android13/kernel-5.10/drivers/video/rockchip/mpp/mpp_rkvenc2.c

2615 lines
62 KiB
C

// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Copyright (c) 2021 Rockchip Electronics Co., Ltd
*
* author:
* Ding Wei, leo.ding@rock-chips.com
*
*/
#include <asm/cacheflush.h>
#include <linux/delay.h>
#include <linux/devfreq.h>
#include <linux/devfreq_cooling.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/proc_fs.h>
#include <linux/pm_runtime.h>
#include <linux/nospec.h>
#include <linux/workqueue.h>
#include <linux/dma-iommu.h>
#include <soc/rockchip/pm_domains.h>
#include <soc/rockchip/rockchip_ipa.h>
#include <soc/rockchip/rockchip_opp_select.h>
#include <soc/rockchip/rockchip_system_monitor.h>
#include "mpp_debug.h"
#include "mpp_iommu.h"
#include "mpp_common.h"
#define RKVENC_DRIVER_NAME "mpp_rkvenc2"
#define RKVENC_SESSION_MAX_BUFFERS 40
#define RKVENC_MAX_CORE_NUM 4
#define RKVENC_MAX_DCHS_ID 4
#define RKVENC_MAX_SLICE_FIFO_LEN 256
#define RKVENC_SCLR_DONE_STA BIT(2)
#define to_rkvenc_info(info) \
container_of(info, struct rkvenc_hw_info, hw)
#define to_rkvenc_task(ctx) \
container_of(ctx, struct rkvenc_task, mpp_task)
#define to_rkvenc_dev(dev) \
container_of(dev, struct rkvenc_dev, mpp)
enum RKVENC_FORMAT_TYPE {
RKVENC_FMT_BASE = 0x0000,
RKVENC_FMT_H264E = RKVENC_FMT_BASE + 0,
RKVENC_FMT_H265E = RKVENC_FMT_BASE + 1,
RKVENC_FMT_JPEGE = RKVENC_FMT_BASE + 2,
RKVENC_FMT_OSD_BASE = 0x1000,
RKVENC_FMT_H264E_OSD = RKVENC_FMT_OSD_BASE + 0,
RKVENC_FMT_H265E_OSD = RKVENC_FMT_OSD_BASE + 1,
RKVENC_FMT_JPEGE_OSD = RKVENC_FMT_OSD_BASE + 2,
RKVENC_FMT_BUTT,
};
enum RKVENC_CLASS_TYPE {
RKVENC_CLASS_BASE = 0, /* base */
RKVENC_CLASS_PIC = 1, /* picture configure */
RKVENC_CLASS_RC = 2, /* rate control */
RKVENC_CLASS_PAR = 3, /* parameter */
RKVENC_CLASS_SQI = 4, /* subjective Adjust */
RKVENC_CLASS_SCL = 5, /* scaling list */
RKVENC_CLASS_OSD = 6, /* osd */
RKVENC_CLASS_ST = 7, /* status */
RKVENC_CLASS_DEBUG = 8, /* debug */
RKVENC_CLASS_BUTT,
};
enum RKVENC_CLASS_FD_TYPE {
RKVENC_CLASS_FD_BASE = 0, /* base */
RKVENC_CLASS_FD_OSD = 1, /* osd */
RKVENC_CLASS_FD_BUTT,
};
struct rkvenc_reg_msg {
u32 base_s;
u32 base_e;
};
struct rkvenc_hw_info {
struct mpp_hw_info hw;
/* for register range check */
u32 reg_class;
struct rkvenc_reg_msg reg_msg[RKVENC_CLASS_BUTT];
/* for fd translate */
u32 fd_class;
struct {
u32 class;
u32 base_fmt;
} fd_reg[RKVENC_CLASS_FD_BUTT];
/* for get format */
struct {
u32 class;
u32 base;
u32 bitpos;
u32 bitlen;
} fmt_reg;
/* register info */
u32 enc_start_base;
u32 enc_clr_base;
u32 int_en_base;
u32 int_mask_base;
u32 int_clr_base;
u32 int_sta_base;
u32 enc_wdg_base;
u32 err_mask;
};
#define INT_STA_ENC_DONE_STA BIT(0)
#define INT_STA_SCLR_DONE_STA BIT(2)
#define INT_STA_SLC_DONE_STA BIT(3)
#define INT_STA_BSF_OFLW_STA BIT(4)
#define INT_STA_BRSP_OTSD_STA BIT(5)
#define INT_STA_WBUS_ERR_STA BIT(6)
#define INT_STA_RBUS_ERR_STA BIT(7)
#define INT_STA_WDG_STA BIT(8)
#define DCHS_REG_OFFSET (0x304)
#define DCHS_CLASS_OFFSET (33)
#define DCHS_TXE (0x10)
#define DCHS_RXE (0x20)
/* dual core hand-shake info */
union rkvenc2_dual_core_handshake_id {
u64 val;
struct {
u32 txid : 2;
u32 rxid : 2;
u32 txe : 1;
u32 rxe : 1;
u32 working : 1;
u32 reserve0 : 1;
u32 txid_orig : 2;
u32 rxid_orig : 2;
u32 txid_map : 2;
u32 rxid_map : 2;
u32 offset : 11;
u32 reserve1 : 1;
u32 txe_orig : 1;
u32 rxe_orig : 1;
u32 txe_map : 1;
u32 rxe_map : 1;
u32 session_id;
};
};
#define RKVENC2_REG_INT_EN (8)
#define RKVENC2_BIT_SLICE_DONE_EN BIT(3)
#define RKVENC2_REG_INT_MASK (9)
#define RKVENC2_BIT_SLICE_DONE_MASK BIT(3)
#define RKVENC2_REG_EXT_LINE_BUF_BASE (22)
#define RKVENC2_REG_ENC_PIC (32)
#define RKVENC2_BIT_ENC_STND BIT(0)
#define RKVENC2_BIT_VAL_H264 0
#define RKVENC2_BIT_VAL_H265 1
#define RKVENC2_BIT_SLEN_FIFO BIT(30)
#define RKVENC2_REG_SLI_SPLIT (56)
#define RKVENC2_BIT_SLI_SPLIT BIT(0)
#define RKVENC2_BIT_SLI_FLUSH BIT(15)
#define RKVENC2_REG_SLICE_NUM_BASE (0x4034)
#define RKVENC2_REG_SLICE_LEN_BASE (0x4038)
#define RKVENC2_REG_ST_BSB (0x402c)
#define RKVENC2_REG_ADR_BSBT (0x2b0)
#define RKVENC2_REG_ADR_BSBB (0x2b4)
#define RKVENC2_REG_ADR_BSBR (0x2b8)
#define RKVENC2_REG_ADR_BSBS (0x2bc)
union rkvenc2_slice_len_info {
u32 val;
struct {
u32 slice_len : 31;
u32 last : 1;
};
};
struct rkvenc_poll_slice_cfg {
s32 poll_type;
s32 poll_ret;
s32 count_max;
s32 count_ret;
union rkvenc2_slice_len_info slice_info[];
};
struct rkvenc_task {
struct mpp_task mpp_task;
int fmt;
struct rkvenc_hw_info *hw_info;
/* class register */
struct {
u32 valid;
u32 *data;
u32 size;
} reg[RKVENC_CLASS_BUTT];
/* register offset info */
struct reg_offset_info off_inf;
enum MPP_CLOCK_MODE clk_mode;
u32 irq_status;
/* req for current task */
u32 w_req_cnt;
struct mpp_request w_reqs[MPP_MAX_MSG_NUM];
u32 r_req_cnt;
struct mpp_request r_reqs[MPP_MAX_MSG_NUM];
struct mpp_dma_buffer *table;
union rkvenc2_dual_core_handshake_id dchs_id;
/* split output / slice mode info */
u32 task_split;
u32 task_split_done;
u32 last_slice_found;
u32 slice_wr_cnt;
u32 slice_rd_cnt;
DECLARE_KFIFO(slice_info, union rkvenc2_slice_len_info, RKVENC_MAX_SLICE_FIFO_LEN);
/* jpege bitstream */
struct mpp_dma_buffer *bs_buf;
u32 offset_bs;
};
#define RKVENC_MAX_RCB_NUM (4)
struct rcb_info_elem {
u32 index;
u32 size;
};
struct rkvenc2_rcb_info {
u32 cnt;
struct rcb_info_elem elem[RKVENC_MAX_RCB_NUM];
};
struct rkvenc2_session_priv {
struct rw_semaphore rw_sem;
/* codec info from user */
struct {
/* show mode */
u32 flag;
/* item data */
u64 val;
} codec_info[ENC_INFO_BUTT];
/* rcb_info for sram */
struct rkvenc2_rcb_info rcb_inf;
};
struct rkvenc_dev {
struct mpp_dev mpp;
struct rkvenc_hw_info *hw_info;
struct mpp_clk_info aclk_info;
struct mpp_clk_info hclk_info;
struct mpp_clk_info core_clk_info;
u32 default_max_load;
#ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
struct proc_dir_entry *procfs;
#endif
struct reset_control *rst_a;
struct reset_control *rst_h;
struct reset_control *rst_core;
/* for ccu */
struct rkvenc_ccu *ccu;
struct list_head core_link;
/* internal rcb-memory */
u32 sram_size;
u32 sram_used;
dma_addr_t sram_iova;
u32 sram_enabled;
struct page *rcb_page;
u32 bs_overflow;
#ifdef CONFIG_PM_DEVFREQ
struct rockchip_opp_info opp_info;
struct monitor_dev_info *mdev_info;
#endif
};
struct rkvenc_ccu {
u32 core_num;
/* lock for core attach */
struct mutex lock;
struct list_head core_list;
struct mpp_dev *main_core;
spinlock_t lock_dchs;
union rkvenc2_dual_core_handshake_id dchs[RKVENC_MAX_CORE_NUM];
};
static struct rkvenc_hw_info rkvenc_v2_hw_info = {
.hw = {
.reg_num = 254,
.reg_id = 0,
.reg_en = 4,
.reg_start = 160,
.reg_end = 253,
},
.reg_class = RKVENC_CLASS_BUTT,
.reg_msg[RKVENC_CLASS_BASE] = {
.base_s = 0x0000,
.base_e = 0x0058,
},
.reg_msg[RKVENC_CLASS_PIC] = {
.base_s = 0x0280,
.base_e = 0x03f4,
},
.reg_msg[RKVENC_CLASS_RC] = {
.base_s = 0x1000,
.base_e = 0x10e0,
},
.reg_msg[RKVENC_CLASS_PAR] = {
.base_s = 0x1700,
.base_e = 0x1cd4,
},
.reg_msg[RKVENC_CLASS_SQI] = {
.base_s = 0x2000,
.base_e = 0x21e4,
},
.reg_msg[RKVENC_CLASS_SCL] = {
.base_s = 0x2200,
.base_e = 0x2c98,
},
.reg_msg[RKVENC_CLASS_OSD] = {
.base_s = 0x3000,
.base_e = 0x347c,
},
.reg_msg[RKVENC_CLASS_ST] = {
.base_s = 0x4000,
.base_e = 0x42cc,
},
.reg_msg[RKVENC_CLASS_DEBUG] = {
.base_s = 0x5000,
.base_e = 0x5354,
},
.fd_class = RKVENC_CLASS_FD_BUTT,
.fd_reg[RKVENC_CLASS_FD_BASE] = {
.class = RKVENC_CLASS_PIC,
.base_fmt = RKVENC_FMT_BASE,
},
.fd_reg[RKVENC_CLASS_FD_OSD] = {
.class = RKVENC_CLASS_OSD,
.base_fmt = RKVENC_FMT_OSD_BASE,
},
.fmt_reg = {
.class = RKVENC_CLASS_PIC,
.base = 0x0300,
.bitpos = 0,
.bitlen = 1,
},
.enc_start_base = 0x0010,
.enc_clr_base = 0x0014,
.int_en_base = 0x0020,
.int_mask_base = 0x0024,
.int_clr_base = 0x0028,
.int_sta_base = 0x002c,
.enc_wdg_base = 0x0038,
.err_mask = 0x03f0,
};
static struct rkvenc_hw_info rkvenc_540c_hw_info = {
.hw = {
.reg_num = 254,
.reg_id = 0,
.reg_en = 4,
.reg_start = 160,
.reg_end = 253,
},
.reg_class = RKVENC_CLASS_BUTT,
.reg_msg[RKVENC_CLASS_BASE] = {
.base_s = 0x0000,
.base_e = 0x0120,
},
.reg_msg[RKVENC_CLASS_PIC] = {
.base_s = 0x0270,
.base_e = 0x0480,
},
.reg_msg[RKVENC_CLASS_RC] = {
.base_s = 0x1000,
.base_e = 0x110c,
},
.reg_msg[RKVENC_CLASS_PAR] = {
.base_s = 0x1700,
.base_e = 0x19cc,
},
.reg_msg[RKVENC_CLASS_SQI] = {
.base_s = 0x2000,
.base_e = 0x20fc,
},
.reg_msg[RKVENC_CLASS_SCL] = {
.base_s = 0x21e0,
.base_e = 0x2dfc,
},
.reg_msg[RKVENC_CLASS_OSD] = {
.base_s = 0x3000,
.base_e = 0x326c,
},
.reg_msg[RKVENC_CLASS_ST] = {
.base_s = 0x4000,
.base_e = 0x424c,
},
.reg_msg[RKVENC_CLASS_DEBUG] = {
.base_s = 0x5000,
.base_e = 0x5354,
},
.fd_class = RKVENC_CLASS_FD_BUTT,
.fd_reg[RKVENC_CLASS_FD_BASE] = {
.class = RKVENC_CLASS_PIC,
.base_fmt = RKVENC_FMT_BASE,
},
.fd_reg[RKVENC_CLASS_FD_OSD] = {
.class = RKVENC_CLASS_OSD,
.base_fmt = RKVENC_FMT_OSD_BASE,
},
.fmt_reg = {
.class = RKVENC_CLASS_PIC,
.base = 0x0300,
.bitpos = 0,
.bitlen = 2,
},
.enc_start_base = 0x0010,
.enc_clr_base = 0x0014,
.int_en_base = 0x0020,
.int_mask_base = 0x0024,
.int_clr_base = 0x0028,
.int_sta_base = 0x002c,
.enc_wdg_base = 0x0038,
.err_mask = 0x27d0,
};
/*
* file handle translate information for v2
*/
static const u16 trans_tbl_h264e_v2[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23,
};
static const u16 trans_tbl_h264e_v2_osd[] = {
20, 21, 22, 23, 24, 25, 26, 27,
};
static const u16 trans_tbl_h265e_v2[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23,
};
static const u16 trans_tbl_h265e_v2_osd[] = {
20, 21, 22, 23, 24, 25, 26, 27,
};
/*
* file handle translate information for 540c
*/
static const u16 trans_tbl_h264e_540c[] = {
4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
// /* renc and ref wrap */
// 24, 25, 26, 27,
};
static const u16 trans_tbl_h264e_540c_osd[] = {
3, 4, 12, 13, 21, 22, 30, 31,
39, 40, 48, 49, 57, 58, 66, 67,
};
static const u16 trans_tbl_h265e_540c[] = {
4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23
};
static const u16 trans_tbl_h265e_540c_osd[] = {
3, 4, 12, 13, 21, 22, 30, 31,
39, 40, 48, 49, 57, 58, 66, 67,
};
static const u16 trans_tbl_jpege[] = {
100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 110,
};
static const u16 trans_tbl_jpege_osd[] = {
81, 82, 90, 91, 99, 100, 108, 109,
117, 118, 126, 127, 135, 136, 144, 145,
};
static struct mpp_trans_info trans_rkvenc_v2[] = {
[RKVENC_FMT_H264E] = {
.count = ARRAY_SIZE(trans_tbl_h264e_v2),
.table = trans_tbl_h264e_v2,
},
[RKVENC_FMT_H264E_OSD] = {
.count = ARRAY_SIZE(trans_tbl_h264e_v2_osd),
.table = trans_tbl_h264e_v2_osd,
},
[RKVENC_FMT_H265E] = {
.count = ARRAY_SIZE(trans_tbl_h265e_v2),
.table = trans_tbl_h265e_v2,
},
[RKVENC_FMT_H265E_OSD] = {
.count = ARRAY_SIZE(trans_tbl_h265e_v2_osd),
.table = trans_tbl_h265e_v2_osd,
},
};
static struct mpp_trans_info trans_rkvenc_540c[] = {
[RKVENC_FMT_H264E] = {
.count = ARRAY_SIZE(trans_tbl_h264e_540c),
.table = trans_tbl_h264e_540c,
},
[RKVENC_FMT_H264E_OSD] = {
.count = ARRAY_SIZE(trans_tbl_h264e_540c_osd),
.table = trans_tbl_h264e_540c_osd,
},
[RKVENC_FMT_H265E] = {
.count = ARRAY_SIZE(trans_tbl_h265e_540c),
.table = trans_tbl_h265e_540c,
},
[RKVENC_FMT_H265E_OSD] = {
.count = ARRAY_SIZE(trans_tbl_h265e_540c_osd),
.table = trans_tbl_h265e_540c_osd,
},
[RKVENC_FMT_JPEGE] = {
.count = ARRAY_SIZE(trans_tbl_jpege),
.table = trans_tbl_jpege,
},
[RKVENC_FMT_JPEGE_OSD] = {
.count = ARRAY_SIZE(trans_tbl_jpege_osd),
.table = trans_tbl_jpege_osd,
},
};
static bool req_over_class(struct mpp_request *req,
struct rkvenc_task *task, int class)
{
bool ret;
u32 base_s, base_e, req_e;
struct rkvenc_hw_info *hw = task->hw_info;
base_s = hw->reg_msg[class].base_s;
base_e = hw->reg_msg[class].base_e;
req_e = req->offset + req->size - sizeof(u32);
ret = (req->offset <= base_e && req_e >= base_s) ? true : false;
return ret;
}
static int rkvenc_free_class_msg(struct rkvenc_task *task)
{
u32 i;
u32 reg_class = task->hw_info->reg_class;
for (i = 0; i < reg_class; i++) {
kfree(task->reg[i].data);
task->reg[i].data = NULL;
task->reg[i].size = 0;
}
return 0;
}
static int rkvenc_alloc_class_msg(struct rkvenc_task *task, int class)
{
u32 *data;
struct rkvenc_hw_info *hw = task->hw_info;
if (!task->reg[class].data) {
u32 base_s = hw->reg_msg[class].base_s;
u32 base_e = hw->reg_msg[class].base_e;
u32 class_size = base_e - base_s + sizeof(u32);
data = kzalloc(class_size, GFP_KERNEL);
if (!data)
return -ENOMEM;
task->reg[class].data = data;
task->reg[class].size = class_size;
}
return 0;
}
static int rkvenc_update_req(struct rkvenc_task *task, int class,
struct mpp_request *req_in,
struct mpp_request *req_out)
{
u32 base_s, base_e, req_e, s, e;
struct rkvenc_hw_info *hw = task->hw_info;
base_s = hw->reg_msg[class].base_s;
base_e = hw->reg_msg[class].base_e;
req_e = req_in->offset + req_in->size - sizeof(u32);
s = max(req_in->offset, base_s);
e = min(req_e, base_e);
req_out->offset = s;
req_out->size = e - s + sizeof(u32);
req_out->data = (u8 *)req_in->data + (s - req_in->offset);
return 0;
}
static int rkvenc_get_class_msg(struct rkvenc_task *task,
u32 addr, struct mpp_request *msg)
{
int i;
bool found = false;
u32 base_s, base_e;
struct rkvenc_hw_info *hw = task->hw_info;
if (!msg)
return -EINVAL;
memset(msg, 0, sizeof(*msg));
for (i = 0; i < hw->reg_class; i++) {
base_s = hw->reg_msg[i].base_s;
base_e = hw->reg_msg[i].base_e;
if (addr >= base_s && addr < base_e) {
found = true;
msg->offset = base_s;
msg->size = task->reg[i].size;
msg->data = task->reg[i].data;
break;
}
}
return (found ? 0 : (-EINVAL));
}
static u32 *rkvenc_get_class_reg(struct rkvenc_task *task, u32 addr)
{
int i;
u8 *reg = NULL;
u32 base_s, base_e;
struct rkvenc_hw_info *hw = task->hw_info;
for (i = 0; i < hw->reg_class; i++) {
base_s = hw->reg_msg[i].base_s;
base_e = hw->reg_msg[i].base_e;
if (addr >= base_s && addr < base_e) {
reg = (u8 *)task->reg[i].data + (addr - base_s);
break;
}
}
return (u32 *)reg;
}
static int rkvenc2_extract_rcb_info(struct rkvenc2_rcb_info *rcb_inf,
struct mpp_request *req)
{
int max_size = ARRAY_SIZE(rcb_inf->elem);
int cnt = req->size / sizeof(rcb_inf->elem[0]);
if (req->size > sizeof(rcb_inf->elem)) {
mpp_err("count %d,max_size %d\n", cnt, max_size);
return -EINVAL;
}
if (copy_from_user(rcb_inf->elem, req->data, req->size)) {
mpp_err("copy_from_user failed\n");
return -EINVAL;
}
rcb_inf->cnt = cnt;
return 0;
}
static int rkvenc_extract_task_msg(struct mpp_session *session,
struct rkvenc_task *task,
struct mpp_task_msgs *msgs)
{
int ret;
u32 i, j;
struct mpp_request *req;
struct rkvenc_hw_info *hw = task->hw_info;
mpp_debug_enter();
for (i = 0; i < msgs->req_cnt; i++) {
req = &msgs->reqs[i];
if (!req->size)
continue;
switch (req->cmd) {
case MPP_CMD_SET_REG_WRITE: {
void *data;
struct mpp_request *wreq;
for (j = 0; j < hw->reg_class; j++) {
if (!req_over_class(req, task, j))
continue;
ret = rkvenc_alloc_class_msg(task, j);
if (ret) {
mpp_err("alloc class msg %d fail.\n", j);
goto fail;
}
wreq = &task->w_reqs[task->w_req_cnt];
rkvenc_update_req(task, j, req, wreq);
data = rkvenc_get_class_reg(task, wreq->offset);
if (!data) {
mpp_err("get class reg fail, offset %08x\n", wreq->offset);
ret = -EINVAL;
goto fail;
}
if (copy_from_user(data, wreq->data, wreq->size)) {
mpp_err("copy_from_user fail, offset %08x\n", wreq->offset);
ret = -EIO;
goto fail;
}
task->reg[j].valid = 1;
task->w_req_cnt++;
}
} break;
case MPP_CMD_SET_REG_READ: {
struct mpp_request *rreq;
for (j = 0; j < hw->reg_class; j++) {
if (!req_over_class(req, task, j))
continue;
ret = rkvenc_alloc_class_msg(task, j);
if (ret) {
mpp_err("alloc class msg reg %d fail.\n", j);
goto fail;
}
rreq = &task->r_reqs[task->r_req_cnt];
rkvenc_update_req(task, j, req, rreq);
task->reg[j].valid = 1;
task->r_req_cnt++;
}
} break;
case MPP_CMD_SET_REG_ADDR_OFFSET: {
mpp_extract_reg_offset_info(&task->off_inf, req);
} break;
case MPP_CMD_SET_RCB_INFO: {
struct rkvenc2_session_priv *priv = session->priv;
if (priv)
rkvenc2_extract_rcb_info(&priv->rcb_inf, req);
} break;
default:
break;
}
}
mpp_debug(DEBUG_TASK_INFO, "w_req_cnt=%d, r_req_cnt=%d\n",
task->w_req_cnt, task->r_req_cnt);
mpp_debug_enter();
return 0;
fail:
rkvenc_free_class_msg(task);
mpp_debug_enter();
return ret;
}
static int rkvenc_task_get_format(struct mpp_dev *mpp,
struct rkvenc_task *task)
{
u32 offset, val;
struct rkvenc_hw_info *hw = task->hw_info;
u32 class = hw->fmt_reg.class;
u32 *class_reg = task->reg[class].data;
u32 class_size = task->reg[class].size;
u32 class_base = hw->reg_msg[class].base_s;
u32 bitpos = hw->fmt_reg.bitpos;
u32 bitlen = hw->fmt_reg.bitlen;
if (!class_reg || !class_size)
return -EINVAL;
offset = hw->fmt_reg.base - class_base;
val = class_reg[offset/sizeof(u32)];
task->fmt = (val >> bitpos) & ((1 << bitlen) - 1);
return 0;
}
static int rkvenc2_set_rcbbuf(struct mpp_dev *mpp, struct mpp_session *session,
struct rkvenc_task *task)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
struct rkvenc2_session_priv *priv = session->priv;
u32 sram_enabled = 0;
mpp_debug_enter();
if (priv && enc->sram_iova) {
int i;
u32 *reg;
u32 reg_idx, rcb_size, rcb_offset;
struct rkvenc2_rcb_info *rcb_inf = &priv->rcb_inf;
rcb_offset = 0;
for (i = 0; i < rcb_inf->cnt; i++) {
reg_idx = rcb_inf->elem[i].index;
rcb_size = rcb_inf->elem[i].size;
if (rcb_offset > enc->sram_size ||
(rcb_offset + rcb_size) > enc->sram_used)
continue;
mpp_debug(DEBUG_SRAM_INFO, "rcb: reg %d offset %d, size %d\n",
reg_idx, rcb_offset, rcb_size);
reg = rkvenc_get_class_reg(task, reg_idx * sizeof(u32));
if (reg)
*reg = enc->sram_iova + rcb_offset;
rcb_offset += rcb_size;
sram_enabled = 1;
}
}
if (enc->sram_enabled != sram_enabled) {
mpp_debug(DEBUG_SRAM_INFO, "sram %s\n", sram_enabled ? "enabled" : "disabled");
enc->sram_enabled = sram_enabled;
}
mpp_debug_leave();
return 0;
}
static void rkvenc2_setup_task_id(u32 session_id, struct rkvenc_task *task)
{
u32 val = task->reg[RKVENC_CLASS_PIC].data[DCHS_CLASS_OFFSET];
/* always enable tx */
val |= DCHS_TXE;
task->reg[RKVENC_CLASS_PIC].data[DCHS_CLASS_OFFSET] = val;
task->dchs_id.val = (((u64)session_id << 32) | val);
task->dchs_id.txid_orig = task->dchs_id.txid;
task->dchs_id.rxid_orig = task->dchs_id.rxid;
task->dchs_id.txid_map = task->dchs_id.txid;
task->dchs_id.rxid_map = task->dchs_id.rxid;
task->dchs_id.txe_orig = task->dchs_id.txe;
task->dchs_id.rxe_orig = task->dchs_id.rxe;
task->dchs_id.txe_map = task->dchs_id.txe;
task->dchs_id.rxe_map = task->dchs_id.rxe;
}
static void rkvenc2_check_split_task(struct rkvenc_task *task)
{
u32 slen_fifo_en = 0;
u32 sli_split_en = 0;
if (task->reg[RKVENC_CLASS_PIC].valid) {
u32 *reg = task->reg[RKVENC_CLASS_PIC].data;
u32 enc_stnd = reg[RKVENC2_REG_ENC_PIC] & RKVENC2_BIT_ENC_STND;
slen_fifo_en = (reg[RKVENC2_REG_ENC_PIC] & RKVENC2_BIT_SLEN_FIFO) ? 1 : 0;
sli_split_en = (reg[RKVENC2_REG_SLI_SPLIT] & RKVENC2_BIT_SLI_SPLIT) ? 1 : 0;
/*
* FIXUP: rkvenc2 hardware bug:
* H.264 encoding has bug when external line buffer and slice flush both
* are enabled.
*/
if (sli_split_en && slen_fifo_en &&
enc_stnd == RKVENC2_BIT_VAL_H264 &&
reg[RKVENC2_REG_EXT_LINE_BUF_BASE])
reg[RKVENC2_REG_SLI_SPLIT] &= ~RKVENC2_BIT_SLI_FLUSH;
}
task->task_split = sli_split_en && slen_fifo_en;
if (task->task_split)
INIT_KFIFO(task->slice_info);
}
static void *rkvenc_alloc_task(struct mpp_session *session,
struct mpp_task_msgs *msgs)
{
int ret;
struct rkvenc_task *task;
struct mpp_task *mpp_task;
struct mpp_dev *mpp = session->mpp;
mpp_debug_enter();
task = kzalloc(sizeof(*task), GFP_KERNEL);
if (!task)
return NULL;
mpp_task = &task->mpp_task;
mpp_task_init(session, mpp_task);
mpp_task->hw_info = mpp->var->hw_info;
task->hw_info = to_rkvenc_info(mpp_task->hw_info);
/* extract reqs for current task */
ret = rkvenc_extract_task_msg(session, task, msgs);
if (ret)
goto free_task;
mpp_task->reg = task->reg[0].data;
/* get format */
ret = rkvenc_task_get_format(mpp, task);
if (ret)
goto free_task;
/* process fd in register */
if (!(msgs->flags & MPP_FLAGS_REG_FD_NO_TRANS)) {
u32 i, j;
int cnt;
u32 off;
const u16 *tbl;
struct rkvenc_hw_info *hw = task->hw_info;
int fd_bs = -1;
for (i = 0; i < hw->fd_class; i++) {
u32 class = hw->fd_reg[i].class;
u32 fmt = hw->fd_reg[i].base_fmt + task->fmt;
u32 *reg = task->reg[class].data;
u32 ss = hw->reg_msg[class].base_s / sizeof(u32);
if (!reg)
continue;
if (fmt == RKVENC_FMT_JPEGE && class == RKVENC_CLASS_PIC && fd_bs == -1) {
int bs_index;
bs_index = mpp->var->trans_info[fmt].table[2];
fd_bs = reg[bs_index];
task->offset_bs = mpp_query_reg_offset_info(&task->off_inf,
bs_index + ss);
}
ret = mpp_translate_reg_address(session, mpp_task, fmt, reg, NULL);
if (ret)
goto fail;
cnt = mpp->var->trans_info[fmt].count;
tbl = mpp->var->trans_info[fmt].table;
for (j = 0; j < cnt; j++) {
off = mpp_query_reg_offset_info(&task->off_inf, tbl[j] + ss);
mpp_debug(DEBUG_IOMMU, "reg[%d] + offset %d\n", tbl[j] + ss, off);
reg[tbl[j]] += off;
}
}
if (fd_bs >= 0) {
struct mpp_dma_buffer *bs_buf =
mpp_dma_find_buffer_fd(session->dma, fd_bs);
if (bs_buf && task->offset_bs > 0)
mpp_dma_buf_sync(bs_buf, 0, task->offset_bs, DMA_TO_DEVICE, false);
task->bs_buf = bs_buf;
}
}
rkvenc2_setup_task_id(session->index, task);
task->clk_mode = CLK_MODE_NORMAL;
rkvenc2_check_split_task(task);
mpp_debug_leave();
return mpp_task;
fail:
mpp_task_dump_mem_region(mpp, mpp_task);
mpp_task_dump_reg(mpp, mpp_task);
mpp_task_finalize(session, mpp_task);
/* free class register buffer */
rkvenc_free_class_msg(task);
free_task:
kfree(task);
return NULL;
}
static void *rkvenc2_prepare(struct mpp_dev *mpp, struct mpp_task *mpp_task)
{
struct mpp_taskqueue *queue = mpp->queue;
unsigned long core_idle;
unsigned long flags;
u32 core_id_max;
s32 core_id;
u32 i;
spin_lock_irqsave(&queue->running_lock, flags);
core_idle = queue->core_idle;
core_id_max = queue->core_id_max;
for (i = 0; i <= core_id_max; i++) {
struct mpp_dev *mpp = queue->cores[i];
if (mpp && mpp->disable)
clear_bit(i, &core_idle);
}
core_id = find_first_bit(&core_idle, core_id_max + 1);
if (core_id >= core_id_max + 1 || !queue->cores[core_id]) {
mpp_task = NULL;
mpp_dbg_core("core %d all busy %lx\n", core_id, core_idle);
} else {
struct rkvenc_task *task = to_rkvenc_task(mpp_task);
clear_bit(core_id, &queue->core_idle);
mpp_task->mpp = queue->cores[core_id];
mpp_task->core_id = core_id;
rkvenc2_set_rcbbuf(mpp_task->mpp, mpp_task->session, task);
mpp_dbg_core("core %d set idle %lx -> %lx\n", core_id,
core_idle, queue->core_idle);
}
spin_unlock_irqrestore(&queue->running_lock, flags);
return mpp_task;
}
static void rkvenc2_patch_dchs(struct rkvenc_dev *enc, struct rkvenc_task *task)
{
struct rkvenc_ccu *ccu;
union rkvenc2_dual_core_handshake_id *dchs;
union rkvenc2_dual_core_handshake_id *task_dchs = &task->dchs_id;
int core_num;
int core_id = enc->mpp.core_id;
unsigned long flags;
int i;
if (!enc->ccu)
return;
if (core_id >= RKVENC_MAX_CORE_NUM) {
dev_err(enc->mpp.dev, "invalid core id %d max %d\n",
core_id, RKVENC_MAX_CORE_NUM);
return;
}
ccu = enc->ccu;
dchs = ccu->dchs;
core_num = ccu->core_num;
spin_lock_irqsave(&ccu->lock_dchs, flags);
if (dchs[core_id].working) {
spin_unlock_irqrestore(&ccu->lock_dchs, flags);
mpp_err("can not config when core %d is still working\n", core_id);
return;
}
if (mpp_debug_unlikely(DEBUG_CORE))
pr_info("core tx:rx 0 %s %d:%d %d:%d -- 1 %s %d:%d %d:%d -- task %d %d:%d %d:%d\n",
dchs[0].working ? "work" : "idle",
dchs[0].txid, dchs[0].txe, dchs[0].rxid, dchs[0].rxe,
dchs[1].working ? "work" : "idle",
dchs[1].txid, dchs[1].txe, dchs[1].rxid, dchs[1].rxe,
core_id, task_dchs->txid, task_dchs->txe,
task_dchs->rxid, task_dchs->rxe);
/* always use new id as */
{
struct mpp_task *mpp_task = &task->mpp_task;
unsigned long id_valid = (unsigned long)-1;
int txid_map = -1;
int rxid_map = -1;
/* scan all used id */
for (i = 0; i < core_num; i++) {
if (!dchs[i].working)
continue;
clear_bit(dchs[i].txid_map, &id_valid);
clear_bit(dchs[i].rxid_map, &id_valid);
}
if (task_dchs->rxe) {
for (i = 0; i < core_num; i++) {
if (i == core_id)
continue;
if (!dchs[i].working)
continue;
if (task_dchs->session_id != dchs[i].session_id)
continue;
if (task_dchs->rxid_orig != dchs[i].txid_orig)
continue;
rxid_map = dchs[i].txid_map;
break;
}
}
txid_map = find_first_bit(&id_valid, RKVENC_MAX_DCHS_ID);
if (txid_map == RKVENC_MAX_DCHS_ID) {
spin_unlock_irqrestore(&ccu->lock_dchs, flags);
mpp_err("task %d:%d on core %d failed to find a txid\n",
mpp_task->session->pid, mpp_task->task_id,
mpp_task->core_id);
return;
}
clear_bit(txid_map, &id_valid);
task_dchs->txid_map = txid_map;
if (rxid_map < 0) {
rxid_map = find_first_bit(&id_valid, RKVENC_MAX_DCHS_ID);
if (rxid_map == RKVENC_MAX_DCHS_ID) {
spin_unlock_irqrestore(&ccu->lock_dchs, flags);
mpp_err("task %d:%d on core %d failed to find a rxid\n",
mpp_task->session->pid, mpp_task->task_id,
mpp_task->core_id);
return;
}
task_dchs->rxe_map = 0;
}
task_dchs->rxid_map = rxid_map;
}
task_dchs->txid = task_dchs->txid_map;
task_dchs->rxid = task_dchs->rxid_map;
task_dchs->rxe = task_dchs->rxe_map;
dchs[core_id].val = task_dchs->val;
task->reg[RKVENC_CLASS_PIC].data[DCHS_CLASS_OFFSET] = task_dchs->val;
dchs[core_id].working = 1;
spin_unlock_irqrestore(&ccu->lock_dchs, flags);
}
static void rkvenc2_update_dchs(struct rkvenc_dev *enc, struct rkvenc_task *task)
{
struct rkvenc_ccu *ccu = enc->ccu;
int core_id = enc->mpp.core_id;
unsigned long flags;
if (!ccu)
return;
if (core_id >= RKVENC_MAX_CORE_NUM) {
dev_err(enc->mpp.dev, "invalid core id %d max %d\n",
core_id, RKVENC_MAX_CORE_NUM);
return;
}
spin_lock_irqsave(&ccu->lock_dchs, flags);
ccu->dchs[core_id].val = 0;
if (mpp_debug_unlikely(DEBUG_CORE)) {
union rkvenc2_dual_core_handshake_id *dchs = ccu->dchs;
union rkvenc2_dual_core_handshake_id *task_dchs = &task->dchs_id;
pr_info("core %d task done\n", core_id);
pr_info("core tx:rx 0 %s %d:%d %d:%d -- 1 %s %d:%d %d:%d -- task %d %d:%d %d:%d\n",
dchs[0].working ? "work" : "idle",
dchs[0].txid, dchs[0].txe, dchs[0].rxid, dchs[0].rxe,
dchs[1].working ? "work" : "idle",
dchs[1].txid, dchs[1].txe, dchs[1].rxid, dchs[1].rxe,
core_id, task_dchs->txid, task_dchs->txe,
task_dchs->rxid, task_dchs->rxe);
}
spin_unlock_irqrestore(&ccu->lock_dchs, flags);
}
static int rkvenc_run(struct mpp_dev *mpp, struct mpp_task *mpp_task)
{
u32 i, j;
u32 start_val = 0;
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
struct rkvenc_task *task = to_rkvenc_task(mpp_task);
struct rkvenc_hw_info *hw = enc->hw_info;
u32 timing_en = mpp->srv->timing_en;
mpp_debug_enter();
/* Add force clear to avoid pagefault */
mpp_write(mpp, hw->enc_clr_base, 0x2);
udelay(5);
mpp_write(mpp, hw->enc_clr_base, 0x0);
/* clear hardware counter */
mpp_write_relaxed(mpp, 0x5300, 0x2);
rkvenc2_patch_dchs(enc, task);
for (i = 0; i < task->w_req_cnt; i++) {
int ret;
u32 s, e, off;
u32 *regs;
struct mpp_request msg;
struct mpp_request *req = &task->w_reqs[i];
ret = rkvenc_get_class_msg(task, req->offset, &msg);
if (ret)
return -EINVAL;
s = (req->offset - msg.offset) / sizeof(u32);
e = s + req->size / sizeof(u32);
regs = (u32 *)msg.data;
for (j = s; j < e; j++) {
off = msg.offset + j * sizeof(u32);
if (off == enc->hw_info->enc_start_base) {
start_val = regs[j];
continue;
}
mpp_write_relaxed(mpp, off, regs[j]);
}
}
if (mpp_debug_unlikely(DEBUG_CORE))
dev_info(mpp->dev, "core %d dchs %08x\n", mpp->core_id,
mpp_read_relaxed(&enc->mpp, DCHS_REG_OFFSET));
/* flush tlb before starting hardware */
mpp_iommu_flush_tlb(mpp->iommu_info);
/* init current task */
mpp->cur_task = mpp_task;
mpp_task_run_begin(mpp_task, timing_en, MPP_WORK_TIMEOUT_DELAY);
/* Flush the register before the start the device */
wmb();
mpp_write(mpp, enc->hw_info->enc_start_base, start_val);
mpp_task_run_end(mpp_task, timing_en);
mpp_debug_leave();
return 0;
}
static void rkvenc2_read_slice_len(struct mpp_dev *mpp, struct rkvenc_task *task)
{
u32 last = mpp_read_relaxed(mpp, 0x002c) & INT_STA_ENC_DONE_STA;
u32 sli_num = mpp_read_relaxed(mpp, RKVENC2_REG_SLICE_NUM_BASE);
union rkvenc2_slice_len_info slice_info;
u32 task_id = task->mpp_task.task_id;
u32 i;
mpp_dbg_slice("task %d wr %3d len start %s\n", task_id,
sli_num, last ? "last" : "");
for (i = 0; i < sli_num; i++) {
slice_info.val = mpp_read_relaxed(mpp, RKVENC2_REG_SLICE_LEN_BASE);
if (last && i == sli_num - 1) {
task->last_slice_found = 1;
slice_info.last = 1;
}
mpp_dbg_slice("task %d wr %3d len %d %s\n", task_id,
task->slice_wr_cnt, slice_info.slice_len,
slice_info.last ? "last" : "");
kfifo_in(&task->slice_info, &slice_info, 1);
task->slice_wr_cnt++;
}
/* Fixup for async between last flag and slice number register */
if (last && !task->last_slice_found) {
mpp_dbg_slice("task %d mark last slice\n", task_id);
slice_info.last = 1;
slice_info.slice_len = 0;
kfifo_in(&task->slice_info, &slice_info, 1);
}
}
static int rkvenc_irq(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
struct rkvenc_hw_info *hw = enc->hw_info;
struct mpp_task *mpp_task = NULL;
struct rkvenc_task *task = NULL;
u32 int_clear = 1;
u32 irq_mask = 0;
int ret = IRQ_NONE;
mpp_debug_enter();
mpp->irq_status = mpp_read(mpp, hw->int_sta_base);
if (!mpp->irq_status)
return ret;
if (mpp->cur_task) {
mpp_task = mpp->cur_task;
task = to_rkvenc_task(mpp_task);
}
if (mpp->irq_status & INT_STA_ENC_DONE_STA) {
if (task) {
if (task->task_split)
rkvenc2_read_slice_len(mpp, task);
wake_up(&mpp_task->wait);
}
irq_mask = INT_STA_ENC_DONE_STA;
ret = IRQ_WAKE_THREAD;
if (enc->bs_overflow) {
mpp->irq_status |= INT_STA_BSF_OFLW_STA;
enc->bs_overflow = 0;
}
} else if (mpp->irq_status & INT_STA_SLC_DONE_STA) {
if (task && task->task_split) {
mpp_time_part_diff(mpp_task);
rkvenc2_read_slice_len(mpp, task);
wake_up(&mpp_task->wait);
}
irq_mask = INT_STA_ENC_DONE_STA;
int_clear = 0;
} else if (mpp->irq_status & INT_STA_BSF_OFLW_STA) {
u32 bs_rd = mpp_read(mpp, RKVENC2_REG_ADR_BSBR);
u32 bs_wr = mpp_read(mpp, RKVENC2_REG_ST_BSB);
u32 bs_top = mpp_read(mpp, RKVENC2_REG_ADR_BSBT);
u32 bs_bot = mpp_read(mpp, RKVENC2_REG_ADR_BSBB);
if (mpp_task)
dev_err(mpp->dev, "task %d found bitstream overflow [%#08x %#08x %#08x %#08x]\n",
mpp_task->task_index, bs_top, bs_bot, bs_wr, bs_rd);
bs_wr += 128;
if (bs_wr >= bs_top)
bs_wr = bs_bot;
/* clear int first */
mpp_write(mpp, hw->int_clr_base, mpp->irq_status);
/* update write addr for enc continue */
mpp_write(mpp, RKVENC2_REG_ADR_BSBS, bs_wr);
enc->bs_overflow = 1;
irq_mask = 0;
int_clear = 0;
ret = IRQ_HANDLED;
} else {
dev_err(mpp->dev, "found error status %08x\n", mpp->irq_status);
irq_mask = mpp->irq_status;
ret = IRQ_WAKE_THREAD;
}
if (irq_mask)
mpp_write(mpp, hw->int_mask_base, irq_mask);
if (int_clear) {
mpp_write(mpp, hw->int_clr_base, mpp->irq_status);
udelay(5);
mpp_write(mpp, hw->int_sta_base, 0);
}
mpp_debug_leave();
return ret;
}
static int rkvenc_isr(struct mpp_dev *mpp)
{
struct rkvenc_task *task;
struct mpp_task *mpp_task;
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
struct mpp_taskqueue *queue = mpp->queue;
unsigned long core_idle;
mpp_debug_enter();
/* FIXME use a spin lock here */
if (!mpp->cur_task) {
dev_err(mpp->dev, "no current task\n");
return IRQ_HANDLED;
}
mpp_task = mpp->cur_task;
mpp_time_diff(mpp_task);
mpp->cur_task = NULL;
if (mpp_task->mpp && mpp_task->mpp != mpp)
dev_err(mpp->dev, "mismatch core dev %p:%p\n", mpp_task->mpp, mpp);
task = to_rkvenc_task(mpp_task);
task->irq_status = mpp->irq_status;
rkvenc2_update_dchs(enc, task);
mpp_debug(DEBUG_IRQ_STATUS, "%s irq_status: %08x\n",
dev_name(mpp->dev), task->irq_status);
if (task->irq_status & enc->hw_info->err_mask) {
atomic_inc(&mpp->reset_request);
/* dump register */
if (mpp_debug_unlikely(DEBUG_DUMP_ERR_REG))
mpp_task_dump_hw_reg(mpp);
}
mpp_task_finish(mpp_task->session, mpp_task);
core_idle = queue->core_idle;
set_bit(mpp->core_id, &queue->core_idle);
mpp_dbg_core("core %d isr idle %lx -> %lx\n", mpp->core_id, core_idle,
queue->core_idle);
mpp_debug_leave();
return IRQ_HANDLED;
}
static int rkvenc_finish(struct mpp_dev *mpp, struct mpp_task *mpp_task)
{
u32 i, j;
u32 *reg;
struct rkvenc_task *task = to_rkvenc_task(mpp_task);
mpp_debug_enter();
for (i = 0; i < task->r_req_cnt; i++) {
int ret;
int s, e;
struct mpp_request msg;
struct mpp_request *req = &task->r_reqs[i];
ret = rkvenc_get_class_msg(task, req->offset, &msg);
if (ret)
return -EINVAL;
s = (req->offset - msg.offset) / sizeof(u32);
e = s + req->size / sizeof(u32);
reg = (u32 *)msg.data;
for (j = s; j < e; j++)
reg[j] = mpp_read_relaxed(mpp, msg.offset + j * sizeof(u32));
}
if (task->bs_buf) {
u32 bs_size = mpp_read(mpp, 0x4064);
mpp_dma_buf_sync(task->bs_buf, 0, bs_size / 8 + task->offset_bs,
DMA_FROM_DEVICE, true);
}
/* revert hack for irq status */
reg = rkvenc_get_class_reg(task, task->hw_info->int_sta_base);
if (reg)
*reg = task->irq_status;
mpp_debug_leave();
return 0;
}
static int rkvenc_result(struct mpp_dev *mpp,
struct mpp_task *mpp_task,
struct mpp_task_msgs *msgs)
{
u32 i;
struct rkvenc_task *task = to_rkvenc_task(mpp_task);
mpp_debug_enter();
for (i = 0; i < task->r_req_cnt; i++) {
struct mpp_request *req = &task->r_reqs[i];
u32 *reg = rkvenc_get_class_reg(task, req->offset);
if (!reg)
return -EINVAL;
if (copy_to_user(req->data, reg, req->size)) {
mpp_err("copy_to_user reg fail\n");
return -EIO;
}
}
mpp_debug_leave();
return 0;
}
static int rkvenc_free_task(struct mpp_session *session,
struct mpp_task *mpp_task)
{
struct rkvenc_task *task = to_rkvenc_task(mpp_task);
mpp_task_finalize(session, mpp_task);
rkvenc_free_class_msg(task);
kfree(task);
return 0;
}
static int rkvenc_control(struct mpp_session *session, struct mpp_request *req)
{
switch (req->cmd) {
case MPP_CMD_SEND_CODEC_INFO: {
int i;
int cnt;
struct codec_info_elem elem;
struct rkvenc2_session_priv *priv;
if (!session || !session->priv) {
mpp_err("session info null\n");
return -EINVAL;
}
priv = session->priv;
cnt = req->size / sizeof(elem);
cnt = (cnt > ENC_INFO_BUTT) ? ENC_INFO_BUTT : cnt;
mpp_debug(DEBUG_IOCTL, "codec info count %d\n", cnt);
for (i = 0; i < cnt; i++) {
if (copy_from_user(&elem, req->data + i * sizeof(elem), sizeof(elem))) {
mpp_err("copy_from_user failed\n");
continue;
}
if (elem.type > ENC_INFO_BASE && elem.type < ENC_INFO_BUTT &&
elem.flag > CODEC_INFO_FLAG_NULL && elem.flag < CODEC_INFO_FLAG_BUTT) {
elem.type = array_index_nospec(elem.type, ENC_INFO_BUTT);
priv->codec_info[elem.type].flag = elem.flag;
priv->codec_info[elem.type].val = elem.data;
} else {
mpp_err("codec info invalid, type %d, flag %d\n",
elem.type, elem.flag);
}
}
} break;
default: {
mpp_err("unknown mpp ioctl cmd %x\n", req->cmd);
} break;
}
return 0;
}
static int rkvenc_free_session(struct mpp_session *session)
{
if (session && session->priv) {
kfree(session->priv);
session->priv = NULL;
}
return 0;
}
static int rkvenc_init_session(struct mpp_session *session)
{
struct rkvenc2_session_priv *priv;
if (!session) {
mpp_err("session is null\n");
return -EINVAL;
}
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
init_rwsem(&priv->rw_sem);
session->priv = priv;
return 0;
}
#ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
static int rkvenc_procfs_remove(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
if (enc->procfs) {
proc_remove(enc->procfs);
enc->procfs = NULL;
}
return 0;
}
static int rkvenc_dump_session(struct mpp_session *session, struct seq_file *seq)
{
int i;
struct rkvenc2_session_priv *priv = session->priv;
down_read(&priv->rw_sem);
/* item name */
seq_puts(seq, "------------------------------------------------------");
seq_puts(seq, "------------------------------------------------------\n");
seq_printf(seq, "|%8s|", (const char *)"session");
seq_printf(seq, "%8s|", (const char *)"device");
for (i = ENC_INFO_BASE; i < ENC_INFO_BUTT; i++) {
bool show = priv->codec_info[i].flag;
if (show)
seq_printf(seq, "%8s|", enc_info_item_name[i]);
}
seq_puts(seq, "\n");
/* item data*/
seq_printf(seq, "|%8d|", session->index);
seq_printf(seq, "%8s|", mpp_device_name[session->device_type]);
for (i = ENC_INFO_BASE; i < ENC_INFO_BUTT; i++) {
u32 flag = priv->codec_info[i].flag;
if (!flag)
continue;
if (flag == CODEC_INFO_FLAG_NUMBER) {
u32 data = priv->codec_info[i].val;
seq_printf(seq, "%8d|", data);
} else if (flag == CODEC_INFO_FLAG_STRING) {
const char *name = (const char *)&priv->codec_info[i].val;
seq_printf(seq, "%8s|", name);
} else {
seq_printf(seq, "%8s|", (const char *)"null");
}
}
seq_puts(seq, "\n");
up_read(&priv->rw_sem);
return 0;
}
static int rkvenc_show_session_info(struct seq_file *seq, void *offset)
{
struct mpp_session *session = NULL, *n;
struct mpp_dev *mpp = seq->private;
mutex_lock(&mpp->srv->session_lock);
list_for_each_entry_safe(session, n,
&mpp->srv->session_list,
service_link) {
if (session->device_type != MPP_DEVICE_RKVENC)
continue;
if (!session->priv)
continue;
if (mpp->dev_ops->dump_session)
mpp->dev_ops->dump_session(session, seq);
}
mutex_unlock(&mpp->srv->session_lock);
return 0;
}
static int rkvenc_procfs_init(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
char name[32];
if (!mpp->dev || !mpp->dev->of_node || !mpp->dev->of_node->name ||
!mpp->srv || !mpp->srv->procfs)
return -EINVAL;
snprintf(name, sizeof(name) - 1, "%s%d",
mpp->dev->of_node->name, mpp->core_id);
enc->procfs = proc_mkdir(name, mpp->srv->procfs);
if (IS_ERR_OR_NULL(enc->procfs)) {
mpp_err("failed on open procfs\n");
enc->procfs = NULL;
return -EIO;
}
/* for common mpp_dev options */
mpp_procfs_create_common(enc->procfs, mpp);
/* for debug */
mpp_procfs_create_u32("aclk", 0644,
enc->procfs, &enc->aclk_info.debug_rate_hz);
mpp_procfs_create_u32("clk_core", 0644,
enc->procfs, &enc->core_clk_info.debug_rate_hz);
mpp_procfs_create_u32("session_buffers", 0644,
enc->procfs, &mpp->session_max_buffers);
/* for show session info */
proc_create_single_data("sessions-info", 0444,
enc->procfs, rkvenc_show_session_info, mpp);
return 0;
}
static int rkvenc_procfs_ccu_init(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
if (!enc->procfs)
goto done;
done:
return 0;
}
#else
static inline int rkvenc_procfs_remove(struct mpp_dev *mpp)
{
return 0;
}
static inline int rkvenc_procfs_init(struct mpp_dev *mpp)
{
return 0;
}
static inline int rkvenc_procfs_ccu_init(struct mpp_dev *mpp)
{
return 0;
}
#endif
#ifdef CONFIG_PM_DEVFREQ
static int rk3588_venc_set_read_margin(struct device *dev,
struct rockchip_opp_info *opp_info,
u32 rm)
{
if (!opp_info->grf || !opp_info->volt_rm_tbl)
return 0;
if (rm == opp_info->current_rm || rm == UINT_MAX)
return 0;
dev_dbg(dev, "set rm to %d\n", rm);
regmap_write(opp_info->grf, 0x214, 0x001c0000 | (rm << 2));
regmap_write(opp_info->grf, 0x218, 0x001c0000 | (rm << 2));
regmap_write(opp_info->grf, 0x220, 0x003c0000 | (rm << 2));
regmap_write(opp_info->grf, 0x224, 0x003c0000 | (rm << 2));
opp_info->current_rm = rm;
return 0;
}
static const struct rockchip_opp_data rk3588_venc_opp_data = {
.set_read_margin = rk3588_venc_set_read_margin,
};
static const struct of_device_id rockchip_rkvenc_of_match[] = {
{
.compatible = "rockchip,rk3588",
.data = (void *)&rk3588_venc_opp_data,
},
{},
};
static struct monitor_dev_profile venc_mdevp = {
.type = MONITOR_TYPE_DEV,
.update_volt = rockchip_monitor_check_rate_volt,
};
static int rkvenc_devfreq_init(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
struct clk *clk_core = enc->core_clk_info.clk;
struct device *dev = mpp->dev;
struct opp_table *reg_table = NULL;
struct opp_table *clk_table = NULL;
const char *const reg_names[] = { "venc", "mem" };
int ret = 0;
if (!clk_core)
return 0;
if (of_find_property(dev->of_node, "venc-supply", NULL) &&
of_find_property(dev->of_node, "mem-supply", NULL)) {
reg_table = dev_pm_opp_set_regulators(dev, reg_names, 2);
if (IS_ERR(reg_table))
return PTR_ERR(reg_table);
} else {
reg_table = dev_pm_opp_set_regulators(dev, reg_names, 1);
if (IS_ERR(reg_table))
return PTR_ERR(reg_table);
}
clk_table = dev_pm_opp_set_clkname(dev, "clk_core");
if (IS_ERR(clk_table))
return PTR_ERR(clk_table);
rockchip_get_opp_data(rockchip_rkvenc_of_match, &enc->opp_info);
ret = rockchip_init_opp_table(dev, &enc->opp_info, "leakage", "venc");
if (ret) {
dev_err(dev, "failed to init_opp_table\n");
return ret;
}
enc->mdev_info = rockchip_system_monitor_register(dev, &venc_mdevp);
if (IS_ERR(enc->mdev_info)) {
dev_dbg(dev, "without system monitor\n");
enc->mdev_info = NULL;
}
return ret;
}
static int rkvenc_devfreq_remove(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
if (enc->mdev_info)
rockchip_system_monitor_unregister(enc->mdev_info);
return 0;
}
#endif
static int rkvenc_init(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
int ret = 0;
mpp->grf_info = &mpp->srv->grf_infos[MPP_DRIVER_RKVENC];
/* Get clock info from dtsi */
ret = mpp_get_clk_info(mpp, &enc->aclk_info, "aclk_vcodec");
if (ret)
mpp_err("failed on clk_get aclk_vcodec\n");
ret = mpp_get_clk_info(mpp, &enc->hclk_info, "hclk_vcodec");
if (ret)
mpp_err("failed on clk_get hclk_vcodec\n");
ret = mpp_get_clk_info(mpp, &enc->core_clk_info, "clk_core");
if (ret)
mpp_err("failed on clk_get clk_core\n");
/* Get normal max workload from dtsi */
of_property_read_u32(mpp->dev->of_node,
"rockchip,default-max-load",
&enc->default_max_load);
/* Set default rates */
mpp_set_clk_info_rate_hz(&enc->aclk_info, CLK_MODE_DEFAULT, 300 * MHZ);
mpp_set_clk_info_rate_hz(&enc->core_clk_info, CLK_MODE_DEFAULT, 600 * MHZ);
/* Get reset control from dtsi */
enc->rst_a = mpp_reset_control_get(mpp, RST_TYPE_A, "video_a");
if (!enc->rst_a)
mpp_err("No aclk reset resource define\n");
enc->rst_h = mpp_reset_control_get(mpp, RST_TYPE_H, "video_h");
if (!enc->rst_h)
mpp_err("No hclk reset resource define\n");
enc->rst_core = mpp_reset_control_get(mpp, RST_TYPE_CORE, "video_core");
if (!enc->rst_core)
mpp_err("No core reset resource define\n");
#ifdef CONFIG_PM_DEVFREQ
ret = rkvenc_devfreq_init(mpp);
if (ret)
mpp_err("failed to add venc devfreq\n");
#endif
return 0;
}
static int rkvenc_exit(struct mpp_dev *mpp)
{
#ifdef CONFIG_PM_DEVFREQ
rkvenc_devfreq_remove(mpp);
#endif
return 0;
}
static int rkvenc_soft_reset(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
struct rkvenc_hw_info *hw = enc->hw_info;
u32 rst_status = 0;
int ret = 0;
/* safe reset */
mpp_write(mpp, hw->int_mask_base, 0x3FF);
mpp_write(mpp, hw->enc_clr_base, 0x1);
ret = readl_relaxed_poll_timeout(mpp->reg_base + hw->int_sta_base,
rst_status,
rst_status & RKVENC_SCLR_DONE_STA,
0, 5);
mpp_write(mpp, hw->int_clr_base, 0xffffffff);
mpp_write(mpp, hw->int_sta_base, 0);
return ret;
}
static int rkvenc_reset(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
int ret = 0;
struct mpp_taskqueue *queue = mpp->queue;
mpp_debug_enter();
/* safe reset first*/
ret = rkvenc_soft_reset(mpp);
/* cru reset */
if (ret && enc->rst_a && enc->rst_h && enc->rst_core) {
mpp_err("soft reset timeout, use cru reset\n");
mpp_pmu_idle_request(mpp, true);
mpp_safe_reset(enc->rst_a);
mpp_safe_reset(enc->rst_h);
mpp_safe_reset(enc->rst_core);
udelay(5);
mpp_safe_unreset(enc->rst_a);
mpp_safe_unreset(enc->rst_h);
mpp_safe_unreset(enc->rst_core);
mpp_pmu_idle_request(mpp, false);
}
set_bit(mpp->core_id, &queue->core_idle);
if (enc->ccu)
enc->ccu->dchs[mpp->core_id].val = 0;
mpp_dbg_core("core %d reset idle %lx\n", mpp->core_id, queue->core_idle);
mpp_debug_leave();
return 0;
}
static int rkvenc_clk_on(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
mpp_clk_safe_enable(enc->aclk_info.clk);
mpp_clk_safe_enable(enc->hclk_info.clk);
mpp_clk_safe_enable(enc->core_clk_info.clk);
return 0;
}
static int rkvenc_clk_off(struct mpp_dev *mpp)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
clk_disable_unprepare(enc->aclk_info.clk);
clk_disable_unprepare(enc->hclk_info.clk);
clk_disable_unprepare(enc->core_clk_info.clk);
return 0;
}
static int rkvenc_set_freq(struct mpp_dev *mpp, struct mpp_task *mpp_task)
{
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
struct rkvenc_task *task = to_rkvenc_task(mpp_task);
mpp_clk_set_rate(&enc->aclk_info, task->clk_mode);
mpp_clk_set_rate(&enc->core_clk_info, task->clk_mode);
return 0;
}
#define RKVENC2_WORK_TIMEOUT_DELAY (200)
#define RKVENC2_WAIT_TIMEOUT_DELAY (2000)
static void rkvenc2_task_pop_pending(struct mpp_task *task)
{
struct mpp_session *session = task->session;
mutex_lock(&session->pending_lock);
list_del_init(&task->pending_link);
mutex_unlock(&session->pending_lock);
kref_put(&task->ref, mpp_free_task);
}
static int rkvenc2_task_default_process(struct mpp_dev *mpp,
struct mpp_task *task)
{
int ret = 0;
if (mpp->dev_ops && mpp->dev_ops->result)
ret = mpp->dev_ops->result(mpp, task, NULL);
mpp_debug_func(DEBUG_TASK_INFO, "kref_read %d, ret %d\n",
kref_read(&task->ref), ret);
rkvenc2_task_pop_pending(task);
return ret;
}
#define RKVENC2_TIMEOUT_DUMP_REG_START (0x5100)
#define RKVENC2_TIMEOUT_DUMP_REG_END (0x5160)
static void rkvenc2_task_timeout_process(struct mpp_session *session,
struct mpp_task *task)
{
atomic_inc(&task->abort_request);
set_bit(TASK_STATE_ABORT, &task->state);
mpp_err("session %d:%d count %d task %d ref %d timeout\n",
session->pid, session->index, atomic_read(&session->task_count),
task->task_id, kref_read(&task->ref));
if (task->mpp) {
struct mpp_dev *mpp = task->mpp;
u32 start = RKVENC2_TIMEOUT_DUMP_REG_START;
u32 end = RKVENC2_TIMEOUT_DUMP_REG_END;
u32 offset;
dev_err(mpp->dev, "core %d dump timeout status:\n", mpp->core_id);
for (offset = start; offset < end; offset += sizeof(u32))
mpp_reg_show(mpp, offset);
}
rkvenc2_task_pop_pending(task);
}
static int rkvenc2_wait_result(struct mpp_session *session,
struct mpp_task_msgs *msgs)
{
struct rkvenc_poll_slice_cfg cfg;
struct rkvenc_task *enc_task;
struct mpp_request *req;
struct mpp_task *task;
struct mpp_dev *mpp;
union rkvenc2_slice_len_info slice_info;
u32 task_id;
int ret = 0;
mutex_lock(&session->pending_lock);
task = list_first_entry_or_null(&session->pending_list,
struct mpp_task,
pending_link);
mutex_unlock(&session->pending_lock);
if (!task) {
mpp_err("session %p pending list is empty!\n", session);
return -EIO;
}
mpp = mpp_get_task_used_device(task, session);
enc_task = to_rkvenc_task(task);
task_id = task->task_id;
req = cmpxchg(&msgs->poll_req, msgs->poll_req, NULL);
if (!enc_task->task_split || enc_task->task_split_done) {
task_done_ret:
ret = wait_event_interruptible(task->wait, test_bit(TASK_STATE_DONE, &task->state));
if (ret == -ERESTARTSYS)
mpp_err("wait task break by signal in normal mode\n");
return rkvenc2_task_default_process(mpp, task);
}
/* not slice return just wait all slice length */
if (!req) {
do {
ret = wait_event_interruptible(task->wait, kfifo_out(&enc_task->slice_info,
&slice_info, 1));
if (ret == -ERESTARTSYS) {
mpp_err("wait task break by signal in slice all mode\n");
return 0;
}
mpp_dbg_slice("task %d rd %3d len %d %s\n",
task_id, enc_task->slice_rd_cnt, slice_info.slice_len,
slice_info.last ? "last" : "");
enc_task->slice_rd_cnt++;
if (slice_info.last)
goto task_done_ret;
} while (1);
}
if (copy_from_user(&cfg, req->data, sizeof(cfg))) {
mpp_err("copy_from_user failed\n");
return -EINVAL;
}
mpp_dbg_slice("task %d poll irq %d:%d\n", task->task_id,
cfg.count_max, cfg.count_ret);
cfg.count_ret = 0;
/* handle slice mode poll return */
do {
ret = wait_event_interruptible(task->wait, kfifo_out(&enc_task->slice_info,
&slice_info, 1));
if (ret == -ERESTARTSYS) {
mpp_err("wait task break by signal in slice one mode\n");
return 0;
}
mpp_dbg_slice("core %d task %d rd %3d len %d %s\n", task_id,
mpp->core_id, enc_task->slice_rd_cnt, slice_info.slice_len,
slice_info.last ? "last" : "");
enc_task->slice_rd_cnt++;
if (cfg.count_ret < cfg.count_max) {
struct rkvenc_poll_slice_cfg __user *ucfg =
(struct rkvenc_poll_slice_cfg __user *)(req->data);
u32 __user *dst = (u32 __user *)(ucfg + 1);
/* Do NOT return here when put_user error. Just continue */
if (put_user(slice_info.val, dst + cfg.count_ret))
ret = -EFAULT;
cfg.count_ret++;
if (put_user(cfg.count_ret, &ucfg->count_ret))
ret = -EFAULT;
}
if (slice_info.last) {
enc_task->task_split_done = 1;
goto task_done_ret;
}
if (cfg.count_ret >= cfg.count_max)
return 0;
if (ret < 0)
return ret;
} while (ret > 0);
rkvenc2_task_timeout_process(session, task);
return ret;
}
static struct mpp_hw_ops rkvenc_hw_ops = {
.init = rkvenc_init,
.exit = rkvenc_exit,
.clk_on = rkvenc_clk_on,
.clk_off = rkvenc_clk_off,
.set_freq = rkvenc_set_freq,
.reset = rkvenc_reset,
};
static struct mpp_dev_ops rkvenc_dev_ops_v2 = {
.wait_result = rkvenc2_wait_result,
.alloc_task = rkvenc_alloc_task,
.run = rkvenc_run,
.irq = rkvenc_irq,
.isr = rkvenc_isr,
.finish = rkvenc_finish,
.result = rkvenc_result,
.free_task = rkvenc_free_task,
.ioctl = rkvenc_control,
.init_session = rkvenc_init_session,
.free_session = rkvenc_free_session,
.dump_session = rkvenc_dump_session,
};
static struct mpp_dev_ops rkvenc_ccu_dev_ops = {
.wait_result = rkvenc2_wait_result,
.alloc_task = rkvenc_alloc_task,
.prepare = rkvenc2_prepare,
.run = rkvenc_run,
.irq = rkvenc_irq,
.isr = rkvenc_isr,
.finish = rkvenc_finish,
.result = rkvenc_result,
.free_task = rkvenc_free_task,
.ioctl = rkvenc_control,
.init_session = rkvenc_init_session,
.free_session = rkvenc_free_session,
.dump_session = rkvenc_dump_session,
};
static const struct mpp_dev_var rkvenc_v2_data = {
.device_type = MPP_DEVICE_RKVENC,
.hw_info = &rkvenc_v2_hw_info.hw,
.trans_info = trans_rkvenc_v2,
.hw_ops = &rkvenc_hw_ops,
.dev_ops = &rkvenc_dev_ops_v2,
};
static const struct mpp_dev_var rkvenc_540c_data = {
.device_type = MPP_DEVICE_RKVENC,
.hw_info = &rkvenc_540c_hw_info.hw,
.trans_info = trans_rkvenc_540c,
.hw_ops = &rkvenc_hw_ops,
.dev_ops = &rkvenc_dev_ops_v2,
};
static const struct mpp_dev_var rkvenc_ccu_data = {
.device_type = MPP_DEVICE_RKVENC,
.hw_info = &rkvenc_v2_hw_info.hw,
.trans_info = trans_rkvenc_v2,
.hw_ops = &rkvenc_hw_ops,
.dev_ops = &rkvenc_ccu_dev_ops,
};
static const struct of_device_id mpp_rkvenc_dt_match[] = {
{
.compatible = "rockchip,rkv-encoder-v2",
.data = &rkvenc_v2_data,
},
#ifdef CONFIG_CPU_RK3528
{
.compatible = "rockchip,rkv-encoder-rk3528",
.data = &rkvenc_540c_data,
},
#endif
#ifdef CONFIG_CPU_RK3562
{
.compatible = "rockchip,rkv-encoder-rk3562",
.data = &rkvenc_540c_data,
},
#endif
#ifdef CONFIG_CPU_RK3588
{
.compatible = "rockchip,rkv-encoder-v2-core",
.data = &rkvenc_ccu_data,
},
{
.compatible = "rockchip,rkv-encoder-v2-ccu",
},
#endif
{},
};
static int rkvenc_ccu_probe(struct platform_device *pdev)
{
struct rkvenc_ccu *ccu;
struct device *dev = &pdev->dev;
ccu = devm_kzalloc(dev, sizeof(*ccu), GFP_KERNEL);
if (!ccu)
return -ENOMEM;
platform_set_drvdata(pdev, ccu);
mutex_init(&ccu->lock);
INIT_LIST_HEAD(&ccu->core_list);
spin_lock_init(&ccu->lock_dchs);
return 0;
}
static int rkvenc_attach_ccu(struct device *dev, struct rkvenc_dev *enc)
{
struct device_node *np;
struct platform_device *pdev;
struct rkvenc_ccu *ccu;
mpp_debug_enter();
np = of_parse_phandle(dev->of_node, "rockchip,ccu", 0);
if (!np || !of_device_is_available(np))
return -ENODEV;
pdev = of_find_device_by_node(np);
of_node_put(np);
if (!pdev)
return -ENODEV;
ccu = platform_get_drvdata(pdev);
if (!ccu)
return -ENOMEM;
INIT_LIST_HEAD(&enc->core_link);
mutex_lock(&ccu->lock);
ccu->core_num++;
list_add_tail(&enc->core_link, &ccu->core_list);
mutex_unlock(&ccu->lock);
/* attach the ccu-domain to current core */
if (!ccu->main_core) {
/**
* set the first device for the main-core,
* then the domain of the main-core named ccu-domain
*/
ccu->main_core = &enc->mpp;
} else {
struct mpp_iommu_info *ccu_info, *cur_info;
/* set the ccu-domain for current device */
ccu_info = ccu->main_core->iommu_info;
cur_info = enc->mpp.iommu_info;
if (cur_info) {
cur_info->domain = ccu_info->domain;
cur_info->rw_sem = ccu_info->rw_sem;
}
mpp_iommu_attach(cur_info);
/* increase main core message capacity */
ccu->main_core->msgs_cap++;
enc->mpp.msgs_cap = 0;
}
enc->ccu = ccu;
dev_info(dev, "attach ccu as core %d\n", enc->mpp.core_id);
mpp_debug_enter();
return 0;
}
static int rkvenc2_alloc_rcbbuf(struct platform_device *pdev, struct rkvenc_dev *enc)
{
int ret;
u32 vals[2];
dma_addr_t iova;
u32 sram_used, sram_size;
struct device_node *sram_np;
struct resource sram_res;
resource_size_t sram_start, sram_end;
struct iommu_domain *domain;
struct device *dev = &pdev->dev;
/* get rcb iova start and size */
ret = device_property_read_u32_array(dev, "rockchip,rcb-iova", vals, 2);
if (ret)
return ret;
iova = PAGE_ALIGN(vals[0]);
sram_used = PAGE_ALIGN(vals[1]);
if (!sram_used) {
dev_err(dev, "sram rcb invalid.\n");
return -EINVAL;
}
/* alloc reserve iova for rcb */
ret = iommu_dma_reserve_iova(dev, iova, sram_used);
if (ret) {
dev_err(dev, "alloc rcb iova error.\n");
return ret;
}
/* get sram device node */
sram_np = of_parse_phandle(dev->of_node, "rockchip,sram", 0);
if (!sram_np) {
dev_err(dev, "could not find phandle sram\n");
return -ENODEV;
}
/* get sram start and size */
ret = of_address_to_resource(sram_np, 0, &sram_res);
of_node_put(sram_np);
if (ret) {
dev_err(dev, "find sram res error\n");
return ret;
}
/* check sram start and size is PAGE_SIZE align */
sram_start = round_up(sram_res.start, PAGE_SIZE);
sram_end = round_down(sram_res.start + resource_size(&sram_res), PAGE_SIZE);
if (sram_end <= sram_start) {
dev_err(dev, "no available sram, phy_start %pa, phy_end %pa\n",
&sram_start, &sram_end);
return -ENOMEM;
}
sram_size = sram_end - sram_start;
sram_size = sram_used < sram_size ? sram_used : sram_size;
/* iova map to sram */
domain = enc->mpp.iommu_info->domain;
ret = iommu_map(domain, iova, sram_start, sram_size, IOMMU_READ | IOMMU_WRITE);
if (ret) {
dev_err(dev, "sram iommu_map error.\n");
return ret;
}
/* alloc dma for the remaining buffer, sram + dma */
if (sram_size < sram_used) {
struct page *page;
size_t page_size = PAGE_ALIGN(sram_used - sram_size);
page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(page_size));
if (!page) {
dev_err(dev, "unable to allocate pages\n");
ret = -ENOMEM;
goto err_sram_map;
}
/* iova map to dma */
ret = iommu_map(domain, iova + sram_size, page_to_phys(page),
page_size, IOMMU_READ | IOMMU_WRITE);
if (ret) {
dev_err(dev, "page iommu_map error.\n");
__free_pages(page, get_order(page_size));
goto err_sram_map;
}
enc->rcb_page = page;
}
enc->sram_size = sram_size;
enc->sram_used = sram_used;
enc->sram_iova = iova;
enc->sram_enabled = -1;
dev_info(dev, "sram_start %pa\n", &sram_start);
dev_info(dev, "sram_iova %pad\n", &enc->sram_iova);
dev_info(dev, "sram_size %u\n", enc->sram_size);
dev_info(dev, "sram_used %u\n", enc->sram_used);
return 0;
err_sram_map:
iommu_unmap(domain, iova, sram_size);
return ret;
}
static int rkvenc2_iommu_fault_handle(struct iommu_domain *iommu,
struct device *iommu_dev,
unsigned long iova, int status, void *arg)
{
struct mpp_dev *mpp = (struct mpp_dev *)arg;
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
struct mpp_task *mpp_task = mpp->cur_task;
dev_info(mpp->dev, "core %d page fault found dchs %08x\n",
mpp->core_id, mpp_read_relaxed(&enc->mpp, DCHS_REG_OFFSET));
if (mpp_task)
mpp_task_dump_mem_region(mpp, mpp_task);
return 0;
}
static int rkvenc_core_probe(struct platform_device *pdev)
{
int ret = 0;
struct device *dev = &pdev->dev;
struct rkvenc_dev *enc = NULL;
struct mpp_dev *mpp = NULL;
enc = devm_kzalloc(dev, sizeof(*enc), GFP_KERNEL);
if (!enc)
return -ENOMEM;
mpp = &enc->mpp;
platform_set_drvdata(pdev, mpp);
if (pdev->dev.of_node) {
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *match = NULL;
match = of_match_node(mpp_rkvenc_dt_match, np);
if (match)
mpp->var = (struct mpp_dev_var *)match->data;
mpp->core_id = of_alias_get_id(np, "rkvenc");
}
ret = mpp_dev_probe(mpp, pdev);
if (ret)
return ret;
/* attach core to ccu */
ret = rkvenc_attach_ccu(dev, enc);
if (ret) {
dev_err(dev, "attach ccu failed\n");
return ret;
}
rkvenc2_alloc_rcbbuf(pdev, enc);
ret = devm_request_threaded_irq(dev, mpp->irq,
mpp_dev_irq,
mpp_dev_isr_sched,
IRQF_SHARED,
dev_name(dev), mpp);
if (ret) {
dev_err(dev, "register interrupter runtime failed\n");
return -EINVAL;
}
mpp->session_max_buffers = RKVENC_SESSION_MAX_BUFFERS;
enc->hw_info = to_rkvenc_info(mpp->var->hw_info);
mpp->fault_handler = rkvenc2_iommu_fault_handle;
rkvenc_procfs_init(mpp);
rkvenc_procfs_ccu_init(mpp);
/* if current is main-core, register current device to mpp service */
if (mpp == enc->ccu->main_core)
mpp_dev_register_srv(mpp, mpp->srv);
return 0;
}
static int rkvenc_probe_default(struct platform_device *pdev)
{
int ret = 0;
struct device *dev = &pdev->dev;
struct rkvenc_dev *enc = NULL;
struct mpp_dev *mpp = NULL;
const struct of_device_id *match = NULL;
enc = devm_kzalloc(dev, sizeof(*enc), GFP_KERNEL);
if (!enc)
return -ENOMEM;
mpp = &enc->mpp;
platform_set_drvdata(pdev, mpp);
if (pdev->dev.of_node) {
match = of_match_node(mpp_rkvenc_dt_match, pdev->dev.of_node);
if (match)
mpp->var = (struct mpp_dev_var *)match->data;
}
ret = mpp_dev_probe(mpp, pdev);
if (ret)
return ret;
rkvenc2_alloc_rcbbuf(pdev, enc);
ret = devm_request_threaded_irq(dev, mpp->irq,
mpp_dev_irq,
mpp_dev_isr_sched,
IRQF_SHARED,
dev_name(dev), mpp);
if (ret) {
dev_err(dev, "register interrupter runtime failed\n");
goto failed_get_irq;
}
mpp->session_max_buffers = RKVENC_SESSION_MAX_BUFFERS;
enc->hw_info = to_rkvenc_info(mpp->var->hw_info);
rkvenc_procfs_init(mpp);
mpp_dev_register_srv(mpp, mpp->srv);
return 0;
failed_get_irq:
mpp_dev_remove(mpp);
return ret;
}
static int rkvenc_probe(struct platform_device *pdev)
{
int ret = 0;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
dev_info(dev, "probing start\n");
if (strstr(np->name, "ccu"))
ret = rkvenc_ccu_probe(pdev);
else if (strstr(np->name, "core"))
ret = rkvenc_core_probe(pdev);
else
ret = rkvenc_probe_default(pdev);
dev_info(dev, "probing finish\n");
return ret;
}
static int rkvenc2_free_rcbbuf(struct platform_device *pdev, struct rkvenc_dev *enc)
{
struct iommu_domain *domain;
if (enc->rcb_page) {
size_t page_size = PAGE_ALIGN(enc->sram_used - enc->sram_size);
int order = min(get_order(page_size), MAX_ORDER);
__free_pages(enc->rcb_page, order);
}
if (enc->sram_iova) {
domain = enc->mpp.iommu_info->domain;
iommu_unmap(domain, enc->sram_iova, enc->sram_used);
}
return 0;
}
static int rkvenc_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
if (strstr(np->name, "ccu")) {
dev_info(dev, "remove ccu\n");
} else if (strstr(np->name, "core")) {
struct mpp_dev *mpp = dev_get_drvdata(dev);
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
dev_info(dev, "remove core\n");
if (enc->ccu) {
mutex_lock(&enc->ccu->lock);
list_del_init(&enc->core_link);
enc->ccu->core_num--;
mutex_unlock(&enc->ccu->lock);
}
rkvenc2_free_rcbbuf(pdev, enc);
mpp_dev_remove(&enc->mpp);
rkvenc_procfs_remove(&enc->mpp);
} else {
struct mpp_dev *mpp = dev_get_drvdata(dev);
struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
dev_info(dev, "remove device\n");
rkvenc2_free_rcbbuf(pdev, enc);
mpp_dev_remove(mpp);
rkvenc_procfs_remove(mpp);
}
return 0;
}
static void rkvenc_shutdown(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
if (!strstr(dev_name(dev), "ccu"))
mpp_dev_shutdown(pdev);
}
struct platform_driver rockchip_rkvenc2_driver = {
.probe = rkvenc_probe,
.remove = rkvenc_remove,
.shutdown = rkvenc_shutdown,
.driver = {
.name = RKVENC_DRIVER_NAME,
.of_match_table = of_match_ptr(mpp_rkvenc_dt_match),
},
};