error_ff0 == error_ff1 && enable_ff0 == enable_ff1)
break;
error_ff1 = error_ff0;
enable_ff1 = enable_ff0;
} while (--loop_count);
dev->error = error_ff0;
dev->decoded_status = val;
dev->decoded = val & dec_num_mask;
dev->enabled = enable_ff0;
if (!loop_count)
dev_info(dev->dev, "reach last 10 count\n");
}
static void rkvdec_link_node_dump(const char *func, struct rkvdec_link_dev *dev)
{
u32 *table_base = (u32 *)dev->table->vaddr;
u32 reg_count = dev->link_reg_count;
u32 iova = (u32)dev->table->iova;
u32 *reg = NULL;
u32 i, j;
for (i = 0; i < dev->task_capacity; i++) {
reg = table_base + i * reg_count;
mpp_err("slot %d link config iova %08x:\n", i,
iova + i * dev->link_node_size);
for (j = 0; j < reg_count; j++) {
mpp_err("reg%03d 0x%08x\n", j, reg[j]);
udelay(100);
}
}
}
static void rkvdec_core_reg_dump(const char *func, struct rkvdec_link_dev *dev)
{
struct mpp_dev *mpp = dev->mpp;
u32 s = mpp->var->hw_info->reg_start;
u32 e = mpp->var->hw_info->reg_end;
u32 i;
mpp_err("--- dump hardware register ---\n");
for (i = s; i <= e; i++) {
u32 reg = i * sizeof(u32);
mpp_err("reg[%03d]: %04x: 0x%08x\n",
i, reg, readl_relaxed(mpp->reg_base + reg));
udelay(100);
}
}
static void rkvdec_link_reg_dump(const char *func, struct rkvdec_link_dev *dev)
{
mpp_err("dump link config status from %s\n", func);
mpp_err("reg 0 %08x - irq status\n", dev->irq_status);
mpp_err("reg 1 %08x - cfg addr\n", dev->iova_curr);
mpp_err("reg 2 %08x - link mode\n", dev->link_mode);
mpp_err("reg 4 %08x - decoded num\n", dev->decoded_status);
mpp_err("reg 5 %08x - total num\n", dev->total);
mpp_err("reg 6 %08x - link mode en\n", dev->enabled);
mpp_err("reg 6 %08x - next ltb addr\n", dev->iova_next);
}
static void rkvdec_link_counter(const char *func, struct rkvdec_link_dev *dev)
{
mpp_err("dump link counter from %s\n", func);
mpp_err("task pending %d running %d\n",
atomic_read(&dev->task_pending), dev->task_running);
}
int rkvdec_link_dump(struct mpp_dev *mpp)
{
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct rkvdec_link_dev *dev = dec->link_dec;
rkvdec_link_status_update(dev);
rkvdec_link_reg_dump(__func__, dev);
rkvdec_link_counter(__func__, dev);
rkvdec_core_reg_dump(__func__, dev);
rkvdec_link_node_dump(__func__, dev);
return 0;
}
static void rkvdec2_clear_cache(struct mpp_dev *mpp)
{
/* set cache size */
u32 reg = RKVDEC_CACHE_PERMIT_CACHEABLE_ACCESS |
RKVDEC_CACHE_PERMIT_READ_ALLOCATE;
if (!mpp_debug_unlikely(DEBUG_CACHE_32B))
reg |= RKVDEC_CACHE_LINE_SIZE_64_BYTES;
mpp_write_relaxed(mpp, RKVDEC_REG_CACHE0_SIZE_BASE, reg);
mpp_write_relaxed(mpp, RKVDEC_REG_CACHE1_SIZE_BASE, reg);
mpp_write_relaxed(mpp, RKVDEC_REG_CACHE2_SIZE_BASE, reg);
/* clear cache */
mpp_write_relaxed(mpp, RKVDEC_REG_CLR_CACHE0_BASE, 1);
mpp_write_relaxed(mpp, RKVDEC_REG_CLR_CACHE1_BASE, 1);
mpp_write_relaxed(mpp, RKVDEC_REG_CLR_CACHE2_BASE, 1);
}
static int rkvdec2_link_enqueue(struct rkvdec_link_dev *link_dec,
struct mpp_task *mpp_task)
{
void __iomem *reg_base = link_dec->reg_base;
struct rkvdec2_task *task = to_rkvdec2_task(mpp_task);
struct mpp_dma_buffer *table = task->table;
u32 link_en = 0;
u32 frame_num = 1;
u32 link_mode;
u32 timing_en = link_dec->mpp->srv->timing_en;
link_en = readl(reg_base + RKVDEC_LINK_EN_BASE);
if (!link_en) {
rkvdec2_clear_cache(link_dec->mpp);
/* cleanup counter in hardware */
writel(0, reg_base + RKVDEC_LINK_MODE_BASE);
/* start config before all registers are set */
wmb();
writel(RKVDEC_LINK_BIT_CFG_DONE, reg_base + RKVDEC_LINK_CFG_CTRL_BASE);
/* write zero count config */
wmb();
/* clear counter and enable link mode hardware */
writel(RKVDEC_LINK_BIT_EN, reg_base + RKVDEC_LINK_EN_BASE);
writel_relaxed(table->iova, reg_base + RKVDEC_LINK_CFG_ADDR_BASE);
link_mode = frame_num;
} else
link_mode = (frame_num | RKVDEC_LINK_BIT_ADD_MODE);
/* set link mode */
writel_relaxed(link_mode, reg_base + RKVDEC_LINK_MODE_BASE);
/* start config before all registers are set */
wmb();
mpp_iommu_flush_tlb(link_dec->mpp->iommu_info);
mpp_task_run_begin(mpp_task, timing_en, MPP_WORK_TIMEOUT_DELAY);
link_dec->task_running++;
/* configure done */
writel(RKVDEC_LINK_BIT_CFG_DONE, reg_base + RKVDEC_LINK_CFG_CTRL_BASE);
if (!link_en) {
/* start hardware before all registers are set */
wmb();
/* clear counter and enable link mode hardware */
writel(RKVDEC_LINK_BIT_EN, reg_base + RKVDEC_LINK_EN_BASE);
}
mpp_task_run_end(mpp_task, timing_en);
return 0;
}
static int rkvdec2_link_finish(struct mpp_dev *mpp, struct mpp_task *mpp_task)
{
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct rkvdec2_task *task = to_rkvdec2_task(mpp_task);
struct rkvdec_link_dev *link_dec = dec->link_dec;
struct mpp_dma_buffer *table = link_dec->table;
struct rkvdec_link_info *info = link_dec->info;
struct rkvdec_link_part *part = info->part_r;
u32 *tb_reg = (u32 *)table->vaddr;
u32 off, s, n;
u32 i;
mpp_debug_enter();
for (i = 0; i < info->part_r_num; i++) {
off = part[i].tb_reg_off;
s = part[i].reg_start;
n = part[i].reg_num;
memcpy(&task->reg[s], &tb_reg[off], n * sizeof(u32));
}
/* revert hack for irq status */
task->reg[RKVDEC_REG_INT_EN_INDEX] = task->irq_status;
mpp_debug_leave();
return 0;
}
static void *rkvdec2_link_prepare(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct rkvdec_link_dev *link_dec = dec->link_dec;
struct mpp_dma_buffer *table = NULL;
struct rkvdec_link_part *part;
struct rkvdec2_task *task = to_rkvdec2_task(mpp_task);
struct rkvdec_link_info *info = link_dec->info;
u32 i, off, s, n;
u32 *tb_reg;
mpp_debug_enter();
if (test_bit(TASK_STATE_PREPARE, &mpp_task->state)) {
dev_err(mpp->dev, "task %d has prepared\n", mpp_task->task_index);
return mpp_task;
}
table = list_first_entry_or_null(&link_dec->unused_list, struct mpp_dma_buffer, link);
if (!table)
return NULL;
/* fill regs value */
tb_reg = (u32 *)table->vaddr;
part = info->part_w;
for (i = 0; i < info->part_w_num; i++) {
off = part[i].tb_reg_off;
s = part[i].reg_start;
n = part[i].reg_num;
memcpy(&tb_reg[off], &task->reg[s], n * sizeof(u32));
}
/* setup error mode flag */
tb_reg[9] |= BIT(18) | BIT(9);
tb_reg[info->tb_reg_second_en] |= RKVDEC_WAIT_RESET_EN;
/* memset read registers */
part = info->part_r;
for (i = 0; i < info->part_r_num; i++) {
off = part[i].tb_reg_off;
n = part[i].reg_num;
memset(&tb_reg[off], 0, n * sizeof(u32));
}
list_move_tail(&table->link, &link_dec->used_list);
task->table = table;
set_bit(TASK_STATE_PREPARE, &mpp_task->state);
mpp_dbg_link("session %d task %d prepare pending %d running %d\n",
mpp_task->session->index, mpp_task->task_index,
atomic_read(&link_dec->task_pending), link_dec->task_running);
mpp_debug_leave();
return mpp_task;
}
static int rkvdec2_link_reset(struct mpp_dev *mpp)
{
dev_info(mpp->dev, "resetting...\n");
disable_irq(mpp->irq);
mpp_iommu_disable_irq(mpp->iommu_info);
/* FIXME lock resource lock of the other devices in combo */
mpp_iommu_down_write(mpp->iommu_info);
mpp_reset_down_write(mpp->reset_group);
atomic_set(&mpp->reset_request, 0);
rockchip_save_qos(mpp->dev);
if (mpp->hw_ops->reset)
mpp->hw_ops->reset(mpp);
rockchip_restore_qos(mpp->dev);
/* Note: if the domain does not change, iommu attach will be return
* as an empty operation. Therefore, force to close and then open,
* will be update the domain. In this way, domain can really attach.
*/
mpp_iommu_refresh(mpp->iommu_info, mpp->dev);
mpp_reset_up_write(mpp->reset_group);
mpp_iommu_up_write(mpp->iommu_info);
enable_irq(mpp->irq);
mpp_iommu_enable_irq(mpp->iommu_info);
dev_info(mpp->dev, "reset done\n");
return 0;
}
static int rkvdec2_link_irq(struct mpp_dev *mpp)
{
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct rkvdec_link_dev *link_dec = dec->link_dec;
u32 irq_status = 0;
irq_status = readl(link_dec->reg_base + RKVDEC_LINK_IRQ_BASE);
if (irq_status & RKVDEC_LINK_BIT_IRQ_RAW) {
u32 enabled = readl(link_dec->reg_base + RKVDEC_LINK_EN_BASE);
if (!enabled) {
u32 bus = mpp_read_relaxed(mpp, 273 * 4);
if (bus & 0x7ffff)
dev_info(link_dec->dev,
"invalid bus status %08x\n", bus);
}
link_dec->irq_status = irq_status;
mpp->irq_status = mpp_read_relaxed(mpp, RKVDEC_REG_INT_EN);
writel_relaxed(0, link_dec->reg_base + RKVDEC_LINK_IRQ_BASE);
}
mpp_debug(DEBUG_IRQ_STATUS | DEBUG_LINK_TABLE, "irq_status: %08x : %08x\n",
irq_status, mpp->irq_status);
return 0;
}
int rkvdec2_link_remove(struct mpp_dev *mpp, struct rkvdec_link_dev *link_dec)
{
mpp_debug_enter();
if (link_dec && link_dec->table) {
mpp_dma_free(link_dec->table);
link_dec->table = NULL;
}
mpp_debug_leave();
return 0;
}
static int rkvdec2_link_alloc_table(struct mpp_dev *mpp,
struct rkvdec_link_dev *link_dec)
{
int ret;
struct mpp_dma_buffer *table;
struct rkvdec_link_info *info = link_dec->info;
/* NOTE: link table address requires 64 align */
u32 task_capacity = link_dec->task_capacity;
u32 link_node_size = ALIGN(info->tb_reg_num * sizeof(u32), 256);
u32 link_info_size = task_capacity * link_node_size;
u32 *v_curr;
u32 io_curr, io_next, io_start;
u32 offset_r = info->part_r[0].tb_reg_off * sizeof(u32);
u32 i;
table = mpp_dma_alloc(mpp->dev, link_info_size);
if (!table) {
ret = -ENOMEM;
goto err_free_node;
}
link_dec->link_node_size = link_node_size;
link_dec->link_reg_count = link_node_size >> 2;
io_start = table->iova;
for (i = 0; i < task_capacity; i++) {
v_curr = (u32 *)(table->vaddr + i * link_node_size);
io_curr = io_start + i * link_node_size;
io_next = (i == task_capacity - 1) ?
io_start : io_start + (i + 1) * link_node_size;
v_curr[info->tb_reg_next] = io_next;
v_curr[info->tb_reg_r] = io_curr + offset_r;
}
link_dec->table = table;
return 0;
err_free_node:
rkvdec2_link_remove(mpp, link_dec);
return ret;
}
#ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
int rkvdec2_link_procfs_init(struct mpp_dev *mpp)
{
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct rkvdec_link_dev *link_dec = dec->link_dec;
if (!link_dec)
return 0;
link_dec->statistic_count = 0;
if (dec->procfs)
mpp_procfs_create_u32("statistic_count", 0644,
dec->procfs, &link_dec->statistic_count);
return 0;
}
#else
int rkvdec2_link_procfs_init(struct mpp_dev *mpp)
{
return 0;
}
#endif
int rkvdec2_link_init(struct platform_device *pdev, struct rkvdec2_dev *dec)
{
int ret;
struct resource *res = NULL;
struct rkvdec_link_dev *link_dec = NULL;
struct device *dev = &pdev->dev;
struct mpp_dev *mpp = &dec->mpp;
struct mpp_dma_buffer *table;
int i;
mpp_debug_enter();
link_dec = devm_kzalloc(dev, sizeof(*link_dec), GFP_KERNEL);
if (!link_dec) {
ret = -ENOMEM;
goto done;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "link");
if (res)
link_dec->info = mpp->var->hw_info->link_info;
else {
dev_err(dev, "link mode resource not found\n");
ret = -ENOMEM;
goto done;
}
link_dec->reg_base = devm_ioremap(dev, res->start, resource_size(res));
if (!link_dec->reg_base) {
dev_err(dev, "ioremap failed for resource %pR\n", res);
ret = -ENOMEM;
goto done;
}
link_dec->task_capacity = mpp->task_capacity;
ret = rkvdec2_link_alloc_table(&dec->mpp, link_dec);
if (ret)
goto done;
/* alloc table pointer array */
table = devm_kmalloc_array(mpp->dev, mpp->task_capacity,
sizeof(*table), GFP_KERNEL | __GFP_ZERO);
if (!table)
return -ENOMEM;
/* init table array */
link_dec->table_array = table;
INIT_LIST_HEAD(&link_dec->used_list);
INIT_LIST_HEAD(&link_dec->unused_list);
for (i = 0; i < mpp->task_capacity; i++) {
table[i].iova = link_dec->table->iova + i * link_dec->link_node_size;
table[i].vaddr = link_dec->table->vaddr + i * link_dec->link_node_size;
table[i].size = link_dec->link_node_size;
INIT_LIST_HEAD(&table[i].link);
list_add_tail(&table[i].link, &link_dec->unused_list);
}
if (dec->fix)
rkvdec2_link_hack_data_setup(dec->fix);
mpp->fault_handler = rkvdec2_link_iommu_fault_handle;
link_dec->mpp = mpp;
link_dec->dev = dev;
atomic_set(&link_dec->task_timeout, 0);
atomic_set(&link_dec->task_pending, 0);
atomic_set(&link_dec->power_enabled, 0);
link_dec->irq_enabled = 1;
dec->link_dec = link_dec;
dev_info(dev, "link mode probe finish\n");
done:
if (ret) {
if (link_dec) {
if (link_dec->reg_base) {
devm_iounmap(dev, link_dec->reg_base);
link_dec->reg_base = NULL;
}
devm_kfree(dev, link_dec);
link_dec = NULL;
}
dec->link_dec = NULL;
}
mpp_debug_leave();
return ret;
}
static void rkvdec2_link_free_task(struct kref *ref)
{
struct mpp_dev *mpp;
struct mpp_session *session;
struct mpp_task *task = container_of(ref, struct mpp_task, ref);
if (!task->session) {
mpp_err("task %d task->session is null.\n", task->task_id);
return;
}
session = task->session;
mpp_debug_func(DEBUG_TASK_INFO, "task %d:%d state 0x%lx\n",
session->index, task->task_id, task->state);
if (!session->mpp) {
mpp_err("session %d session->mpp is null.\n", session->index);
return;
}
mpp = session->mpp;
list_del_init(&task->queue_link);
rkvdec2_free_task(session, task);
/* Decrease reference count */
atomic_dec(&session->task_count);
atomic_dec(&mpp->task_count);
}
static void rkvdec2_link_trigger_work(struct mpp_dev *mpp)
{
kthread_queue_work(&mpp->queue->worker, &mpp->work);
}
static int rkvdec2_link_power_on(struct mpp_dev *mpp)
{
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct rkvdec_link_dev *link_dec = dec->link_dec;
if (!atomic_xchg(&link_dec->power_enabled, 1)) {
if (mpp_iommu_attach(mpp->iommu_info)) {
dev_err(mpp->dev, "mpp_iommu_attach failed\n");
return -ENODATA;
}
pm_runtime_get_sync(mpp->dev);
pm_stay_awake(mpp->dev);
if (mpp->hw_ops->clk_on)
mpp->hw_ops->clk_on(mpp);
if (!link_dec->irq_enabled) {
enable_irq(mpp->irq);
mpp_iommu_enable_irq(mpp->iommu_info);
link_dec->irq_enabled = 1;
}
mpp_clk_set_rate(&dec->aclk_info, CLK_MODE_ADVANCED);
mpp_clk_set_rate(&dec->cabac_clk_info, CLK_MODE_ADVANCED);
mpp_clk_set_rate(&dec->hevc_cabac_clk_info, CLK_MODE_ADVANCED);
mpp_devfreq_set_core_rate(mpp, CLK_MODE_ADVANCED);
mpp_iommu_dev_activate(mpp->iommu_info, mpp);
}
return 0;
}
static void rkvdec2_link_power_off(struct mpp_dev *mpp)
{
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct rkvdec_link_dev *link_dec = dec->link_dec;
if (atomic_xchg(&link_dec->power_enabled, 0)) {
disable_irq(mpp->irq);
mpp_iommu_disable_irq(mpp->iommu_info);
link_dec->irq_enabled = 0;
if (mpp->hw_ops->clk_off)
mpp->hw_ops->clk_off(mpp);
pm_relax(mpp->dev);
pm_runtime_put_sync_suspend(mpp->dev);
mpp_clk_set_rate(&dec->aclk_info, CLK_MODE_NORMAL);
mpp_clk_set_rate(&dec->cabac_clk_info, CLK_MODE_NORMAL);
mpp_clk_set_rate(&dec->hevc_cabac_clk_info, CLK_MODE_NORMAL);
mpp_devfreq_set_core_rate(mpp, CLK_MODE_NORMAL);
mpp_iommu_dev_deactivate(mpp->iommu_info, mpp);
}
}
static void rkvdec2_link_timeout_proc(struct work_struct *work_s)
{
struct mpp_dev *mpp;
struct rkvdec2_dev *dec;
struct mpp_session *session;
struct mpp_task *task = container_of(to_delayed_work(work_s),
struct mpp_task, timeout_work);
if (test_and_set_bit(TASK_STATE_HANDLE, &task->state)) {
mpp_err("task %d state %lx has been handled\n",
task->task_id, task->state);
return;
}
if (!task->session) {
mpp_err("task %d session is null.\n", task->task_id);
return;
}
session = task->session;
if (!session->mpp) {
mpp_err("task %d:%d mpp is null.\n", session->index,
task->task_id);
return;
}
mpp = session->mpp;
set_bit(TASK_STATE_TIMEOUT, &task->state);
dec = to_rkvdec2_dev(mpp);
atomic_inc(&dec->link_dec->task_timeout);
dev_err(mpp->dev, "session %d task %d state %#lx timeout, cnt %d\n",
session->index, task->task_index, task->state,
atomic_read(&dec->link_dec->task_timeout));
rkvdec2_link_trigger_work(mpp);
}
static int rkvdec2_link_iommu_fault_handle(struct iommu_domain *iommu,
struct device *iommu_dev,
unsigned long iova,
int status, void *arg)
{
struct mpp_dev *mpp = (struct mpp_dev *)arg;
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct mpp_task *mpp_task = NULL, *n;
struct mpp_taskqueue *queue;
dev_err(iommu_dev, "fault addr 0x%08lx status %x arg %p\n",
iova, status, arg);
if (!mpp) {
dev_err(iommu_dev, "pagefault without device to handle\n");
return 0;
}
queue = mpp->queue;
list_for_each_entry_safe(mpp_task, n, &queue->running_list, queue_link) {
struct rkvdec_link_info *info = dec->link_dec->info;
struct rkvdec2_task *task = to_rkvdec2_task(mpp_task);
u32 *tb_reg = (u32 *)task->table->vaddr;
u32 irq_status = tb_reg[info->tb_reg_int];
if (!irq_status) {
mpp_task_dump_mem_region(mpp, mpp_task);
break;
}
}
mpp_task_dump_hw_reg(mpp);
/*
* Mask iommu irq, in order for iommu not repeatedly trigger pagefault.
* Until the pagefault task finish by hw timeout.
*/
rockchip_iommu_mask_irq(mpp->dev);
dec->mmu_fault = 1;
return 0;
}
static void rkvdec2_link_resend(struct mpp_dev *mpp)
{
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct rkvdec_link_dev *link_dec = dec->link_dec;
struct mpp_taskqueue *queue = mpp->queue;
struct mpp_task *mpp_task, *n;
link_dec->task_running = 0;
list_for_each_entry_safe(mpp_task, n, &queue->running_list, queue_link) {
dev_err(mpp->dev, "resend task %d\n", mpp_task->task_index);
cancel_delayed_work_sync(&mpp_task->timeout_work);
clear_bit(TASK_STATE_TIMEOUT, &mpp_task->state);
clear_bit(TASK_STATE_HANDLE, &mpp_task->state);
rkvdec2_link_enqueue(link_dec, mpp_task);
}
}
static void rkvdec2_link_try_dequeue(struct mpp_dev *mpp)
{
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct rkvdec_link_dev *link_dec = dec->link_dec;
struct mpp_taskqueue *queue = mpp->queue;
struct mpp_task *mpp_task = NULL, *n;
struct rkvdec_link_info *info = link_dec->info;
u32 reset_flag = 0;
u32 iommu_fault = dec->mmu_fault && (mpp->irq_status & RKVDEC_TIMEOUT_STA);
u32 link_en = atomic_read(&link_dec->power_enabled) ?
readl(link_dec->reg_base + RKVDEC_LINK_EN_BASE) : 0;
u32 force_dequeue = iommu_fault || !link_en;
u32 dequeue_cnt = 0;
list_for_each_entry_safe(mpp_task, n, &queue->running_list, queue_link) {
/*
* Because there are multiple tasks enqueue at the same time,
* soft timeout may be triggered at the same time, but in reality only
* first task is being timeout because of the hardware stuck,
* so only process the first task.
*/
u32 timeout_flag = dequeue_cnt ? 0 : test_bit(TASK_STATE_TIMEOUT, &mpp_task->state);
struct rkvdec2_task *task = to_rkvdec2_task(mpp_task);
u32 *tb_reg = (u32 *)task->table->vaddr;
u32 abort_flag = test_bit(TASK_STATE_ABORT, &mpp_task->state);
u32 irq_status = tb_reg[info->tb_reg_int];
u32 task_done = irq_status || timeout_flag || abort_flag;
/*
* there are some cases will cause hw cannot write reg to ddr:
* 1. iommu pagefault
* 2. link stop(link_en == 0) because of err task, it is a rk356x issue.
* so need force dequeue one task.
*/
if (force_dequeue)
task_done = 1;
if (!task_done)
break;
dequeue_cnt++;
/* check hack task only for rk356x*/
if (task->need_hack == RKVDEC2_LINK_HACK_TASK_FLAG) {
cancel_delayed_work_sync(&mpp_task->timeout_work);
list_move_tail(&task->table->link, &link_dec->unused_list);
list_del_init(&mpp_task->queue_link);
link_dec->task_running--;
link_dec->hack_task_running--;
kfree(task);
mpp_dbg_link("hack running %d irq_status %#08x timeout %d abort %d\n",
link_dec->hack_task_running, irq_status,
timeout_flag, abort_flag);
continue;
}
/*
* if timeout/abort/force dequeue found, reset and stop hw first.
*/
if ((timeout_flag || abort_flag || force_dequeue) && !reset_flag) {
dev_err(mpp->dev, "session %d task %d timeout %d abort %d force_dequeue %d\n",
mpp_task->session->index, mpp_task->task_index,
timeout_flag, abort_flag, force_dequeue);
rkvdec2_link_reset(mpp);
reset_flag = 1;
dec->mmu_fault = 0;
mpp->irq_status = 0;
force_dequeue = 0;
}
cancel_delayed_work_sync(&mpp_task->timeout_work);
task->irq_status = irq_status;
mpp_task->hw_cycles = tb_reg[info->tb_reg_cycle];
mpp_time_diff_with_hw_time(mpp_task, dec->cycle_clk->real_rate_hz);
rkvdec2_link_finish(mpp, mpp_task);
list_move_tail(&task->table->link, &link_dec->unused_list);
list_del_init(&mpp_task->queue_link);
link_dec->task_running--;
set_bit(TASK_STATE_HANDLE, &mpp_task->state);
set_bit(TASK_STATE_PROC_DONE, &mpp_task->state);
set_bit(TASK_STATE_FINISH, &mpp_task->state);
set_bit(TASK_STATE_DONE, &mpp_task->state);
if (test_bit(TASK_STATE_ABORT, &mpp_task->state))
set_bit(TASK_STATE_ABORT_READY, &mpp_task->state);
mpp_dbg_link("session %d task %d irq_status %#08x timeout %d abort %d\n",
mpp_task->session->index, mpp_task->task_index,
irq_status, timeout_flag, abort_flag);
if (irq_status & RKVDEC_INT_ERROR_MASK) {
dev_err(mpp->dev,
"session %d task %d irq_status %#08x timeout %u abort %u\n",
mpp_task->session->index, mpp_task->task_index,
irq_status, timeout_flag, abort_flag);
if (!reset_flag)
atomic_inc(&mpp->reset_request);
}
wake_up(&mpp_task->wait);
kref_put(&mpp_task->ref, rkvdec2_link_free_task);
}
/* resend running task after reset */
if (reset_flag && !list_empty(&queue->running_list))
rkvdec2_link_resend(mpp);
}
static int mpp_task_queue(struct mpp_dev *mpp, struct mpp_task *mpp_task)
{
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct rkvdec_link_dev *link_dec = dec->link_dec;
struct mpp_taskqueue *queue = mpp->queue;
struct rkvdec2_task *task = to_rkvdec2_task(mpp_task);
mpp_debug_enter();
rkvdec2_link_power_on(mpp);
/* hack for rk356x */
if (task->need_hack) {
u32 *tb_reg;
struct mpp_dma_buffer *table;
struct rkvdec2_task *hack_task;
struct rkvdec_link_info *info = link_dec->info;
/* need reserved 2 unused task for need hack task */
if (link_dec->task_running > (link_dec->task_capacity - 2))
return -EBUSY;
table = list_first_entry_or_null(&link_dec->unused_list,
struct mpp_dma_buffer,
link);
if (!table)
return -EBUSY;
hack_task = kzalloc(sizeof(*hack_task), GFP_KERNEL);
if (!hack_task)
return -ENOMEM;
mpp_task_init(mpp_task->session, &hack_task->mpp_task);
INIT_DELAYED_WORK(&hack_task->mpp_task.timeout_work,
rkvdec2_link_timeout_proc);
tb_reg = (u32 *)table->vaddr;
memset(tb_reg + info->part_r[0].tb_reg_off, 0, info->part_r[0].reg_num);
rkvdec2_3568_hack_fix_link(tb_reg + 4);
list_move_tail(&table->link, &link_dec->used_list);
hack_task->table = table;
hack_task->need_hack = RKVDEC2_LINK_HACK_TASK_FLAG;
rkvdec2_link_enqueue(link_dec, &hack_task->mpp_task);
mpp_taskqueue_pending_to_run(queue, &hack_task->mpp_task);
link_dec->hack_task_running++;
mpp_dbg_link("hack task send to hw, hack running %d\n",
link_dec->hack_task_running);
}
/* process normal */
if (!rkvdec2_link_prepare(mpp, mpp_task))
return -EBUSY;
rkvdec2_link_enqueue(link_dec, mpp_task);
set_bit(TASK_STATE_RUNNING, &mpp_task->state);
atomic_dec(&link_dec->task_pending);
mpp_taskqueue_pending_to_run(queue, mpp_task);
mpp_dbg_link("session %d task %d send to hw pending %d running %d\n",
mpp_task->session->index, mpp_task->task_index,
atomic_read(&link_dec->task_pending), link_dec->task_running);
mpp_debug_leave();
return 0;
}
irqreturn_t rkvdec2_link_irq_proc(int irq, void *param)
{
struct mpp_dev *mpp = param;
int ret = rkvdec2_link_irq(mpp);
if (!ret)
rkvdec2_link_trigger_work(mpp);
return IRQ_HANDLED;
}
static struct mpp_task *
mpp_session_get_pending_task(struct mpp_session *session)
{
struct mpp_task *task = NULL;
mutex_lock(&session->pending_lock);
task = list_first_entry_or_null(&session->pending_list, struct mpp_task,
pending_link);
mutex_unlock(&session->pending_lock);
return task;
}
static int task_is_done(struct mpp_task *task)
{
return test_bit(TASK_STATE_PROC_DONE, &task->state);
}
static int mpp_session_pop_pending(struct mpp_session *session,
struct mpp_task *task)
{
mutex_lock(&session->pending_lock);
list_del_init(&task->pending_link);
mutex_unlock(&session->pending_lock);
kref_put(&task->ref, rkvdec2_link_free_task);
return 0;
}
static int mpp_session_pop_done(struct mpp_session *session,
struct mpp_task *task)
{
set_bit(TASK_STATE_DONE, &task->state);
return 0;
}
int rkvdec2_link_process_task(struct mpp_session *session,
struct mpp_task_msgs *msgs)
{
struct mpp_task *task = NULL;
struct mpp_dev *mpp = session->mpp;
struct rkvdec_link_info *link_info = mpp->var->hw_info->link_info;
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct rkvdec_link_dev *link_dec = dec->link_dec;
task = rkvdec2_alloc_task(session, msgs);
if (!task) {
mpp_err("alloc_task failed.\n");
return -ENOMEM;
}
if (link_info->hack_setup) {
u32 fmt;
struct rkvdec2_task *dec_task = NULL;
dec_task = to_rkvdec2_task(task);
fmt = RKVDEC_GET_FORMAT(dec_task->reg[RKVDEC_REG_FORMAT_INDEX]);
dec_task->need_hack = (fmt == RKVDEC_FMT_H264D);
}
kref_init(&task->ref);
atomic_set(&task->abort_request, 0);
task->task_index = atomic_fetch_inc(&mpp->task_index);
task->task_id = atomic_fetch_inc(&mpp->queue->task_id);
INIT_DELAYED_WORK(&task->timeout_work, rkvdec2_link_timeout_proc);
atomic_inc(&session->task_count);
kref_get(&task->ref);
mutex_lock(&session->pending_lock);
list_add_tail(&task->pending_link, &session->pending_list);
mutex_unlock(&session->pending_lock);
kref_get(&task->ref);
mutex_lock(&mpp->queue->pending_lock);
list_add_tail(&task->queue_link, &mpp->queue->pending_list);
mutex_unlock(&mpp->queue->pending_lock);
atomic_inc(&link_dec->task_pending);
/* push current task to queue */
atomic_inc(&mpp->task_count);
set_bit(TASK_STATE_PENDING, &task->state);
/* trigger current queue to run task */
rkvdec2_link_trigger_work(mpp);
kref_put(&task->ref, rkvdec2_link_free_task);
return 0;
}
int rkvdec2_link_wait_result(struct mpp_session *session,
struct mpp_task_msgs *msgs)
{
struct mpp_dev *mpp = session->mpp;
struct mpp_task *mpp_task;
int ret;
mpp_task = mpp_session_get_pending_task(session);
if (!mpp_task) {
mpp_err("session %p pending list is empty!\n", session);
return -EIO;
}
ret = wait_event_interruptible(mpp_task->wait, task_is_done(mpp_task));
if (ret == -ERESTARTSYS)
mpp_err("wait task break by signal\n");
ret = rkvdec2_result(mpp, mpp_task, msgs);
mpp_session_pop_done(session, mpp_task);
mpp_debug_func(DEBUG_TASK_INFO, "wait done session %d:%d count %d task %d state %lx\n",
session->device_type, session->index, atomic_read(&session->task_count),
mpp_task->task_index, mpp_task->state);
mpp_session_pop_pending(session, mpp_task);
return ret;
}
void rkvdec2_link_worker(struct kthread_work *work_s)
{
struct mpp_dev *mpp = container_of(work_s, struct mpp_dev, work);
struct mpp_task *task;
struct mpp_taskqueue *queue = mpp->queue;
u32 all_done;
mpp_debug_enter();
/* dequeue running task */
rkvdec2_link_try_dequeue(mpp);
/* process reset */
if (atomic_read(&mpp->reset_request)) {
rkvdec2_link_reset(mpp);
/* resend running task after reset */
if (!list_empty(&queue->running_list))
rkvdec2_link_resend(mpp);
}
again:
/* get pending task to process */
mutex_lock(&queue->pending_lock);
task = list_first_entry_or_null(&queue->pending_list, struct mpp_task,
queue_link);
mutex_unlock(&queue->pending_lock);
if (!task)
goto done;
/* check abort task */
if (atomic_read(&task->abort_request)) {
mutex_lock(&queue->pending_lock);
list_del_init(&task->queue_link);
set_bit(TASK_STATE_ABORT_READY, &task->state);
set_bit(TASK_STATE_PROC_DONE, &task->state);
mutex_unlock(&queue->pending_lock);
wake_up(&task->wait);
kref_put(&task->ref, rkvdec2_link_free_task);
goto again;
}
/* queue task to hw */
if (!mpp_task_queue(mpp, task))
goto again;
done:
/* if no task in pending and running list, power off device */
mutex_lock(&queue->pending_lock);
all_done = list_empty(&queue->pending_list) && list_empty(&queue->running_list);
mutex_unlock(&queue->pending_lock);
if (all_done)
rkvdec2_link_power_off(mpp);
mpp_session_cleanup_detach(queue, work_s);
mpp_debug_leave();
}
void rkvdec2_link_session_deinit(struct mpp_session *session)
{
struct mpp_dev *mpp = session->mpp;
mpp_debug_enter();
rkvdec2_free_session(session);
if (session->dma) {
mpp_dbg_session("session %d destroy dma\n", session->index);
mpp_iommu_down_write(mpp->iommu_info);
mpp_dma_session_destroy(session->dma);
mpp_iommu_up_write(mpp->iommu_info);
session->dma = NULL;
}
if (session->srv) {
struct mpp_service *srv = session->srv;
mutex_lock(&srv->session_lock);
list_del_init(&session->service_link);
mutex_unlock(&srv->session_lock);
}
list_del_init(&session->session_link);
mpp_dbg_session("session %d release\n", session->index);
mpp_debug_leave();
}
#define RKVDEC2_1080P_PIXELS (1920*1080)
#define RKVDEC2_4K_PIXELS (4096*2304)
#define RKVDEC2_8K_PIXELS (7680*4320)
#define RKVDEC2_CCU_TIMEOUT_20MS (0xefffff)
#define RKVDEC2_CCU_TIMEOUT_50MS (0x2cfffff)
#define RKVDEC2_CCU_TIMEOUT_100MS (0x4ffffff)
static u32 rkvdec2_ccu_get_timeout_threshold(struct rkvdec2_task *task)
{
u32 pixels = task->pixels;
if (pixels < RKVDEC2_1080P_PIXELS)
return RKVDEC2_CCU_TIMEOUT_20MS;
else if (pixels < RKVDEC2_4K_PIXELS)
return RKVDEC2_CCU_TIMEOUT_50MS;
else
return RKVDEC2_CCU_TIMEOUT_100MS;
}
int rkvdec2_attach_ccu(struct device *dev, struct rkvdec2_dev *dec)
{
int ret;
struct device_node *np;
struct platform_device *pdev;
struct rkvdec2_ccu *ccu;
mpp_debug_enter();
np = of_parse_phandle(dev->of_node, "rockchip,ccu", 0);
if (!np || !of_device_is_available(np))
return -ENODEV;
pdev = of_find_device_by_node(np);
of_node_put(np);
if (!pdev)
return -ENODEV;
ccu = platform_get_drvdata(pdev);
if (!ccu)
return -ENOMEM;
ret = of_property_read_u32(dev->of_node, "rockchip,core-mask", &dec->core_mask);
if (ret)
return ret;
dev_info(dev, "core_mask=%08x\n", dec->core_mask);
/* if not the main-core, then attach the main core domain to current */
if (dec->mpp.core_id != 0) {
struct mpp_taskqueue *queue;
struct mpp_iommu_info *ccu_info, *cur_info;
queue = dec->mpp.queue;
/* set the ccu-domain for current device */
ccu_info = queue->cores[0]->iommu_info;
cur_info = dec->mpp.iommu_info;
if (cur_info)
cur_info->domain = ccu_info->domain;
mpp_iommu_attach(cur_info);
}
dec->ccu = ccu;
dev_info(dev, "attach ccu as core %d\n", dec->mpp.core_id);
mpp_debug_enter();
return 0;
}
static void rkvdec2_ccu_timeout_work(struct work_struct *work_s)
{
struct mpp_dev *mpp;
struct mpp_task *task = container_of(to_delayed_work(work_s),
struct mpp_task, timeout_work);
if (test_and_set_bit(TASK_STATE_HANDLE, &task->state)) {
mpp_err("task %d state %lx has been handled\n",
task->task_id, task->state);
return;
}
if (!task->session) {
mpp_err("task %d session is null.\n", task->task_id);
return;
}
mpp = mpp_get_task_used_device(task, task->session);
mpp_err("%s, task %d state %#lx timeout\n", dev_name(mpp->dev),
task->task_index, task->state);
set_bit(TASK_STATE_TIMEOUT, &task->state);
atomic_inc(&mpp->reset_request);
atomic_inc(&mpp->queue->reset_request);
kthread_queue_work(&mpp->queue->worker, &mpp->work);
}
int rkvdec2_ccu_link_init(struct platform_device *pdev, struct rkvdec2_dev *dec)
{
struct resource *res;
struct rkvdec_link_dev *link_dec;
struct device *dev = &pdev->dev;
mpp_debug_enter();
/* link structure */
link_dec = devm_kzalloc(dev, sizeof(*link_dec), GFP_KERNEL);
if (!link_dec)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "link");
if (!res)
return -ENOMEM;
link_dec->info = dec->mpp.var->hw_info->link_info;
link_dec->reg_base = devm_ioremap(dev, res->start, resource_size(res));
if (!link_dec->reg_base) {
dev_err(dev, "ioremap failed for resource %pR\n", res);
return -ENOMEM;
}
dec->link_dec = link_dec;
mpp_debug_leave();
return 0;
}
static int rkvdec2_ccu_power_on(struct mpp_taskqueue *queue,
struct rkvdec2_ccu *ccu)
{
if (!atomic_xchg(&ccu->power_enabled, 1)) {
u32 i;
struct mpp_dev *mpp;
/* ccu pd and clk on */
pm_runtime_get_sync(ccu->dev);
pm_stay_awake(ccu->dev);
mpp_clk_safe_enable(ccu->aclk_info.clk);
/* core pd and clk on */
for (i = 0; i < queue->core_count; i++) {
struct rkvdec2_dev *dec;
mpp = queue->cores[i];
dec = to_rkvdec2_dev(mpp);
pm_runtime_get_sync(mpp->dev);
pm_stay_awake(mpp->dev);
if (mpp->hw_ops->clk_on)
mpp->hw_ops->clk_on(mpp);
mpp_clk_set_rate(&dec->aclk_info, CLK_MODE_NORMAL);
mpp_clk_set_rate(&dec->cabac_clk_info, CLK_MODE_NORMAL);
mpp_clk_set_rate(&dec->hevc_cabac_clk_info, CLK_MODE_NORMAL);
mpp_devfreq_set_core_rate(mpp, CLK_MODE_NORMAL);
mpp_iommu_dev_activate(mpp->iommu_info, mpp);
}
mpp_debug(DEBUG_CCU, "power on\n");
}
return 0;
}
static int rkvdec2_ccu_power_off(struct mpp_taskqueue *queue,
struct rkvdec2_ccu *ccu)
{
if (atomic_xchg(&ccu->power_enabled, 0)) {
u32 i;
struct mpp_dev *mpp;
/* ccu pd and clk off */
mpp_clk_safe_disable(ccu->aclk_info.clk);
pm_relax(ccu->dev);
pm_runtime_mark_last_busy(ccu->dev);
pm_runtime_put_autosuspend(ccu->dev);
/* core pd and clk off */
for (i = 0; i < queue->core_count; i++) {
mpp = queue->cores[i];
if (mpp->hw_ops->clk_off)
mpp->hw_ops->clk_off(mpp);
pm_relax(mpp->dev);
pm_runtime_mark_last_busy(mpp->dev);
pm_runtime_put_autosuspend(mpp->dev);
mpp_iommu_dev_deactivate(mpp->iommu_info, mpp);
}
mpp_debug(DEBUG_CCU, "power off\n");
}
return 0;
}
static int rkvdec2_soft_ccu_dequeue(struct mpp_taskqueue *queue)
{
struct mpp_task *mpp_task = NULL, *n;
mpp_debug_enter();
list_for_each_entry_safe(mpp_task, n,
&queue->running_list,
queue_link) {
struct mpp_dev *mpp = mpp_get_task_used_device(mpp_task, mpp_task->session);
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
u32 irq_status = mpp->irq_status;
u32 timeout_flag = test_bit(TASK_STATE_TIMEOUT, &mpp_task->state);
u32 abort_flag = test_bit(TASK_STATE_ABORT, &mpp_task->state);
u32 timing_en = mpp->srv->timing_en;
if (irq_status || timeout_flag || abort_flag) {
struct rkvdec2_task *task = to_rkvdec2_task(mpp_task);
if (timing_en) {
mpp_task->on_irq = ktime_get();
set_bit(TASK_TIMING_IRQ, &mpp_task->state);
mpp_task->on_cancel_timeout = mpp_task->on_irq;
set_bit(TASK_TIMING_TO_CANCEL, &mpp_task->state);
mpp_task->on_isr = mpp_task->on_irq;
set_bit(TASK_TIMING_ISR, &mpp_task->state);
}
set_bit(TASK_STATE_HANDLE, &mpp_task->state);
cancel_delayed_work(&mpp_task->timeout_work);
mpp_task->hw_cycles = mpp_read(mpp, RKVDEC_PERF_WORKING_CNT);
mpp_time_diff_with_hw_time(mpp_task, dec->cycle_clk->real_rate_hz);
task->irq_status = irq_status;
mpp_debug(DEBUG_IRQ_CHECK, "irq_status=%08x, timeout=%u, abort=%u\n",
irq_status, timeout_flag, abort_flag);
if (irq_status && mpp->dev_ops->finish)
mpp->dev_ops->finish(mpp, mpp_task);
else
task->reg[RKVDEC_REG_INT_EN_INDEX] = RKVDEC_TIMEOUT_STA;
set_bit(TASK_STATE_FINISH, &mpp_task->state);
set_bit(TASK_STATE_DONE, &mpp_task->state);
set_bit(mpp->core_id, &queue->core_idle);
mpp_dbg_core("set core %d idle %lx\n", mpp->core_id, queue->core_idle);
/* Wake up the GET thread */
wake_up(&mpp_task->wait);
/* free task */
list_del_init(&mpp_task->queue_link);
kref_put(&mpp_task->ref, mpp_free_task);
} else {
/* NOTE: break when meet not finish */
break;
}
}
mpp_debug_leave();
return 0;
}
static int rkvdec2_soft_ccu_reset(struct mpp_taskqueue *queue,
struct rkvdec2_ccu *ccu)
{
int i;
for (i = queue->core_count - 1; i >= 0; i--) {
u32 val;
struct mpp_dev *mpp = queue->cores[i];
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
if (mpp->disable)
continue;
dev_info(mpp->dev, "resetting...\n");
disable_hardirq(mpp->irq);
/* foce idle, disconnect core and ccu */
writel(dec->core_mask, ccu->reg_base + RKVDEC_CCU_CORE_IDLE_BASE);
/* soft reset */
mpp_write(mpp, RKVDEC_REG_IMPORTANT_BASE, RKVDEC_SOFTREST_EN);
udelay(5);
val = mpp_read(mpp, RKVDEC_REG_INT_EN);
if (!(val & RKVDEC_SOFT_RESET_READY))
mpp_err("soft reset fail, int %08x\n", val);
mpp_write(mpp, RKVDEC_REG_INT_EN, 0);
/* check bus idle */
val = mpp_read(mpp, RKVDEC_REG_DEBUG_INT_BASE);
if (!(val & RKVDEC_BIT_BUS_IDLE))
mpp_err("bus busy\n");
if (IS_REACHABLE(CONFIG_ROCKCHIP_SIP)) {
/* sip reset */
rockchip_dmcfreq_lock();
sip_smc_vpu_reset(i, 0, 0);
rockchip_dmcfreq_unlock();
} else {
rkvdec2_reset(mpp);
}
/* clear error mask */
writel(dec->core_mask & RKVDEC_CCU_CORE_RW_MASK,
ccu->reg_base + RKVDEC_CCU_CORE_ERR_BASE);
/* connect core and ccu */
writel(dec->core_mask & RKVDEC_CCU_CORE_RW_MASK,
ccu->reg_base + RKVDEC_CCU_CORE_IDLE_BASE);
mpp_iommu_refresh(mpp->iommu_info, mpp->dev);
atomic_set(&mpp->reset_request, 0);
enable_irq(mpp->irq);
dev_info(mpp->dev, "reset done\n");
}
atomic_set(&queue->reset_request, 0);
return 0;
}
void *rkvdec2_ccu_alloc_task(struct mpp_session *session,
struct mpp_task_msgs *msgs)
{
int ret;
struct rkvdec2_task *task;
task = kzalloc(sizeof(*task), GFP_KERNEL);
if (!task)
return NULL;
ret = rkvdec2_task_init(session->mpp, session, task, msgs);
if (ret) {
kfree(task);
return NULL;
}
return &task->mpp_task;
}
static void rkvdec2_ccu_check_pagefault_info(struct mpp_dev *mpp)
{
u32 i = 0;
for (i = 0; i < mpp->queue->core_count; i++) {
struct mpp_dev *core = mpp->queue->cores[i];
struct rkvdec2_dev *dec = to_rkvdec2_dev(core);
void __iomem *mmu_base = dec->mmu_base;
u32 mmu0_st;
u32 mmu1_st;
u32 mmu0_pta;
u32 mmu1_pta;
if (!mmu_base)
return;
#define FAULT_STATUS 0x7e2
rkvdec2_ccu_power_on(mpp->queue, dec->ccu);
mmu0_st = readl(mmu_base + 0x4);
mmu1_st = readl(mmu_base + 0x44);
mmu0_pta = readl(mmu_base + 0xc);
mmu1_pta = readl(mmu_base + 0x4c);
dec->mmu0_st = mmu0_st;
dec->mmu1_st = mmu1_st;
dec->mmu0_pta = mmu0_pta;
dec->mmu1_pta = mmu1_pta;
pr_err("core %d mmu0 %08x %08x mm1 %08x %08x\n",
core->core_id, mmu0_st, mmu0_pta, mmu1_st, mmu1_pta);
if ((mmu0_st & FAULT_STATUS) || (mmu1_st & FAULT_STATUS) ||
mmu0_pta || mmu1_pta) {
dec->fault_iova = readl(dec->link_dec->reg_base + 0x4);
dec->mmu_fault = 1;
pr_err("core %d fault iova %08x\n", core->core_id, dec->fault_iova);
rockchip_iommu_mask_irq(core->dev);
} else {
dec->mmu_fault = 0;
dec->fault_iova = 0;
}
}
}
int rkvdec2_ccu_iommu_fault_handle(struct iommu_domain *iommu,
struct device *iommu_dev,
unsigned long iova, int status, void *arg)
{
struct mpp_dev *mpp = (struct mpp_dev *)arg;
mpp_debug_enter();
rkvdec2_ccu_check_pagefault_info(mpp);
mpp->queue->iommu_fault = 1;
atomic_inc(&mpp->queue->reset_request);
kthread_queue_work(&mpp->queue->worker, &mpp->work);
mpp_debug_leave();
return 0;
}
irqreturn_t rkvdec2_soft_ccu_irq(int irq, void *param)
{
struct mpp_dev *mpp = param;
u32 irq_status = mpp_read_relaxed(mpp, RKVDEC_REG_INT_EN);
if (irq_status & RKVDEC_IRQ_RAW) {
mpp_debug(DEBUG_IRQ_STATUS, "irq_status=%08x\n", irq_status);
if (irq_status & RKVDEC_INT_ERROR_MASK) {
atomic_inc(&mpp->reset_request);
atomic_inc(&mpp->queue->reset_request);
}
mpp_write(mpp, RKVDEC_REG_INT_EN, 0);
mpp->irq_status = irq_status;
kthread_queue_work(&mpp->queue->worker, &mpp->work);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static inline int rkvdec2_set_core_info(u32 *reg, int idx)
{
u32 val = (idx << 16) & RKVDEC_REG_FILM_IDX_MASK;
reg[RKVDEC_REG_CORE_CTRL_INDEX] &= ~RKVDEC_REG_FILM_IDX_MASK;
reg[RKVDEC_REG_CORE_CTRL_INDEX] |= val;
return 0;
}
static int rkvdec2_soft_ccu_enqueue(struct mpp_dev *mpp, struct mpp_task *mpp_task)
{
u32 i, reg_en, reg;
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
struct rkvdec2_task *task = to_rkvdec2_task(mpp_task);
u32 timing_en = mpp->srv->timing_en;
mpp_debug_enter();
/* set reg for link */
reg = RKVDEC_LINK_BIT_CORE_WORK_MODE | RKVDEC_LINK_BIT_CCU_WORK_MODE;
writel_relaxed(reg, dec->link_dec->reg_base + RKVDEC_LINK_IRQ_BASE);
/* set reg for ccu */
writel_relaxed(RKVDEC_CCU_BIT_WORK_EN, dec->ccu->reg_base + RKVDEC_CCU_WORK_BASE);
writel_relaxed(RKVDEC_CCU_BIT_WORK_MODE, dec->ccu->reg_base + RKVDEC_CCU_WORK_MODE_BASE);
writel_relaxed(dec->core_mask, dec->ccu->reg_base + RKVDEC_CCU_CORE_WORK_BASE);
/* set cache size */
reg = RKVDEC_CACHE_PERMIT_CACHEABLE_ACCESS |
RKVDEC_CACHE_PERMIT_READ_ALLOCATE;
if (!mpp_debug_unlikely(DEBUG_CACHE_32B))
reg |= RKVDEC_CACHE_LINE_SIZE_64_BYTES;
mpp_write_relaxed(mpp, RKVDEC_REG_CACHE0_SIZE_BASE, reg);
mpp_write_relaxed(mpp, RKVDEC_REG_CACHE1_SIZE_BASE, reg);
mpp_write_relaxed(mpp, RKVDEC_REG_CACHE2_SIZE_BASE, reg);
/* clear cache */
mpp_write_relaxed(mpp, RKVDEC_REG_CLR_CACHE0_BASE, 1);
mpp_write_relaxed(mpp, RKVDEC_REG_CLR_CACHE1_BASE, 1);
mpp_write_relaxed(mpp, RKVDEC_REG_CLR_CACHE2_BASE, 1);
mpp_iommu_flush_tlb(mpp->iommu_info);
/* disable multicore pu/colmv offset req timeout reset */
task->reg[RKVDEC_REG_EN_MODE_SET] |= BIT(1);
task->reg[RKVDEC_REG_TIMEOUT_THRESHOLD] = rkvdec2_ccu_get_timeout_threshold(task);
/* set registers for hardware */
reg_en = mpp_task->hw_info->reg_en;
for (i = 0; i < task->w_req_cnt; i++) {
int s, e;
struct mpp_request *req = &task->w_reqs[i];
s = req->offset / sizeof(u32);
e = s + req->size / sizeof(u32);
mpp_write_req(mpp, task->reg, s, e, reg_en);
}
/* init current task */
mpp->cur_task = mpp_task;
mpp_task_run_begin(mpp_task, timing_en, MPP_WORK_TIMEOUT_DELAY);
mpp->irq_status = 0;
writel_relaxed(dec->core_mask, dec->ccu->reg_base + RKVDEC_CCU_CORE_STA_BASE);
/* Flush the register before the start the device */
wmb();
mpp_write(mpp, RKVDEC_REG_START_EN_BASE, task->reg[reg_en] | RKVDEC_START_EN);
mpp_task_run_end(mpp_task, timing_en);
mpp_debug_leave();
return 0;
}
static struct mpp_dev *rkvdec2_get_idle_core(struct mpp_taskqueue *queue,
struct mpp_task *mpp_task)
{
u32 i = 0;
struct rkvdec2_dev *dec = NULL;
for (i = 0; i < queue->core_count; i++) {
struct mpp_dev *mpp = queue->cores[i];
struct rkvdec2_dev *core = to_rkvdec2_dev(mpp);
if (mpp->disable)
continue;
if (test_bit(i, &queue->core_idle)) {
if (!dec) {
dec = core;
continue;
}
/* set the less work core */
if (core->task_index < dec->task_index)
dec = core;
}
}
/* if get core */
if (dec) {
mpp_task->mpp = &dec->mpp;
mpp_task->core_id = dec->mpp.core_id;
clear_bit(mpp_task->core_id, &queue->core_idle);
dec->task_index++;
atomic_inc(&dec->mpp.task_count);
mpp_dbg_core("clear core %d idle\n", mpp_task->core_id);
return mpp_task->mpp;
}
return NULL;
}
static bool rkvdec2_core_working(struct mpp_taskqueue *queue)
{
struct mpp_dev *mpp;
bool flag = false;
u32 i = 0;
for (i = 0; i < queue->core_count; i++) {
mpp = queue->cores[i];
if (mpp->disable)
continue;
if (!test_bit(i, &queue->core_idle)) {
flag = true;
break;
}
}
return flag;
}
void rkvdec2_soft_ccu_worker(struct kthread_work *work_s)
{
struct mpp_task *mpp_task;
struct mpp_dev *mpp = container_of(work_s, struct mpp_dev, work);
struct mpp_taskqueue *queue = mpp->queue;
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
u32 timing_en = mpp->srv->timing_en;
mpp_debug_enter();
/* 1. process all finished task in running list */
rkvdec2_soft_ccu_dequeue(queue);
/* 2. process reset request */
if (atomic_read(&queue->reset_request)) {
if (!rkvdec2_core_working(queue)) {
rkvdec2_ccu_power_on(queue, dec->ccu);
rkvdec2_soft_ccu_reset(queue, dec->ccu);
}
}
/* 3. process pending task */
while (1) {
if (atomic_read(&queue->reset_request))
break;
/* get one task form pending list */
mutex_lock(&queue->pending_lock);
mpp_task = list_first_entry_or_null(&queue->pending_list,
struct mpp_task, queue_link);
mutex_unlock(&queue->pending_lock);
if (!mpp_task)
break;
if (test_bit(TASK_STATE_ABORT, &mpp_task->state)) {
mutex_lock(&queue->pending_lock);
list_del_init(&mpp_task->queue_link);
set_bit(TASK_STATE_ABORT_READY, &mpp_task->state);
set_bit(TASK_STATE_PROC_DONE, &mpp_task->state);
mutex_unlock(&queue->pending_lock);
wake_up(&mpp_task->wait);
kref_put(&mpp_task->ref, rkvdec2_link_free_task);
continue;
}
/* find one core is idle */
mpp = rkvdec2_get_idle_core(queue, mpp_task);
if (!mpp)
break;
if (timing_en) {
mpp_task->on_run = ktime_get();
set_bit(TASK_TIMING_RUN, &mpp_task->state);
}
/* set session index */
rkvdec2_set_core_info(mpp_task->reg, mpp_task->session->index);
/* set rcb buffer */
mpp_set_rcbbuf(mpp, mpp_task->session, mpp_task);
INIT_DELAYED_WORK(&mpp_task->timeout_work, rkvdec2_ccu_timeout_work);
rkvdec2_ccu_power_on(queue, dec->ccu);
rkvdec2_soft_ccu_enqueue(mpp, mpp_task);
/* pending to running */
mpp_taskqueue_pending_to_run(queue, mpp_task);
set_bit(TASK_STATE_RUNNING, &mpp_task->state);
}
/* 4. poweroff when running and pending list are empty */
if (list_empty(&queue->running_list) &&
list_empty(&queue->pending_list))
rkvdec2_ccu_power_off(queue, dec->ccu);
/* 5. check session detach out of queue */
mpp_session_cleanup_detach(queue, work_s);
mpp_debug_leave();
}
int rkvdec2_ccu_alloc_table(struct rkvdec2_dev *dec,
struct rkvdec_link_dev *link_dec)
{
int ret, i;
struct mpp_dma_buffer *table;
struct mpp_dev *mpp = &dec->mpp;
mpp_debug_enter();
/* alloc table pointer array */
table = devm_kmalloc_array(mpp->dev, mpp->task_capacity,
sizeof(*table), GFP_KERNEL | __GFP_ZERO);
if (!table)
return -ENOMEM;
/* alloc table buffer */
ret = rkvdec2_link_alloc_table(mpp, link_dec);
if (ret)
return ret;
/* init table array */
dec->ccu->table_array = table;
for (i = 0; i < mpp->task_capacity; i++) {
table[i].iova = link_dec->table->iova + i * link_dec->link_node_size;
table[i].vaddr = link_dec->table->vaddr + i * link_dec->link_node_size;
table[i].size = link_dec->link_node_size;
INIT_LIST_HEAD(&table[i].link);
list_add_tail(&table[i].link, &dec->ccu->unused_list);
}
return 0;
}
static void rkvdec2_dump_ccu(struct rkvdec2_ccu *ccu)
{
u32 i;
for (i = 0; i < 10; i++)
mpp_err("ccu:reg[%d]=%08x\n", i, readl(ccu->reg_base + 4 * i));
for (i = 16; i < 22; i++)
mpp_err("ccu:reg[%d]=%08x\n", i, readl(ccu->reg_base + 4 * i));
}
static void rkvdec2_dump_link(struct rkvdec2_dev *dec)
{
u32 i;
for (i = 0; i < 10; i++)
mpp_err("link:reg[%d]=%08x\n", i, readl(dec->link_dec->reg_base + 4 * i));
}
static void rkvdec2_dump_core(struct mpp_dev *mpp, struct rkvdec2_task *task)
{
u32 j;
if (task) {
for (j = 0; j < 273; j++)
mpp_err("reg[%d]=%08x, %08x\n", j, mpp_read(mpp, j*4), task->reg[j]);
} else {
for (j = 0; j < 273; j++)
mpp_err("reg[%d]=%08x\n", j, mpp_read(mpp, j*4));
}
}
irqreturn_t rkvdec2_hard_ccu_irq(int irq, void *param)
{
u32 irq_status;
struct mpp_dev *mpp = param;
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
irq_status = readl(dec->link_dec->reg_base + RKVDEC_LINK_IRQ_BASE);
dec->ccu->ccu_core_work_mode = readl(dec->ccu->reg_base + RKVDEC_CCU_CORE_WORK_BASE);
if (irq_status & RKVDEC_LINK_BIT_IRQ_RAW) {
dec->link_dec->irq_status = irq_status;
mpp->irq_status = mpp_read(mpp, RKVDEC_REG_INT_EN);
mpp_debug(DEBUG_IRQ_STATUS, "core %d link_irq=%08x, core_irq=%08x\n",
mpp->core_id, irq_status, mpp->irq_status);
writel(irq_status & 0xfffff0ff,
dec->link_dec->reg_base + RKVDEC_LINK_IRQ_BASE);
kthread_queue_work(&mpp->queue->worker, &mpp->work);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int rkvdec2_hard_ccu_finish(struct rkvdec_link_info *hw, struct rkvdec2_task *task)
{
u32 i, off, s, n;
struct rkvdec_link_part *part = hw->part_r;
u32 *tb_reg = (u32 *)task->table->vaddr;
mpp_debug_enter();
for (i = 0; i < hw->part_r_num; i++) {
off = part[i].tb_reg_off;
s = part[i].reg_start;
n = part[i].reg_num;
memcpy(&task->reg[s], &tb_reg[off], n * sizeof(u32));
}
/* revert hack for irq status */
task->reg[RKVDEC_REG_INT_EN_INDEX] = task->irq_status;
mpp_debug_leave();
return 0;
}
static int rkvdec2_hard_ccu_dequeue(struct mpp_taskqueue *queue,
struct rkvdec2_ccu *ccu,
struct rkvdec_link_info *hw)
{
struct mpp_task *mpp_task = NULL, *n;
u32 dump_reg = 0;
u32 dequeue_none = 0;
mpp_debug_enter();
list_for_each_entry_safe(mpp_task, n, &queue->running_list, queue_link) {
u32 timeout_flag = test_bit(TASK_STATE_TIMEOUT, &mpp_task->state);
u32 abort_flag = test_bit(TASK_STATE_ABORT, &mpp_task->state);
struct rkvdec2_task *task = to_rkvdec2_task(mpp_task);
u32 *tb_reg = (u32 *)task->table->vaddr;
u32 irq_status = tb_reg[hw->tb_reg_int];
u32 ccu_decoded_num, ccu_total_dec_num;
ccu_decoded_num = readl(ccu->reg_base + RKVDEC_CCU_DEC_NUM_BASE);
ccu_total_dec_num = readl(ccu->reg_base + RKVDEC_CCU_TOTAL_NUM_BASE);
mpp_debug(DEBUG_IRQ_CHECK,
"session %d task %d w:h[%d %d] err %d irq_status %08x timeout=%u abort=%u iova %08x next %08x ccu[%d %d]\n",
mpp_task->session->index, mpp_task->task_index, task->width,
task->height, !!(irq_status & RKVDEC_INT_ERROR_MASK), irq_status,
timeout_flag, abort_flag, (u32)task->table->iova,
((u32 *)task->table->vaddr)[hw->tb_reg_next],
ccu_decoded_num, ccu_total_dec_num);
if (irq_status || timeout_flag || abort_flag) {
struct rkvdec2_dev *dec = to_rkvdec2_dev(queue->cores[0]);
set_bit(TASK_STATE_HANDLE, &mpp_task->state);
cancel_delayed_work(&mpp_task->timeout_work);
mpp_task->hw_cycles = tb_reg[hw->tb_reg_cycle];
mpp_time_diff_with_hw_time(mpp_task, dec->cycle_clk->real_rate_hz);
task->irq_status = irq_status;
if (irq_status)
rkvdec2_hard_ccu_finish(hw, task);
set_bit(TASK_STATE_FINISH, &mpp_task->state);
set_bit(TASK_STATE_DONE, &mpp_task->state);
if (timeout_flag && !dump_reg && mpp_debug_unlikely(DEBUG_DUMP_ERR_REG)) {
u32 i;
mpp_err("###### ccu #####\n");
rkvdec2_dump_ccu(ccu);
for (i = 0; i < queue->core_count; i++) {
mpp_err("###### core %d #####\n", i);
rkvdec2_dump_link(to_rkvdec2_dev(queue->cores[i]));
rkvdec2_dump_core(queue->cores[i], task);
}
dump_reg = 1;
}
list_move_tail(&task->table->link, &ccu->unused_list);
/* free task */
list_del_init(&mpp_task->queue_link);
/* Wake up the GET thread */
wake_up(&mpp_task->wait);
if ((irq_status & RKVDEC_INT_ERROR_MASK) || timeout_flag) {
pr_err("session %d task %d irq_status %08x timeout=%u abort=%u\n",
mpp_task->session->index, mpp_task->task_index,
irq_status, timeout_flag, abort_flag);
atomic_inc(&queue->reset_request);
}
kref_put(&mpp_task->ref, mpp_free_task);
} else {
dequeue_none++;
/*
* there are only 2 cores,
* if dequeue not finish task more than 2,
* means the others task still not get run by hw, can break early.
*/
if (dequeue_none > 2)
break;
}
}
mpp_debug_leave();
return 0;
}
static int rkvdec2_hard_ccu_reset(struct mpp_taskqueue *queue, struct rkvdec2_ccu *ccu)
{
int i = 0;
mpp_debug_enter();
/* reset and active core */
for (i = 0; i < queue->core_count; i++) {
u32 val = 0;
struct mpp_dev *mpp = queue->cores[i];
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
if (mpp->disable)
continue;
dev_info(mpp->dev, "resetting...\n");
disable_hardirq(mpp->irq);
/* force idle */
writel(dec->core_mask, ccu->reg_base + RKVDEC_CCU_CORE_IDLE_BASE);
writel(0, ccu->reg_base + RKVDEC_CCU_WORK_BASE);
{
/* soft reset */
u32 val;
mpp_write(mpp, RKVDEC_REG_IMPORTANT_BASE, RKVDEC_SOFTREST_EN);
udelay(5);
val = mpp_read(mpp, RKVDEC_REG_INT_EN);
if (!(val & RKVDEC_SOFT_RESET_READY))
mpp_err("soft reset fail, int %08x\n", val);
// /* cru reset */
// dev_info(mpp->dev, "cru reset\n");
// rkvdec2_reset(mpp);
}
#if IS_ENABLED(CONFIG_ROCKCHIP_SIP)
rockchip_dmcfreq_lock();
sip_smc_vpu_reset(i, 0, 0);
rockchip_dmcfreq_unlock();
#else
rkvdec2_reset(mpp);
#endif
mpp_iommu_refresh(mpp->iommu_info, mpp->dev);
enable_irq(mpp->irq);
atomic_set(&mpp->reset_request, 0);
val = mpp_read_relaxed(mpp, 272*4);
dev_info(mpp->dev, "reset done, idle %d\n", (val & 1));
}
/* reset ccu */
mpp_safe_reset(ccu->rst_a);
udelay(5);
mpp_safe_unreset(ccu->rst_a);
mpp_debug_leave();
return 0;
}
static struct mpp_task *
rkvdec2_hard_ccu_prepare(struct mpp_task *mpp_task,
struct rkvdec2_ccu *ccu, struct rkvdec_link_info *hw)
{
u32 i, off, s, n;
u32 *tb_reg;
struct mpp_dma_buffer *table = NULL;
struct rkvdec_link_part *part;
struct rkvdec2_task *task = to_rkvdec2_task(mpp_task);
mpp_debug_enter();
if (test_bit(TASK_STATE_PREPARE, &mpp_task->state))
return mpp_task;
/* ensure that cur table iova points to the next link table*/
{
struct mpp_dma_buffer *table0 = NULL, *table1 = NULL, *n;
list_for_each_entry_safe(table, n, &ccu->unused_list, link) {
if (!table0) {
table0 = table;
continue;
}
if (!table1)
table1 = table;
break;
}
if (!table0 || !table1)
return NULL;
((u32 *)table0->vaddr)[hw->tb_reg_next] = table1->iova;
table = table0;
}
/* set session idx */
rkvdec2_set_core_info(task->reg, mpp_task->session->index);
tb_reg = (u32 *)table->vaddr;
part = hw->part_w;
/* disable multicore pu/colmv offset req timeout reset */
task->reg[RKVDEC_REG_EN_MODE_SET] |= BIT(1);
task->reg[RKVDEC_REG_TIMEOUT_THRESHOLD] = rkvdec2_ccu_get_timeout_threshold(task);
for (i = 0; i < hw->part_w_num; i++) {
off = part[i].tb_reg_off;
s = part[i].reg_start;
n = part[i].reg_num;
memcpy(&tb_reg[off], &task->reg[s], n * sizeof(u32));
}
/* memset read registers */
part = hw->part_r;
for (i = 0; i < hw->part_r_num; i++) {
off = part[i].tb_reg_off;
n = part[i].reg_num;
memset(&tb_reg[off], 0, n * sizeof(u32));
}
list_move_tail(&table->link, &ccu->used_list);
task->table = table;
set_bit(TASK_STATE_PREPARE, &mpp_task->state);
mpp_dbg_ccu("session %d task %d iova %08x next %08x\n",
mpp_task->session->index, mpp_task->task_index, (u32)task->table->iova,
((u32 *)task->table->vaddr)[hw->tb_reg_next]);
mpp_debug_leave();
return mpp_task;
}
static int rkvdec2_ccu_link_fix_rcb_regs(struct rkvdec2_dev *dec)
{
int ret = 0;
u32 i, val;
u32 reg, reg_idx, rcb_size, rcb_offset;
if (!dec->rcb_iova && !dec->rcb_info_count)
goto done;
/* check whether fixed */
val = readl(dec->link_dec->reg_base + RKVDEC_LINK_IRQ_BASE);
if (val & RKVDEC_CCU_BIT_FIX_RCB)
goto done;
/* set registers */
rcb_offset = 0;
for (i = 0; i < dec->rcb_info_count; i += 2) {
reg_idx = dec->rcb_infos[i];
rcb_size = dec->rcb_infos[i + 1];
mpp_debug(DEBUG_SRAM_INFO,
"rcb: reg %u size %u offset %u sram_size %u rcb_size %u\n",
reg_idx, rcb_size, rcb_offset, dec->sram_size, dec->rcb_size);
if ((rcb_offset + rcb_size) > dec->rcb_size) {
mpp_err("rcb: reg[%u] set failed.\n", reg_idx);
ret = -ENOMEM;
goto done;
}
reg = dec->rcb_iova + rcb_offset;
mpp_write(&dec->mpp, reg_idx * sizeof(u32), reg);
rcb_offset += rcb_size;
}
val |= RKVDEC_CCU_BIT_FIX_RCB;
writel(val, dec->link_dec->reg_base + RKVDEC_LINK_IRQ_BASE);
done:
return ret;
}
static int rkvdec2_hard_ccu_enqueue(struct rkvdec2_ccu *ccu,
struct mpp_task *mpp_task,
struct mpp_taskqueue *queue,
struct mpp_dev *mpp)
{
u32 ccu_en, work_mode, link_mode;
struct rkvdec2_task *task = to_rkvdec2_task(mpp_task);
u32 timing_en = mpp->srv->timing_en;
mpp_debug_enter();
if (test_bit(TASK_STATE_START, &mpp_task->state))
goto done;
ccu_en = readl(ccu->reg_base + RKVDEC_CCU_WORK_BASE);
mpp_dbg_ccu("ccu_en=%d\n", ccu_en);
if (!ccu_en) {
u32 i;
/* set work mode */
work_mode = 0;
for (i = 0; i < queue->core_count; i++) {
u32 val;
struct mpp_dev *core = queue->cores[i];
struct rkvdec2_dev *dec = to_rkvdec2_dev(core);
if (mpp->disable)
continue;
work_mode |= dec->core_mask;
rkvdec2_ccu_link_fix_rcb_regs(dec);
/* control by ccu */
val = readl(dec->link_dec->reg_base + RKVDEC_LINK_IRQ_BASE);
val |= RKVDEC_LINK_BIT_CCU_WORK_MODE;
writel(val, dec->link_dec->reg_base + RKVDEC_LINK_IRQ_BASE);
}
writel(work_mode, ccu->reg_base + RKVDEC_CCU_CORE_WORK_BASE);
ccu->ccu_core_work_mode = readl(ccu->reg_base + RKVDEC_CCU_CORE_WORK_BASE);
mpp_dbg_ccu("ccu_work_mode=%08x, ccu_work_status=%08x\n",
readl(ccu->reg_base + RKVDEC_CCU_CORE_WORK_BASE),
readl(ccu->reg_base + RKVDEC_CCU_CORE_STA_BASE));
/* set auto gating */
writel(RKVDEC_CCU_BIT_AUTOGATE, ccu->reg_base + RKVDEC_CCU_CTRL_BASE);
/* link start base */
writel(task->table->iova, ccu->reg_base + RKVDEC_CCU_CFG_ADDR_BASE);
/* enable link */
writel(RKVDEC_CCU_BIT_WORK_EN, ccu->reg_base + RKVDEC_CCU_WORK_BASE);
}
/* set link mode */
link_mode = ccu_en ? RKVDEC_CCU_BIT_ADD_MODE : 0;
writel(link_mode | RKVDEC_LINK_ADD_CFG_NUM, ccu->reg_base + RKVDEC_CCU_LINK_MODE_BASE);
/* flush tlb before starting hardware */
mpp_iommu_flush_tlb(mpp->iommu_info);
/* wmb */
wmb();
INIT_DELAYED_WORK(&mpp_task->timeout_work, rkvdec2_ccu_timeout_work);
mpp_task_run_begin(mpp_task, timing_en, MPP_WORK_TIMEOUT_DELAY);
/* configure done */
writel(RKVDEC_CCU_BIT_CFG_DONE, ccu->reg_base + RKVDEC_CCU_CFG_DONE_BASE);
mpp_task_run_end(mpp_task, timing_en);
set_bit(TASK_STATE_RUNNING, &mpp_task->state);
mpp_dbg_ccu("session %d task %d iova=%08x task->state=%lx link_mode=%08x\n",
mpp_task->session->index, mpp_task->task_index,
(u32)task->table->iova, mpp_task->state,
readl(ccu->reg_base + RKVDEC_CCU_LINK_MODE_BASE));
done:
mpp_debug_leave();
return 0;
}
static void rkvdec2_hard_ccu_handle_pagefault_task(struct rkvdec2_dev *dec,
struct mpp_task *mpp_task)
{
struct rkvdec2_task *task = to_rkvdec2_task(mpp_task);
mpp_dbg_ccu("session %d task %d w:h[%d %d] pagefault mmu0[%08x %08x] mmu1[%08x %08x] fault_iova %08x\n",
mpp_task->session->index, mpp_task->task_index,
task->width, task->height, dec->mmu0_st, dec->mmu0_pta,
dec->mmu1_st, dec->mmu1_pta, dec->fault_iova);
set_bit(TASK_STATE_HANDLE, &mpp_task->state);
task->irq_status |= BIT(4);
cancel_delayed_work(&mpp_task->timeout_work);
rkvdec2_hard_ccu_finish(dec->link_dec->info, task);
set_bit(TASK_STATE_FINISH, &mpp_task->state);
set_bit(TASK_STATE_DONE, &mpp_task->state);
list_move_tail(&task->table->link, &dec->ccu->unused_list);
list_del_init(&mpp_task->queue_link);
/* Wake up the GET thread */
wake_up(&mpp_task->wait);
kref_put(&mpp_task->ref, mpp_free_task);
dec->mmu_fault = 0;
dec->fault_iova = 0;
}
static void rkvdec2_hard_ccu_pagefault_proc(struct mpp_taskqueue *queue)
{
struct mpp_task *loop = NULL, *n;
list_for_each_entry_safe(loop, n, &queue->running_list, queue_link) {
struct rkvdec2_task *task = to_rkvdec2_task(loop);
u32 iova = (u32)task->table->iova;
u32 i;
for (i = 0; i < queue->core_count; i++) {
struct mpp_dev *core = queue->cores[i];
struct rkvdec2_dev *dec = to_rkvdec2_dev(core);
if (!dec->mmu_fault || dec->fault_iova != iova)
continue;
rkvdec2_hard_ccu_handle_pagefault_task(dec, loop);
}
}
}
static void rkvdec2_hard_ccu_resend_tasks(struct mpp_dev *mpp, struct mpp_taskqueue *queue)
{
struct rkvdec2_task *task_pre = NULL;
struct mpp_task *loop = NULL, *n;
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
/* re sort running list */
list_for_each_entry_safe(loop, n, &queue->running_list, queue_link) {
struct rkvdec2_task *task = to_rkvdec2_task(loop);
u32 *tb_reg = (u32 *)task->table->vaddr;
u32 irq_status = tb_reg[dec->link_dec->info->tb_reg_int];
if (!irq_status) {
if (task_pre) {
tb_reg = (u32 *)task_pre->table->vaddr;
tb_reg[dec->link_dec->info->tb_reg_next] = task->table->iova;
}
task_pre = task;
}
}
if (task_pre) {
struct mpp_dma_buffer *tbl;
u32 *tb_reg;
tbl = list_first_entry_or_null(&dec->ccu->unused_list,
struct mpp_dma_buffer, link);
WARN_ON(!tbl);
if (tbl) {
tb_reg = (u32 *)task_pre->table->vaddr;
tb_reg[dec->link_dec->info->tb_reg_next] = tbl->iova;
}
}
/* resend */
list_for_each_entry_safe(loop, n, &queue->running_list, queue_link) {
struct rkvdec2_task *task = to_rkvdec2_task(loop);
u32 *tb_reg = (u32 *)task->table->vaddr;
u32 irq_status = tb_reg[dec->link_dec->info->tb_reg_int];
mpp_dbg_ccu("reback: session %d task %d iova %08x next %08x irq_status 0x%08x\n",
loop->session->index, loop->task_index, (u32)task->table->iova,
tb_reg[dec->link_dec->info->tb_reg_next], irq_status);
if (!irq_status) {
cancel_delayed_work(&loop->timeout_work);
clear_bit(TASK_STATE_START, &loop->state);
rkvdec2_hard_ccu_enqueue(dec->ccu, loop, queue, mpp);
}
}
}
void rkvdec2_hard_ccu_worker(struct kthread_work *work_s)
{
struct mpp_task *mpp_task;
struct mpp_dev *mpp = container_of(work_s, struct mpp_dev, work);
struct mpp_taskqueue *queue = mpp->queue;
struct rkvdec2_dev *dec = to_rkvdec2_dev(mpp);
mpp_debug_enter();
/* 1. process all finished task in running list */
rkvdec2_hard_ccu_dequeue(queue, dec->ccu, dec->link_dec->info);
/* 2. process reset request */
if (atomic_read(&queue->reset_request) &&
(list_empty(&queue->running_list) || !dec->ccu->ccu_core_work_mode)) {
/*
* cancel running list timeout work to avoid
* sw timeout causeby reset long time
*/
struct mpp_task *loop = NULL, *n;
list_for_each_entry_safe(loop, n, &queue->running_list, queue_link) {
cancel_delayed_work(&loop->timeout_work);
}
/* reset process */
rkvdec2_hard_ccu_reset(queue, dec->ccu);
atomic_set(&queue->reset_request, 0);
/* if iommu pagefault, find the fault task and drop it */
if (queue->iommu_fault) {
rkvdec2_hard_ccu_pagefault_proc(queue);
queue->iommu_fault = 0;
}
/* relink running task iova in list, and resend them to hw */
if (!list_empty(&queue->running_list))
rkvdec2_hard_ccu_resend_tasks(mpp, queue);
}
/* 3. process pending task */
while (1) {
if (atomic_read(&queue->reset_request))
break;
/* get one task form pending list */
mutex_lock(&queue->pending_lock);
mpp_task = list_first_entry_or_null(&queue->pending_list,
struct mpp_task, queue_link);
mutex_unlock(&queue->pending_lock);
if (!mpp_task)
break;
if (test_bit(TASK_STATE_ABORT, &mpp_task->state)) {
mutex_lock(&queue->pending_lock);
list_del_init(&mpp_task->queue_link);
mutex_unlock(&queue->pending_lock);
kref_put(&mpp_task->ref, mpp_free_task);
continue;
}
mpp_task = rkvdec2_hard_ccu_prepare(mpp_task, dec->ccu, dec->link_dec->info);
if (!mpp_task)
break;
rkvdec2_ccu_power_on(queue, dec->ccu);
rkvdec2_hard_ccu_enqueue(dec->ccu, mpp_task, queue, mpp);
mpp_taskqueue_pending_to_run(queue, mpp_task);
}
/* 4. poweroff when running and pending list are empty */
mutex_lock(&queue->pending_lock);
if (list_empty(&queue->running_list) &&
list_empty(&queue->pending_list))
rkvdec2_ccu_power_off(queue, dec->ccu);
mutex_unlock(&queue->pending_lock);
/* 5. check session detach out of queue */
mpp_session_cleanup_detach(queue, work_s);
mpp_debug_leave();
}