android13/kernel-5.10/drivers/video/rockchip/mpp/mpp_rkvenc.c

1507 lines
37 KiB
C

// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Copyright (c) 2019 Fuzhou Rockchip Electronics Co., Ltd
*
* author:
* Alpha Lin, alpha.lin@rock-chips.com
* Randy Li, randy.li@rock-chips.com
* Ding Wei, leo.ding@rock-chips.com
*
*/
#include <asm/cacheflush.h>
#include <linux/delay.h>
#include <linux/devfreq.h>
#include <linux/devfreq_cooling.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/proc_fs.h>
#include <linux/nospec.h>
#include <linux/workqueue.h>
#include <soc/rockchip/pm_domains.h>
#include <soc/rockchip/rockchip_iommu.h>
#include <soc/rockchip/rockchip_ipa.h>
#include <soc/rockchip/rockchip_opp_select.h>
#include <soc/rockchip/rockchip_system_monitor.h>
#ifdef CONFIG_PM_DEVFREQ
#include "../../../devfreq/governor.h"
#endif
#include "mpp_debug.h"
#include "mpp_iommu.h"
#include "mpp_common.h"
#define RKVENC_DRIVER_NAME "mpp_rkvenc"
#define IOMMU_GET_BUS_ID(x) (((x) >> 6) & 0x1f)
#define IOMMU_PAGE_SIZE SZ_4K
#define RKVENC_SESSION_MAX_BUFFERS 40
/* The maximum registers number of all the version */
#define RKVENC_REG_L1_NUM 780
#define RKVENC_REG_L2_NUM 320
#define RKVENC_REG_START_INDEX 0
#define RKVENC_REG_END_INDEX 131
/* rkvenc register info */
#define RKVENC_REG_NUM 112
#define RKVENC_REG_HW_ID_INDEX 0
#define RKVENC_REG_CLR_CACHE_BASE 0x884
#define RKVENC_ENC_START_INDEX 1
#define RKVENC_ENC_START_BASE 0x004
#define RKVENC_LKT_NUM(x) ((x) & 0xff)
#define RKVENC_CMD(x) (((x) & 0x3) << 8)
#define RKVENC_CLK_GATE_EN BIT(16)
#define RKVENC_CLR_BASE 0x008
#define RKVENC_SAFE_CLR_BIT BIT(0)
#define RKVENC_FORCE_CLR_BIT BIT(1)
#define RKVENC_LKT_ADDR_BASE 0x00c
#define RKVENC_INT_EN_INDEX 4
#define RKVENC_INT_EN_BASE 0x010
#define RKVENC_INT_MSK_BASE 0x014
#define RKVENC_INT_CLR_BASE 0x018
#define RKVENC_INT_STATUS_INDEX 7
#define RKVENC_INT_STATUS_BASE 0x01c
/* bit for int mask clr status */
#define RKVENC_BIT_ONE_FRAME BIT(0)
#define RKVENC_BIT_LINK_TABLE BIT(1)
#define RKVENC_BIT_SAFE_CLEAR BIT(2)
#define RKVENC_BIT_ONE_SLICE BIT(3)
#define RKVENC_BIT_STREAM_OVERFLOW BIT(4)
#define RKVENC_BIT_AXI_WRITE_FIFO_FULL BIT(5)
#define RKVENC_BIT_AXI_WRITE_CHANNEL BIT(6)
#define RKVENC_BIT_AXI_READ_CHANNEL BIT(7)
#define RKVENC_BIT_TIMEOUT BIT(8)
#define RKVENC_INT_ERROR_BITS ((RKVENC_BIT_STREAM_OVERFLOW) |\
(RKVENC_BIT_AXI_WRITE_FIFO_FULL) |\
(RKVENC_BIT_AXI_WRITE_CHANNEL) |\
(RKVENC_BIT_AXI_READ_CHANNEL) |\
(RKVENC_BIT_TIMEOUT))
#define RKVENC_ENC_RSL_INDEX 12
#define RKVENC_ENC_PIC_INDEX 13
#define RKVENC_ENC_PIC_BASE 0x034
#define RKVENC_GET_FORMAT(x) ((x) & 0x1)
#define RKVENC_ENC_PIC_NODE_INT_EN BIT(31)
#define RKVENC_ENC_WDG_BASE 0x038
#define RKVENC_PPLN_ENC_LMT(x) ((x) & 0xf)
#define RKVENC_OSD_CFG_BASE 0x1c0
#define RKVENC_OSD_PLT_TYPE BIT(17)
#define RKVENC_OSD_CLK_SEL_BIT BIT(16)
#define RKVENC_STATUS_BASE(i) (0x210 + (4 * (i)))
#define RKVENC_BSL_STATUS_BASE 0x210
#define RKVENC_BITSTREAM_LENGTH(x) ((x) & 0x7FFFFFF)
#define RKVENC_ENC_STATUS_BASE 0x220
#define RKVENC_ENC_STATUS_ENC(x) (((x) >> 0) & 0x3)
#define RKVENC_LKT_STATUS_BASE 0x224
#define RKVENC_LKT_STATUS_FNUM_ENC(x) (((x) >> 0) & 0xff)
#define RKVENC_LKT_STATUS_FNUM_CFG(x) (((x) >> 8) & 0xff)
#define RKVENC_LKT_STATUS_FNUM_INT(x) (((x) >> 16) & 0xff)
#define RKVENC_OSD_PLT_BASE(i) (0x400 + (4 * (i)))
#define RKVENC_L2_OFFSET (0x10000)
#define RKVENC_L2_ADDR_BASE (0x3f0)
#define RKVENC_L2_WRITE_BASE (0x3f4)
#define RKVENC_L2_READ_BASE (0x3f8)
#define RKVENC_L2_BURST_TYPE BIT(0)
#define RKVENC_GET_WIDTH(x) (((x & 0x1ff) + 1) << 3)
#define RKVENC_GET_HEIGHT(x) ((((x >> 16) & 0x1ff) + 1) << 3)
#define to_rkvenc_task(ctx) \
container_of(ctx, struct rkvenc_task, mpp_task)
#define to_rkvenc_dev(dev) \
container_of(dev, struct rkvenc_dev, mpp)
enum rkvenc_format_type {
RKVENC_FMT_H264E = 0,
RKVENC_FMT_H265E = 1,
RKVENC_FMT_BUTT,
};
enum RKVENC_MODE {
RKVENC_MODE_NONE,
RKVENC_MODE_ONEFRAME,
RKVENC_MODE_LINKTABLE_FIX,
RKVENC_MODE_LINKTABLE_UPDATE,
RKVENC_MODE_BUTT
};
struct rkvenc_task {
struct mpp_task mpp_task;
int link_flags;
int fmt;
enum RKVENC_MODE link_mode;
/* level 1 register setting */
u32 reg_offset;
u32 reg_num;
u32 reg[RKVENC_REG_L1_NUM];
u32 width;
u32 height;
u32 pixels;
/* level 2 register setting */
u32 reg_l2_offset;
u32 reg_l2_num;
u32 reg_l2[RKVENC_REG_L2_NUM];
/* register offset info */
struct reg_offset_info off_inf;
enum MPP_CLOCK_MODE clk_mode;
u32 irq_status;
/* req for current task */
u32 w_req_cnt;
struct mpp_request w_reqs[MPP_MAX_MSG_NUM];
u32 r_req_cnt;
struct mpp_request r_reqs[MPP_MAX_MSG_NUM];
};
struct rkvenc_session_priv {
struct rw_semaphore rw_sem;
/* codec info from user */
struct {
/* show mode */
u32 flag;
/* item data */
u64 val;
} codec_info[ENC_INFO_BUTT];
};
struct rkvenc_dev {
struct mpp_dev mpp;
struct mpp_clk_info aclk_info;
struct mpp_clk_info hclk_info;
struct mpp_clk_info core_clk_info;
u32 default_max_load;
#ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
struct proc_dir_entry *procfs;
#endif
struct reset_control *rst_a;
struct reset_control *rst_h;
struct reset_control *rst_core;
#ifdef CONFIG_PM_DEVFREQ
struct regulator *vdd;
struct devfreq *devfreq;
unsigned long volt;
unsigned long core_rate_hz;
unsigned long core_last_rate_hz;
struct ipa_power_model_data *model_data;
struct thermal_cooling_device *devfreq_cooling;
struct monitor_dev_info *mdev_info;
#endif
/* for iommu pagefault handle */
struct work_struct iommu_work;
struct workqueue_struct *iommu_wq;
struct page *aux_page;
unsigned long aux_iova;
unsigned long fault_iova;
};
struct link_table_elem {
dma_addr_t lkt_dma_addr;
void *lkt_cpu_addr;
u32 lkt_index;
struct list_head list;
};
static struct mpp_hw_info rkvenc_hw_info = {
.reg_num = RKVENC_REG_NUM,
.reg_id = RKVENC_REG_HW_ID_INDEX,
.reg_en = RKVENC_ENC_START_INDEX,
.reg_start = RKVENC_REG_START_INDEX,
.reg_end = RKVENC_REG_END_INDEX,
};
/*
* file handle translate information
*/
static const u16 trans_tbl_h264e[] = {
70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 124, 125,
126, 127, 128, 129, 130, 131
};
static const u16 trans_tbl_h265e[] = {
70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 124, 125,
126, 127, 128, 129, 130, 131, 95, 96
};
static struct mpp_trans_info trans_rk_rkvenc[] = {
[RKVENC_FMT_H264E] = {
.count = ARRAY_SIZE(trans_tbl_h264e),
.table = trans_tbl_h264e,
},
[RKVENC_FMT_H265E] = {
.count = ARRAY_SIZE(trans_tbl_h265e),
.table = trans_tbl_h265e,
},
};
static int rkvenc_extract_task_msg(struct rkvenc_task *task,
struct mpp_task_msgs *msgs)
{
u32 i;
int ret;
struct mpp_request *req;
for (i = 0; i < msgs->req_cnt; i++) {
req = &msgs->reqs[i];
if (!req->size)
continue;
switch (req->cmd) {
case MPP_CMD_SET_REG_WRITE: {
int req_base;
int max_size;
u8 *dst = NULL;
if (req->offset >= RKVENC_L2_OFFSET) {
req_base = RKVENC_L2_OFFSET;
max_size = sizeof(task->reg_l2);
dst = (u8 *)task->reg_l2;
} else {
req_base = 0;
max_size = sizeof(task->reg);
dst = (u8 *)task->reg;
}
ret = mpp_check_req(req, req_base, max_size,
0, max_size);
if (ret)
return ret;
dst += req->offset - req_base;
if (copy_from_user(dst, req->data, req->size)) {
mpp_err("copy_from_user reg failed\n");
return -EIO;
}
memcpy(&task->w_reqs[task->w_req_cnt++],
req, sizeof(*req));
} break;
case MPP_CMD_SET_REG_READ: {
int req_base;
int max_size;
if (req->offset >= RKVENC_L2_OFFSET) {
req_base = RKVENC_L2_OFFSET;
max_size = sizeof(task->reg_l2);
} else {
req_base = 0;
max_size = sizeof(task->reg);
}
ret = mpp_check_req(req, req_base, max_size,
0, max_size);
if (ret)
return ret;
memcpy(&task->r_reqs[task->r_req_cnt++],
req, sizeof(*req));
} break;
case MPP_CMD_SET_REG_ADDR_OFFSET: {
mpp_extract_reg_offset_info(&task->off_inf, req);
} break;
default:
break;
}
}
mpp_debug(DEBUG_TASK_INFO, "w_req_cnt=%d, r_req_cnt=%d\n",
task->w_req_cnt, task->r_req_cnt);
return 0;
}
static void *rkvenc_alloc_task(struct mpp_session *session,
struct mpp_task_msgs *msgs)
{
int ret;
struct mpp_task *mpp_task = NULL;
struct rkvenc_task *task = NULL;
struct mpp_dev *mpp = session->mpp;
mpp_debug_enter();
task = kzalloc(sizeof(*task), GFP_KERNEL);
if (!task)
return NULL;
mpp_task = &task->mpp_task;
mpp_task_init(session, mpp_task);
mpp_task->hw_info = mpp->var->hw_info;
mpp_task->reg = task->reg;
/* extract reqs for current task */
ret = rkvenc_extract_task_msg(task, msgs);
if (ret)
goto fail;
task->fmt = RKVENC_GET_FORMAT(task->reg[RKVENC_ENC_PIC_INDEX]);
/* process fd in register */
if (!(msgs->flags & MPP_FLAGS_REG_FD_NO_TRANS)) {
ret = mpp_translate_reg_address(session,
mpp_task, task->fmt,
task->reg, &task->off_inf);
if (ret)
goto fail;
mpp_translate_reg_offset_info(mpp_task,
&task->off_inf, task->reg);
}
task->link_mode = RKVENC_MODE_ONEFRAME;
task->clk_mode = CLK_MODE_NORMAL;
/* get resolution info */
task->width = RKVENC_GET_WIDTH(task->reg[RKVENC_ENC_RSL_INDEX]);
task->height = RKVENC_GET_HEIGHT(task->reg[RKVENC_ENC_RSL_INDEX]);
task->pixels = task->width * task->height;
mpp_debug(DEBUG_TASK_INFO, "width=%d, height=%d\n", task->width, task->height);
mpp_debug_leave();
return mpp_task;
fail:
mpp_task_dump_mem_region(mpp, mpp_task);
mpp_task_dump_reg(mpp, mpp_task);
mpp_task_finalize(session, mpp_task);
kfree(task);
return NULL;
}
static int rkvenc_write_req_l2(struct mpp_dev *mpp,
u32 *regs,
u32 start_idx, u32 end_idx)
{
int i;
for (i = start_idx; i < end_idx; i++) {
int reg = i * sizeof(u32);
mpp_debug(DEBUG_SET_REG_L2, "reg[%03d]: %04x: 0x%08x\n", i, reg, regs[i]);
writel_relaxed(reg, mpp->reg_base + RKVENC_L2_ADDR_BASE);
writel_relaxed(regs[i], mpp->reg_base + RKVENC_L2_WRITE_BASE);
}
return 0;
}
static int rkvenc_read_req_l2(struct mpp_dev *mpp,
u32 *regs,
u32 start_idx, u32 end_idx)
{
int i;
for (i = start_idx; i < end_idx; i++) {
int reg = i * sizeof(u32);
writel_relaxed(reg, mpp->reg_base + RKVENC_L2_ADDR_BASE);
regs[i] = readl_relaxed(mpp->reg_base + RKVENC_L2_READ_BASE);
mpp_debug(DEBUG_GET_REG_L2, "reg[%03d]: %04x: 0x%08x\n", i, reg, regs[i]);
}
return 0;
}
static int rkvenc_write_req_backward(struct mpp_dev *mpp, u32 *regs,
s32 start_idx, s32 end_idx, s32 en_idx)
{
int i;
for (i = end_idx - 1; i >= start_idx; i--) {
if (i == en_idx)
continue;
mpp_write_relaxed(mpp, i * sizeof(u32), regs[i]);
}
return 0;
}
static int rkvenc_run(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
struct rkvenc_task *task = to_rkvenc_task(mpp_task);
mpp_debug_enter();
/* clear cache */
mpp_write_relaxed(mpp, RKVENC_REG_CLR_CACHE_BASE, 1);
switch (task->link_mode) {
case RKVENC_MODE_ONEFRAME: {
int i;
struct mpp_request *req;
u32 reg_en = mpp_task->hw_info->reg_en;
u32 timing_en = mpp->srv->timing_en;
/*
* Tips: ensure osd plt clock is 0 before setting register,
* otherwise, osd setting will not work
*/
mpp_write_relaxed(mpp, RKVENC_OSD_CFG_BASE, 0);
/* ensure clear finish */
wmb();
for (i = 0; i < task->w_req_cnt; i++) {
int s, e;
req = &task->w_reqs[i];
/* set register L2 */
if (req->offset >= RKVENC_L2_OFFSET) {
int off = req->offset - RKVENC_L2_OFFSET;
s = off / sizeof(u32);
e = s + req->size / sizeof(u32);
rkvenc_write_req_l2(mpp, task->reg_l2, s, e);
} else {
/* set register L1 */
s = req->offset / sizeof(u32);
e = s + req->size / sizeof(u32);
/* NOTE: for rkvenc, register should set backward */
rkvenc_write_req_backward(mpp, task->reg, s, e, reg_en);
}
}
/* flush tlb before starting hardware */
mpp_iommu_flush_tlb(mpp->iommu_info);
/* init current task */
mpp->cur_task = mpp_task;
mpp_task_run_begin(mpp_task, timing_en, MPP_WORK_TIMEOUT_DELAY);
/* Flush the register before the start the device */
wmb();
mpp_write(mpp, RKVENC_ENC_START_BASE, task->reg[reg_en]);
mpp_task_run_end(mpp_task, timing_en);
} break;
case RKVENC_MODE_LINKTABLE_FIX:
case RKVENC_MODE_LINKTABLE_UPDATE:
default: {
mpp_err("link_mode %d failed.\n", task->link_mode);
} break;
}
mpp_debug_leave();
return 0;
}
static int rkvenc_irq(struct mpp_dev *mpp)
{
mpp_debug_enter();
mpp->irq_status = mpp_read(mpp, RKVENC_INT_STATUS_BASE);
if (!mpp->irq_status)
return IRQ_NONE;
mpp_write(mpp, RKVENC_INT_MSK_BASE, 0x100);
mpp_write(mpp, RKVENC_INT_CLR_BASE, 0xffffffff);
mpp_write(mpp, RKVENC_INT_STATUS_BASE, 0);
mpp_debug_leave();
return IRQ_WAKE_THREAD;
}
static int rkvenc_isr(struct mpp_dev *mpp)
{
struct rkvenc_task *task = NULL;
struct mpp_task *mpp_task = mpp->cur_task;
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
mpp_debug_enter();
/* FIXME use a spin lock here */
if (!mpp_task) {
dev_err(mpp->dev, "no current task\n");
return IRQ_HANDLED;
}
mpp_time_diff(mpp_task);
mpp->cur_task = NULL;
task = to_rkvenc_task(mpp_task);
task->irq_status = mpp->irq_status;
mpp_debug(DEBUG_IRQ_STATUS, "irq_status: %08x\n", task->irq_status);
if (task->irq_status & RKVENC_INT_ERROR_BITS) {
atomic_inc(&mpp->reset_request);
if (mpp_debug_unlikely(DEBUG_DUMP_ERR_REG)) {
/* dump error register */
mpp_debug(DEBUG_DUMP_ERR_REG, "irq_status: %08x\n", task->irq_status);
mpp_task_dump_hw_reg(mpp);
}
}
/* unmap reserve buffer */
if (enc->aux_iova != -1) {
iommu_unmap(mpp->iommu_info->domain, enc->aux_iova, IOMMU_PAGE_SIZE);
enc->aux_iova = -1;
}
mpp_task_finish(mpp_task->session, mpp_task);
mpp_debug_leave();
return IRQ_HANDLED;
}
static int rkvenc_finish(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
struct rkvenc_task *task = to_rkvenc_task(mpp_task);
mpp_debug_enter();
switch (task->link_mode) {
case RKVENC_MODE_ONEFRAME: {
u32 i;
struct mpp_request *req;
for (i = 0; i < task->r_req_cnt; i++) {
int s, e;
req = &task->r_reqs[i];
if (req->offset >= RKVENC_L2_OFFSET) {
int off = req->offset - RKVENC_L2_OFFSET;
s = off / sizeof(u32);
e = s + req->size / sizeof(u32);
rkvenc_read_req_l2(mpp, task->reg_l2, s, e);
} else {
s = req->offset / sizeof(u32);
e = s + req->size / sizeof(u32);
mpp_read_req(mpp, task->reg, s, e);
}
}
task->reg[RKVENC_INT_STATUS_INDEX] = task->irq_status;
} break;
case RKVENC_MODE_LINKTABLE_FIX:
case RKVENC_MODE_LINKTABLE_UPDATE:
default: {
mpp_err("link_mode %d failed.\n", task->link_mode);
} break;
}
mpp_debug_leave();
return 0;
}
static int rkvenc_result(struct mpp_dev *mpp,
struct mpp_task *mpp_task,
struct mpp_task_msgs *msgs)
{
struct rkvenc_task *task = to_rkvenc_task(mpp_task);
mpp_debug_enter();
switch (task->link_mode) {
case RKVENC_MODE_ONEFRAME: {
u32 i;
struct mpp_request *req;
for (i = 0; i < task->r_req_cnt; i++) {
req = &task->r_reqs[i];
/* set register L2 */
if (req->offset >= RKVENC_L2_OFFSET) {
int off = req->offset - RKVENC_L2_OFFSET;
if (copy_to_user(req->data,
(u8 *)task->reg_l2 + off,
req->size)) {
mpp_err("copy_to_user reg_l2 fail\n");
return -EIO;
}
} else {
if (copy_to_user(req->data,
(u8 *)task->reg + req->offset,
req->size)) {
mpp_err("copy_to_user reg fail\n");
return -EIO;
}
}
}
} break;
case RKVENC_MODE_LINKTABLE_FIX:
case RKVENC_MODE_LINKTABLE_UPDATE:
default: {
mpp_err("link_mode %d failed.\n", task->link_mode);
} break;
}
return 0;
}
static int rkvenc_free_task(struct mpp_session *session,
struct mpp_task *mpp_task)
{
struct rkvenc_task *task = to_rkvenc_task(mpp_task);
mpp_task_finalize(session, mpp_task);
kfree(task);
return 0;
}
static int rkvenc_control(struct mpp_session *session, struct mpp_request *req)
{
switch (req->cmd) {
case MPP_CMD_SEND_CODEC_INFO: {
int i;
int cnt;
struct codec_info_elem elem;
struct rkvenc_session_priv *priv;
if (!session || !session->priv) {
mpp_err("session info null\n");
return -EINVAL;
}
priv = session->priv;
cnt = req->size / sizeof(elem);
cnt = (cnt > ENC_INFO_BUTT) ? ENC_INFO_BUTT : cnt;
mpp_debug(DEBUG_IOCTL, "codec info count %d\n", cnt);
for (i = 0; i < cnt; i++) {
if (copy_from_user(&elem, req->data + i * sizeof(elem), sizeof(elem))) {
mpp_err("copy_from_user failed\n");
continue;
}
if (elem.type > ENC_INFO_BASE && elem.type < ENC_INFO_BUTT &&
elem.flag > CODEC_INFO_FLAG_NULL && elem.flag < CODEC_INFO_FLAG_BUTT) {
elem.type = array_index_nospec(elem.type, ENC_INFO_BUTT);
priv->codec_info[elem.type].flag = elem.flag;
priv->codec_info[elem.type].val = elem.data;
} else {
mpp_err("codec info invalid, type %d, flag %d\n",
elem.type, elem.flag);
}
}
} break;
default: {
mpp_err("unknown mpp ioctl cmd %x\n", req->cmd);
} break;
}
return 0;
}
static int rkvenc_free_session(struct mpp_session *session)
{
if (session && session->priv) {
kfree(session->priv);
session->priv = NULL;
}
return 0;
}
static int rkvenc_init_session(struct mpp_session *session)
{
struct rkvenc_session_priv *priv;
if (!session) {
mpp_err("session is null\n");
return -EINVAL;
}
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
init_rwsem(&priv->rw_sem);
session->priv = priv;
return 0;
}
#ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
static int rkvenc_procfs_remove(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
if (enc->procfs) {
proc_remove(enc->procfs);
enc->procfs = NULL;
}
return 0;
}
static int rkvenc_dump_session(struct mpp_session *session, struct seq_file *seq)
{
int i;
struct rkvenc_session_priv *priv = session->priv;
down_read(&priv->rw_sem);
/* item name */
seq_puts(seq, "------------------------------------------------------");
seq_puts(seq, "------------------------------------------------------\n");
seq_printf(seq, "|%8s|", (const char *)"session");
seq_printf(seq, "%8s|", (const char *)"device");
for (i = ENC_INFO_BASE; i < ENC_INFO_BUTT; i++) {
bool show = priv->codec_info[i].flag;
if (show)
seq_printf(seq, "%8s|", enc_info_item_name[i]);
}
seq_puts(seq, "\n");
/* item data*/
seq_printf(seq, "|%8d|", session->index);
seq_printf(seq, "%8s|", mpp_device_name[session->device_type]);
for (i = ENC_INFO_BASE; i < ENC_INFO_BUTT; i++) {
u32 flag = priv->codec_info[i].flag;
if (!flag)
continue;
if (flag == CODEC_INFO_FLAG_NUMBER) {
u32 data = priv->codec_info[i].val;
seq_printf(seq, "%8d|", data);
} else if (flag == CODEC_INFO_FLAG_STRING) {
const char *name = (const char *)&priv->codec_info[i].val;
seq_printf(seq, "%8s|", name);
} else {
seq_printf(seq, "%8s|", (const char *)"null");
}
}
seq_puts(seq, "\n");
up_read(&priv->rw_sem);
return 0;
}
static int rkvenc_show_session_info(struct seq_file *seq, void *offset)
{
struct mpp_session *session = NULL, *n;
struct mpp_dev *mpp = seq->private;
mutex_lock(&mpp->srv->session_lock);
list_for_each_entry_safe(session, n,
&mpp->srv->session_list,
service_link) {
if (session->device_type != MPP_DEVICE_RKVENC)
continue;
if (!session->priv)
continue;
if (mpp->dev_ops->dump_session)
mpp->dev_ops->dump_session(session, seq);
}
mutex_unlock(&mpp->srv->session_lock);
return 0;
}
static int rkvenc_procfs_init(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
enc->procfs = proc_mkdir(mpp->dev->of_node->name, mpp->srv->procfs);
if (IS_ERR_OR_NULL(enc->procfs)) {
mpp_err("failed on open procfs\n");
enc->procfs = NULL;
return -EIO;
}
/* for common mpp_dev options */
mpp_procfs_create_common(enc->procfs, mpp);
/* for debug */
mpp_procfs_create_u32("aclk", 0644,
enc->procfs, &enc->aclk_info.debug_rate_hz);
mpp_procfs_create_u32("clk_core", 0644,
enc->procfs, &enc->core_clk_info.debug_rate_hz);
mpp_procfs_create_u32("session_buffers", 0644,
enc->procfs, &mpp->session_max_buffers);
/* for show session info */
proc_create_single_data("sessions-info", 0444,
enc->procfs, rkvenc_show_session_info, mpp);
return 0;
}
#else
static inline int rkvenc_procfs_remove(struct mpp_dev *mpp)
{
return 0;
}
static inline int rkvenc_procfs_init(struct mpp_dev *mpp)
{
return 0;
}
static inline int rkvenc_dump_session(struct mpp_session *session, struct seq_file *seq)
{
return 0;
}
#endif
#ifdef CONFIG_PM_DEVFREQ
static int rkvenc_devfreq_target(struct device *dev,
unsigned long *freq, u32 flags)
{
struct dev_pm_opp *opp;
unsigned long target_volt, target_freq;
int ret = 0;
struct rkvenc_dev *enc = dev_get_drvdata(dev);
struct devfreq *devfreq = enc->devfreq;
struct devfreq_dev_status *stat = &devfreq->last_status;
unsigned long old_clk_rate = stat->current_frequency;
opp = devfreq_recommended_opp(dev, freq, flags);
if (IS_ERR(opp)) {
dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
return PTR_ERR(opp);
}
target_freq = dev_pm_opp_get_freq(opp);
target_volt = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
if (old_clk_rate == target_freq) {
enc->core_last_rate_hz = target_freq;
if (enc->volt == target_volt)
return ret;
ret = regulator_set_voltage(enc->vdd, target_volt, INT_MAX);
if (ret) {
dev_err(dev, "Cannot set voltage %lu uV\n",
target_volt);
return ret;
}
enc->volt = target_volt;
return 0;
}
if (old_clk_rate < target_freq) {
ret = regulator_set_voltage(enc->vdd, target_volt, INT_MAX);
if (ret) {
dev_err(dev, "set voltage %lu uV\n", target_volt);
return ret;
}
}
dev_dbg(dev, "%lu-->%lu\n", old_clk_rate, target_freq);
clk_set_rate(enc->core_clk_info.clk, target_freq);
stat->current_frequency = target_freq;
enc->core_last_rate_hz = target_freq;
if (old_clk_rate > target_freq) {
ret = regulator_set_voltage(enc->vdd, target_volt, INT_MAX);
if (ret) {
dev_err(dev, "set vol %lu uV\n", target_volt);
return ret;
}
}
enc->volt = target_volt;
return ret;
}
static int rkvenc_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *stat)
{
return 0;
}
static int rkvenc_devfreq_get_cur_freq(struct device *dev,
unsigned long *freq)
{
struct rkvenc_dev *enc = dev_get_drvdata(dev);
*freq = enc->core_last_rate_hz;
return 0;
}
static struct devfreq_dev_profile rkvenc_devfreq_profile = {
.target = rkvenc_devfreq_target,
.get_dev_status = rkvenc_devfreq_get_dev_status,
.get_cur_freq = rkvenc_devfreq_get_cur_freq,
};
static int devfreq_venc_ondemand_func(struct devfreq *df, unsigned long *freq)
{
struct rkvenc_dev *enc = df->data;
if (enc)
*freq = enc->core_rate_hz;
else
*freq = df->previous_freq;
return 0;
}
static int devfreq_venc_ondemand_handler(struct devfreq *devfreq,
unsigned int event, void *data)
{
return 0;
}
static struct devfreq_governor devfreq_venc_ondemand = {
.name = "venc_ondemand",
.get_target_freq = devfreq_venc_ondemand_func,
.event_handler = devfreq_venc_ondemand_handler,
};
static unsigned long rkvenc_get_static_power(struct devfreq *devfreq,
unsigned long voltage)
{
struct rkvenc_dev *enc = devfreq->data;
if (!enc->model_data)
return 0;
else
return rockchip_ipa_get_static_power(enc->model_data,
voltage);
}
static struct devfreq_cooling_power venc_cooling_power_data = {
.get_static_power = rkvenc_get_static_power,
};
static struct monitor_dev_profile enc_mdevp = {
.type = MONITOR_TYPE_DEV,
.low_temp_adjust = rockchip_monitor_dev_low_temp_adjust,
.high_temp_adjust = rockchip_monitor_dev_high_temp_adjust,
};
static int __maybe_unused rv1126_get_soc_info(struct device *dev,
struct device_node *np,
int *bin, int *process)
{
int ret = 0;
u8 value = 0;
if (of_property_match_string(np, "nvmem-cell-names", "performance") >= 0) {
ret = rockchip_nvmem_cell_read_u8(np, "performance", &value);
if (ret) {
dev_err(dev, "Failed to get soc performance value\n");
return ret;
}
if (value == 0x1)
*bin = 1;
else
*bin = 0;
}
if (*bin >= 0)
dev_info(dev, "bin=%d\n", *bin);
return ret;
}
static const struct rockchip_opp_data __maybe_unused rv1126_rkvenc_opp_data = {
.get_soc_info = rv1126_get_soc_info,
};
static const struct of_device_id rockchip_rkvenc_of_match[] = {
#ifdef CONFIG_CPU_RV1126
{
.compatible = "rockchip,rv1109",
.data = (void *)&rv1126_rkvenc_opp_data,
},
{
.compatible = "rockchip,rv1126",
.data = (void *)&rv1126_rkvenc_opp_data,
},
#endif
{},
};
static int rkvenc_devfreq_init(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
struct clk *clk_core = enc->core_clk_info.clk;
struct devfreq_cooling_power *venc_dcp = &venc_cooling_power_data;
struct rockchip_opp_info opp_info = {0};
int ret = 0;
if (!clk_core)
return 0;
enc->vdd = devm_regulator_get_optional(mpp->dev, "venc");
if (IS_ERR_OR_NULL(enc->vdd)) {
if (PTR_ERR(enc->vdd) == -EPROBE_DEFER) {
dev_warn(mpp->dev, "venc regulator not ready, retry\n");
return -EPROBE_DEFER;
}
dev_info(mpp->dev, "no regulator, devfreq is disabled\n");
return 0;
}
rockchip_get_opp_data(rockchip_rkvenc_of_match, &opp_info);
ret = rockchip_init_opp_table(mpp->dev, &opp_info, "leakage", "venc");
if (ret) {
dev_err(mpp->dev, "failed to init_opp_table\n");
return ret;
}
ret = devfreq_add_governor(&devfreq_venc_ondemand);
if (ret) {
dev_err(mpp->dev, "failed to add venc_ondemand governor\n");
goto governor_err;
}
rkvenc_devfreq_profile.initial_freq = clk_get_rate(clk_core);
enc->devfreq = devm_devfreq_add_device(mpp->dev,
&rkvenc_devfreq_profile,
"venc_ondemand", (void *)enc);
if (IS_ERR(enc->devfreq)) {
ret = PTR_ERR(enc->devfreq);
enc->devfreq = NULL;
goto devfreq_err;
}
enc->devfreq->last_status.total_time = 1;
enc->devfreq->last_status.busy_time = 1;
devfreq_register_opp_notifier(mpp->dev, enc->devfreq);
of_property_read_u32(mpp->dev->of_node, "dynamic-power-coefficient",
(u32 *)&venc_dcp->dyn_power_coeff);
enc->model_data = rockchip_ipa_power_model_init(mpp->dev,
"venc_leakage");
if (IS_ERR_OR_NULL(enc->model_data)) {
enc->model_data = NULL;
dev_err(mpp->dev, "failed to initialize power model\n");
} else if (enc->model_data->dynamic_coefficient) {
venc_dcp->dyn_power_coeff =
enc->model_data->dynamic_coefficient;
}
if (!venc_dcp->dyn_power_coeff) {
dev_err(mpp->dev, "failed to get dynamic-coefficient\n");
goto out;
}
enc->devfreq_cooling =
of_devfreq_cooling_register_power(mpp->dev->of_node,
enc->devfreq, venc_dcp);
if (IS_ERR_OR_NULL(enc->devfreq_cooling))
dev_err(mpp->dev, "failed to register cooling device\n");
enc_mdevp.data = enc->devfreq;
enc->mdev_info = rockchip_system_monitor_register(mpp->dev, &enc_mdevp);
if (IS_ERR(enc->mdev_info)) {
dev_dbg(mpp->dev, "without system monitor\n");
enc->mdev_info = NULL;
}
out:
return 0;
devfreq_err:
devfreq_remove_governor(&devfreq_venc_ondemand);
governor_err:
dev_pm_opp_of_remove_table(mpp->dev);
return ret;
}
static int rkvenc_devfreq_remove(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
if (enc->mdev_info)
rockchip_system_monitor_unregister(enc->mdev_info);
if (enc->devfreq) {
devfreq_unregister_opp_notifier(mpp->dev, enc->devfreq);
dev_pm_opp_of_remove_table(mpp->dev);
devfreq_remove_governor(&devfreq_venc_ondemand);
}
return 0;
}
#endif
static void rkvenc_iommu_handle_work(struct work_struct *work_s)
{
int ret = 0;
struct rkvenc_dev *enc = container_of(work_s, struct rkvenc_dev, iommu_work);
struct mpp_dev *mpp = &enc->mpp;
unsigned long page_iova = 0;
mpp_debug_enter();
/* avoid another page fault occur after page fault */
mpp_iommu_down_write(mpp->iommu_info);
if (enc->aux_iova != -1) {
iommu_unmap(mpp->iommu_info->domain, enc->aux_iova, IOMMU_PAGE_SIZE);
enc->aux_iova = -1;
}
page_iova = round_down(enc->fault_iova, SZ_4K);
ret = iommu_map(mpp->iommu_info->domain, page_iova,
page_to_phys(enc->aux_page), IOMMU_PAGE_SIZE,
IOMMU_READ | IOMMU_WRITE);
if (ret)
mpp_err("iommu_map iova %lx error.\n", page_iova);
else
enc->aux_iova = page_iova;
rockchip_iommu_unmask_irq(mpp->dev);
mpp_iommu_up_write(mpp->iommu_info);
mpp_debug_leave();
}
static int rkvenc_iommu_fault_handle(struct iommu_domain *iommu,
struct device *iommu_dev,
unsigned long iova, int status, void *arg)
{
struct mpp_dev *mpp = (struct mpp_dev *)arg;
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
mpp_debug_enter();
mpp_debug(DEBUG_IOMMU, "IOMMU_GET_BUS_ID(status)=%d\n", IOMMU_GET_BUS_ID(status));
if (IOMMU_GET_BUS_ID(status)) {
enc->fault_iova = iova;
rockchip_iommu_mask_irq(mpp->dev);
queue_work(enc->iommu_wq, &enc->iommu_work);
}
mpp_debug_leave();
return 0;
}
static int rkvenc_init(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
int ret = 0;
mpp->grf_info = &mpp->srv->grf_infos[MPP_DRIVER_RKVENC];
/* Get clock info from dtsi */
ret = mpp_get_clk_info(mpp, &enc->aclk_info, "aclk_vcodec");
if (ret)
mpp_err("failed on clk_get aclk_vcodec\n");
ret = mpp_get_clk_info(mpp, &enc->hclk_info, "hclk_vcodec");
if (ret)
mpp_err("failed on clk_get hclk_vcodec\n");
ret = mpp_get_clk_info(mpp, &enc->core_clk_info, "clk_core");
if (ret)
mpp_err("failed on clk_get clk_core\n");
/* Get normal max workload from dtsi */
of_property_read_u32(mpp->dev->of_node,
"rockchip,default-max-load",
&enc->default_max_load);
/* Set default rates */
mpp_set_clk_info_rate_hz(&enc->aclk_info, CLK_MODE_DEFAULT, 300 * MHZ);
mpp_set_clk_info_rate_hz(&enc->core_clk_info, CLK_MODE_DEFAULT, 600 * MHZ);
/* Get reset control from dtsi */
enc->rst_a = mpp_reset_control_get(mpp, RST_TYPE_A, "video_a");
if (!enc->rst_a)
mpp_err("No aclk reset resource define\n");
enc->rst_h = mpp_reset_control_get(mpp, RST_TYPE_H, "video_h");
if (!enc->rst_h)
mpp_err("No hclk reset resource define\n");
enc->rst_core = mpp_reset_control_get(mpp, RST_TYPE_CORE, "video_core");
if (!enc->rst_core)
mpp_err("No core reset resource define\n");
#ifdef CONFIG_PM_DEVFREQ
ret = rkvenc_devfreq_init(mpp);
if (ret)
mpp_err("failed to add venc devfreq\n");
#endif
/* for mmu pagefault */
enc->aux_page = alloc_page(GFP_KERNEL);
if (!enc->aux_page) {
dev_err(mpp->dev, "allocate a page for auxiliary usage\n");
return -ENOMEM;
}
enc->aux_iova = -1;
enc->iommu_wq = create_singlethread_workqueue("iommu_wq");
if (!enc->iommu_wq) {
mpp_err("failed to create workqueue\n");
return -ENOMEM;
}
INIT_WORK(&enc->iommu_work, rkvenc_iommu_handle_work);
mpp->fault_handler = rkvenc_iommu_fault_handle;
return ret;
}
static int rkvenc_exit(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
#ifdef CONFIG_PM_DEVFREQ
rkvenc_devfreq_remove(mpp);
#endif
if (enc->aux_page)
__free_page(enc->aux_page);
if (enc->aux_iova != -1) {
iommu_unmap(mpp->iommu_info->domain, enc->aux_iova, IOMMU_PAGE_SIZE);
enc->aux_iova = -1;
}
if (enc->iommu_wq) {
destroy_workqueue(enc->iommu_wq);
enc->iommu_wq = NULL;
}
return 0;
}
static int rkvenc_reset(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
mpp_debug_enter();
#ifdef CONFIG_PM_DEVFREQ
if (enc->devfreq)
mutex_lock(&enc->devfreq->lock);
#endif
mpp_clk_set_rate(&enc->aclk_info, CLK_MODE_REDUCE);
mpp_clk_set_rate(&enc->core_clk_info, CLK_MODE_REDUCE);
/* safe reset */
mpp_write(mpp, RKVENC_INT_MSK_BASE, 0x1FF);
mpp_write(mpp, RKVENC_CLR_BASE, RKVENC_SAFE_CLR_BIT);
udelay(5);
mpp_debug(DEBUG_IRQ_STATUS, "irq_status: %08x\n", mpp_read(mpp, RKVENC_INT_STATUS_BASE));
mpp_write(mpp, RKVENC_INT_CLR_BASE, 0xffffffff);
mpp_write(mpp, RKVENC_INT_STATUS_BASE, 0);
/* cru reset */
if (enc->rst_a && enc->rst_h && enc->rst_core) {
mpp_pmu_idle_request(mpp, true);
mpp_safe_reset(enc->rst_a);
mpp_safe_reset(enc->rst_h);
mpp_safe_reset(enc->rst_core);
udelay(5);
mpp_safe_unreset(enc->rst_a);
mpp_safe_unreset(enc->rst_h);
mpp_safe_unreset(enc->rst_core);
mpp_pmu_idle_request(mpp, false);
}
#ifdef CONFIG_PM_DEVFREQ
if (enc->devfreq)
mutex_unlock(&enc->devfreq->lock);
#endif
mpp_debug_leave();
return 0;
}
static int rkvenc_clk_on(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
mpp_clk_safe_enable(enc->aclk_info.clk);
mpp_clk_safe_enable(enc->hclk_info.clk);
mpp_clk_safe_enable(enc->core_clk_info.clk);
return 0;
}
static int rkvenc_clk_off(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
clk_disable_unprepare(enc->aclk_info.clk);
clk_disable_unprepare(enc->hclk_info.clk);
clk_disable_unprepare(enc->core_clk_info.clk);
return 0;
}
static int rkvenc_get_freq(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
u32 task_cnt;
u32 workload;
struct mpp_task *loop = NULL, *n;
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
struct rkvenc_task *task = to_rkvenc_task(mpp_task);
/* if not set max load, consider not have advanced mode */
if (!enc->default_max_load)
return 0;
task_cnt = 1;
workload = task->pixels;
/* calc workload in pending list */
mutex_lock(&mpp->queue->pending_lock);
list_for_each_entry_safe(loop, n,
&mpp->queue->pending_list,
queue_link) {
struct rkvenc_task *loop_task = to_rkvenc_task(loop);
task_cnt++;
workload += loop_task->pixels;
}
mutex_unlock(&mpp->queue->pending_lock);
if (workload > enc->default_max_load)
task->clk_mode = CLK_MODE_ADVANCED;
mpp_debug(DEBUG_TASK_INFO, "pending task %d, workload %d, clk_mode=%d\n",
task_cnt, workload, task->clk_mode);
return 0;
}
static int rkvenc_set_freq(struct mpp_dev *mpp,
struct mpp_task *mpp_task)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
struct rkvenc_task *task = to_rkvenc_task(mpp_task);
mpp_clk_set_rate(&enc->aclk_info, task->clk_mode);
#ifdef CONFIG_PM_DEVFREQ
if (enc->devfreq) {
unsigned long core_rate_hz;
mutex_lock(&enc->devfreq->lock);
core_rate_hz = mpp_get_clk_info_rate_hz(&enc->core_clk_info, task->clk_mode);
if (enc->core_rate_hz != core_rate_hz) {
enc->core_rate_hz = core_rate_hz;
update_devfreq(enc->devfreq);
} else {
/*
* Restore frequency when frequency is changed by
* rkvenc_reduce_freq()
*/
clk_set_rate(enc->core_clk_info.clk, enc->core_last_rate_hz);
}
mutex_unlock(&enc->devfreq->lock);
return 0;
}
#endif
mpp_clk_set_rate(&enc->core_clk_info, task->clk_mode);
return 0;
}
static struct mpp_hw_ops rkvenc_hw_ops = {
.init = rkvenc_init,
.exit = rkvenc_exit,
.clk_on = rkvenc_clk_on,
.clk_off = rkvenc_clk_off,
.get_freq = rkvenc_get_freq,
.set_freq = rkvenc_set_freq,
.reset = rkvenc_reset,
};
static struct mpp_dev_ops rkvenc_dev_ops = {
.alloc_task = rkvenc_alloc_task,
.run = rkvenc_run,
.irq = rkvenc_irq,
.isr = rkvenc_isr,
.finish = rkvenc_finish,
.result = rkvenc_result,
.free_task = rkvenc_free_task,
.ioctl = rkvenc_control,
.init_session = rkvenc_init_session,
.free_session = rkvenc_free_session,
.dump_session = rkvenc_dump_session,
};
static const struct mpp_dev_var rkvenc_v1_data = {
.device_type = MPP_DEVICE_RKVENC,
.hw_info = &rkvenc_hw_info,
.trans_info = trans_rk_rkvenc,
.hw_ops = &rkvenc_hw_ops,
.dev_ops = &rkvenc_dev_ops,
};
static const struct of_device_id mpp_rkvenc_dt_match[] = {
{
.compatible = "rockchip,rkv-encoder-v1",
.data = &rkvenc_v1_data,
},
{},
};
static int rkvenc_probe(struct platform_device *pdev)
{
int ret = 0;
struct device *dev = &pdev->dev;
struct rkvenc_dev *enc = NULL;
struct mpp_dev *mpp = NULL;
const struct of_device_id *match = NULL;
dev_info(dev, "probing start\n");
enc = devm_kzalloc(dev, sizeof(*enc), GFP_KERNEL);
if (!enc)
return -ENOMEM;
mpp = &enc->mpp;
platform_set_drvdata(pdev, mpp);
if (pdev->dev.of_node) {
match = of_match_node(mpp_rkvenc_dt_match, pdev->dev.of_node);
if (match)
mpp->var = (struct mpp_dev_var *)match->data;
}
ret = mpp_dev_probe(mpp, pdev);
if (ret)
return ret;
ret = devm_request_threaded_irq(dev, mpp->irq,
mpp_dev_irq,
mpp_dev_isr_sched,
IRQF_SHARED,
dev_name(dev), mpp);
if (ret) {
dev_err(dev, "register interrupter runtime failed\n");
goto failed_get_irq;
}
mpp->session_max_buffers = RKVENC_SESSION_MAX_BUFFERS;
rkvenc_procfs_init(mpp);
/* register current device to mpp service */
mpp_dev_register_srv(mpp, mpp->srv);
dev_info(dev, "probing finish\n");
return 0;
failed_get_irq:
mpp_dev_remove(mpp);
return ret;
}
static int rkvenc_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mpp_dev *mpp = dev_get_drvdata(dev);
dev_info(dev, "remove device\n");
mpp_dev_remove(mpp);
rkvenc_procfs_remove(mpp);
return 0;
}
struct platform_driver rockchip_rkvenc_driver = {
.probe = rkvenc_probe,
.remove = rkvenc_remove,
.shutdown = mpp_dev_shutdown,
.driver = {
.name = RKVENC_DRIVER_NAME,
.of_match_table = of_match_ptr(mpp_rkvenc_dt_match),
},
};