578 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			578 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
/*
 | 
						|
 * Copyright (C) 2016 The Android Open Source Project
 | 
						|
 *
 | 
						|
 * Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
 * you may not use this file except in compliance with the License.
 | 
						|
 * You may obtain a copy of the License at
 | 
						|
 *
 | 
						|
 *      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 * Unless required by applicable law or agreed to in writing, software
 | 
						|
 * distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 * See the License for the specific language governing permissions and
 | 
						|
 * limitations under the License.
 | 
						|
 */
 | 
						|
 | 
						|
#include <errno.h>
 | 
						|
#include <fcntl.h>
 | 
						|
#include <stdint.h>
 | 
						|
#include <string.h>
 | 
						|
#include <sys/mman.h>
 | 
						|
#include <sys/ptrace.h>
 | 
						|
#include <sys/stat.h>
 | 
						|
#include <sys/types.h>
 | 
						|
#include <sys/uio.h>
 | 
						|
#include <unistd.h>
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <memory>
 | 
						|
#include <mutex>
 | 
						|
#include <optional>
 | 
						|
#include <string>
 | 
						|
 | 
						|
#include <android-base/unique_fd.h>
 | 
						|
 | 
						|
#include <unwindstack/Log.h>
 | 
						|
#include <unwindstack/Memory.h>
 | 
						|
 | 
						|
#include "MemoryBuffer.h"
 | 
						|
#include "MemoryCache.h"
 | 
						|
#include "MemoryFileAtOffset.h"
 | 
						|
#include "MemoryLocal.h"
 | 
						|
#include "MemoryOffline.h"
 | 
						|
#include "MemoryOfflineBuffer.h"
 | 
						|
#include "MemoryRange.h"
 | 
						|
#include "MemoryRemote.h"
 | 
						|
 | 
						|
namespace unwindstack {
 | 
						|
 | 
						|
static size_t ProcessVmRead(pid_t pid, uint64_t remote_src, void* dst, size_t len) {
 | 
						|
 | 
						|
  // Split up the remote read across page boundaries.
 | 
						|
  // From the manpage:
 | 
						|
  //   A partial read/write may result if one of the remote_iov elements points to an invalid
 | 
						|
  //   memory region in the remote process.
 | 
						|
  //
 | 
						|
  //   Partial transfers apply at the granularity of iovec elements.  These system calls won't
 | 
						|
  //   perform a partial transfer that splits a single iovec element.
 | 
						|
  constexpr size_t kMaxIovecs = 64;
 | 
						|
  struct iovec src_iovs[kMaxIovecs];
 | 
						|
 | 
						|
  uint64_t cur = remote_src;
 | 
						|
  size_t total_read = 0;
 | 
						|
  while (len > 0) {
 | 
						|
    struct iovec dst_iov = {
 | 
						|
        .iov_base = &reinterpret_cast<uint8_t*>(dst)[total_read], .iov_len = len,
 | 
						|
    };
 | 
						|
 | 
						|
    size_t iovecs_used = 0;
 | 
						|
    while (len > 0) {
 | 
						|
      if (iovecs_used == kMaxIovecs) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // struct iovec uses void* for iov_base.
 | 
						|
      if (cur >= UINTPTR_MAX) {
 | 
						|
        errno = EFAULT;
 | 
						|
        return total_read;
 | 
						|
      }
 | 
						|
 | 
						|
      src_iovs[iovecs_used].iov_base = reinterpret_cast<void*>(cur);
 | 
						|
 | 
						|
      uintptr_t misalignment = cur & (getpagesize() - 1);
 | 
						|
      size_t iov_len = getpagesize() - misalignment;
 | 
						|
      iov_len = std::min(iov_len, len);
 | 
						|
 | 
						|
      len -= iov_len;
 | 
						|
      if (__builtin_add_overflow(cur, iov_len, &cur)) {
 | 
						|
        errno = EFAULT;
 | 
						|
        return total_read;
 | 
						|
      }
 | 
						|
 | 
						|
      src_iovs[iovecs_used].iov_len = iov_len;
 | 
						|
      ++iovecs_used;
 | 
						|
    }
 | 
						|
 | 
						|
    ssize_t rc = process_vm_readv(pid, &dst_iov, 1, src_iovs, iovecs_used, 0);
 | 
						|
    if (rc == -1) {
 | 
						|
      return total_read;
 | 
						|
    }
 | 
						|
    total_read += rc;
 | 
						|
  }
 | 
						|
  return total_read;
 | 
						|
}
 | 
						|
 | 
						|
static bool PtraceReadLong(pid_t pid, uint64_t addr, long* value) {
 | 
						|
  // ptrace() returns -1 and sets errno when the operation fails.
 | 
						|
  // To disambiguate -1 from a valid result, we clear errno beforehand.
 | 
						|
  errno = 0;
 | 
						|
  *value = ptrace(PTRACE_PEEKTEXT, pid, reinterpret_cast<void*>(addr), nullptr);
 | 
						|
  if (*value == -1 && errno) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static size_t PtraceRead(pid_t pid, uint64_t addr, void* dst, size_t bytes) {
 | 
						|
  // Make sure that there is no overflow.
 | 
						|
  uint64_t max_size;
 | 
						|
  if (__builtin_add_overflow(addr, bytes, &max_size)) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  size_t bytes_read = 0;
 | 
						|
  long data;
 | 
						|
  size_t align_bytes = addr & (sizeof(long) - 1);
 | 
						|
  if (align_bytes != 0) {
 | 
						|
    if (!PtraceReadLong(pid, addr & ~(sizeof(long) - 1), &data)) {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    size_t copy_bytes = std::min(sizeof(long) - align_bytes, bytes);
 | 
						|
    memcpy(dst, reinterpret_cast<uint8_t*>(&data) + align_bytes, copy_bytes);
 | 
						|
    addr += copy_bytes;
 | 
						|
    dst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(dst) + copy_bytes);
 | 
						|
    bytes -= copy_bytes;
 | 
						|
    bytes_read += copy_bytes;
 | 
						|
  }
 | 
						|
 | 
						|
  for (size_t i = 0; i < bytes / sizeof(long); i++) {
 | 
						|
    if (!PtraceReadLong(pid, addr, &data)) {
 | 
						|
      return bytes_read;
 | 
						|
    }
 | 
						|
    memcpy(dst, &data, sizeof(long));
 | 
						|
    dst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(dst) + sizeof(long));
 | 
						|
    addr += sizeof(long);
 | 
						|
    bytes_read += sizeof(long);
 | 
						|
  }
 | 
						|
 | 
						|
  size_t left_over = bytes & (sizeof(long) - 1);
 | 
						|
  if (left_over) {
 | 
						|
    if (!PtraceReadLong(pid, addr, &data)) {
 | 
						|
      return bytes_read;
 | 
						|
    }
 | 
						|
    memcpy(dst, &data, left_over);
 | 
						|
    bytes_read += left_over;
 | 
						|
  }
 | 
						|
  return bytes_read;
 | 
						|
}
 | 
						|
 | 
						|
bool Memory::ReadFully(uint64_t addr, void* dst, size_t size) {
 | 
						|
  size_t rc = Read(addr, dst, size);
 | 
						|
  return rc == size;
 | 
						|
}
 | 
						|
 | 
						|
bool Memory::ReadString(uint64_t addr, std::string* dst, size_t max_read) {
 | 
						|
  char buffer[256];  // Large enough for 99% of symbol names.
 | 
						|
  size_t size = 0;   // Number of bytes which were read into the buffer.
 | 
						|
  for (size_t offset = 0; offset < max_read; offset += size) {
 | 
						|
    // Look for null-terminator first, so we can allocate string of exact size.
 | 
						|
    // If we know the end of valid memory range, do the reads in larger blocks.
 | 
						|
    size_t read = std::min(sizeof(buffer), max_read - offset);
 | 
						|
    size = Read(addr + offset, buffer, read);
 | 
						|
    if (size == 0) {
 | 
						|
      return false;  // We have not found end of string yet and we can not read more data.
 | 
						|
    }
 | 
						|
    size_t length = strnlen(buffer, size);  // Index of the null-terminator.
 | 
						|
    if (length < size) {
 | 
						|
      // We found the null-terminator. Allocate the string and set its content.
 | 
						|
      if (offset == 0) {
 | 
						|
        // We did just single read, so the buffer already contains the whole string.
 | 
						|
        dst->assign(buffer, length);
 | 
						|
        return true;
 | 
						|
      } else {
 | 
						|
        // The buffer contains only the last block. Read the whole string again.
 | 
						|
        dst->assign(offset + length, '\0');
 | 
						|
        return ReadFully(addr, dst->data(), dst->size());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<Memory> Memory::CreateFileMemory(const std::string& path, uint64_t offset,
 | 
						|
                                                 uint64_t size) {
 | 
						|
  auto memory = std::make_unique<MemoryFileAtOffset>();
 | 
						|
 | 
						|
  if (memory->Init(path, offset, size)) {
 | 
						|
    return memory;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
std::shared_ptr<Memory> Memory::CreateProcessMemory(pid_t pid) {
 | 
						|
  if (pid == getpid()) {
 | 
						|
    return std::shared_ptr<Memory>(new MemoryLocal());
 | 
						|
  }
 | 
						|
  return std::shared_ptr<Memory>(new MemoryRemote(pid));
 | 
						|
}
 | 
						|
 | 
						|
std::shared_ptr<Memory> Memory::CreateProcessMemoryCached(pid_t pid) {
 | 
						|
  if (pid == getpid()) {
 | 
						|
    return std::shared_ptr<Memory>(new MemoryCache(new MemoryLocal()));
 | 
						|
  }
 | 
						|
  return std::shared_ptr<Memory>(new MemoryCache(new MemoryRemote(pid)));
 | 
						|
}
 | 
						|
 | 
						|
std::shared_ptr<Memory> Memory::CreateProcessMemoryThreadCached(pid_t pid) {
 | 
						|
  if (pid == getpid()) {
 | 
						|
    return std::shared_ptr<Memory>(new MemoryThreadCache(new MemoryLocal()));
 | 
						|
  }
 | 
						|
  return std::shared_ptr<Memory>(new MemoryThreadCache(new MemoryRemote(pid)));
 | 
						|
}
 | 
						|
 | 
						|
std::shared_ptr<Memory> Memory::CreateOfflineMemory(const uint8_t* data, uint64_t start,
 | 
						|
                                                    uint64_t end) {
 | 
						|
  return std::shared_ptr<Memory>(new MemoryOfflineBuffer(data, start, end));
 | 
						|
}
 | 
						|
 | 
						|
size_t MemoryBuffer::Read(uint64_t addr, void* dst, size_t size) {
 | 
						|
  if (addr >= size_) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  size_t bytes_left = size_ - static_cast<size_t>(addr);
 | 
						|
  const unsigned char* actual_base = static_cast<const unsigned char*>(raw_) + addr;
 | 
						|
  size_t actual_len = std::min(bytes_left, size);
 | 
						|
 | 
						|
  memcpy(dst, actual_base, actual_len);
 | 
						|
  return actual_len;
 | 
						|
}
 | 
						|
 | 
						|
uint8_t* MemoryBuffer::GetPtr(size_t offset) {
 | 
						|
  if (offset < size_) {
 | 
						|
    return &raw_[offset];
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
MemoryFileAtOffset::~MemoryFileAtOffset() {
 | 
						|
  Clear();
 | 
						|
}
 | 
						|
 | 
						|
void MemoryFileAtOffset::Clear() {
 | 
						|
  if (data_) {
 | 
						|
    munmap(&data_[-offset_], size_ + offset_);
 | 
						|
    data_ = nullptr;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryFileAtOffset::Init(const std::string& file, uint64_t offset, uint64_t size) {
 | 
						|
  // Clear out any previous data if it exists.
 | 
						|
  Clear();
 | 
						|
 | 
						|
  android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(file.c_str(), O_RDONLY | O_CLOEXEC)));
 | 
						|
  if (fd == -1) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  struct stat buf;
 | 
						|
  if (fstat(fd, &buf) == -1) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (offset >= static_cast<uint64_t>(buf.st_size)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  offset_ = offset & (getpagesize() - 1);
 | 
						|
  uint64_t aligned_offset = offset & ~(getpagesize() - 1);
 | 
						|
  if (aligned_offset > static_cast<uint64_t>(buf.st_size) ||
 | 
						|
      offset > static_cast<uint64_t>(buf.st_size)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  size_ = buf.st_size - aligned_offset;
 | 
						|
  uint64_t max_size;
 | 
						|
  if (!__builtin_add_overflow(size, offset_, &max_size) && max_size < size_) {
 | 
						|
    // Truncate the mapped size.
 | 
						|
    size_ = max_size;
 | 
						|
  }
 | 
						|
  void* map = mmap(nullptr, size_, PROT_READ, MAP_PRIVATE, fd, aligned_offset);
 | 
						|
  if (map == MAP_FAILED) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  data_ = &reinterpret_cast<uint8_t*>(map)[offset_];
 | 
						|
  size_ -= offset_;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
size_t MemoryFileAtOffset::Read(uint64_t addr, void* dst, size_t size) {
 | 
						|
  if (addr >= size_) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  size_t bytes_left = size_ - static_cast<size_t>(addr);
 | 
						|
  const unsigned char* actual_base = static_cast<const unsigned char*>(data_) + addr;
 | 
						|
  size_t actual_len = std::min(bytes_left, size);
 | 
						|
 | 
						|
  memcpy(dst, actual_base, actual_len);
 | 
						|
  return actual_len;
 | 
						|
}
 | 
						|
 | 
						|
size_t MemoryRemote::Read(uint64_t addr, void* dst, size_t size) {
 | 
						|
#if !defined(__LP64__)
 | 
						|
  // Cannot read an address greater than 32 bits in a 32 bit context.
 | 
						|
  if (addr > UINT32_MAX) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  size_t (*read_func)(pid_t, uint64_t, void*, size_t) =
 | 
						|
      reinterpret_cast<size_t (*)(pid_t, uint64_t, void*, size_t)>(read_redirect_func_.load());
 | 
						|
  if (read_func != nullptr) {
 | 
						|
    return read_func(pid_, addr, dst, size);
 | 
						|
  } else {
 | 
						|
    // Prefer process_vm_read, try it first. If it doesn't work, use the
 | 
						|
    // ptrace function. If at least one of them returns at least some data,
 | 
						|
    // set that as the permanent function to use.
 | 
						|
    // This assumes that if process_vm_read works once, it will continue
 | 
						|
    // to work.
 | 
						|
    size_t bytes = ProcessVmRead(pid_, addr, dst, size);
 | 
						|
    if (bytes > 0) {
 | 
						|
      read_redirect_func_ = reinterpret_cast<uintptr_t>(ProcessVmRead);
 | 
						|
      return bytes;
 | 
						|
    }
 | 
						|
    bytes = PtraceRead(pid_, addr, dst, size);
 | 
						|
    if (bytes > 0) {
 | 
						|
      read_redirect_func_ = reinterpret_cast<uintptr_t>(PtraceRead);
 | 
						|
    }
 | 
						|
    return bytes;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
size_t MemoryLocal::Read(uint64_t addr, void* dst, size_t size) {
 | 
						|
  return ProcessVmRead(getpid(), addr, dst, size);
 | 
						|
}
 | 
						|
 | 
						|
MemoryRange::MemoryRange(const std::shared_ptr<Memory>& memory, uint64_t begin, uint64_t length,
 | 
						|
                         uint64_t offset)
 | 
						|
    : memory_(memory), begin_(begin), length_(length), offset_(offset) {}
 | 
						|
 | 
						|
size_t MemoryRange::Read(uint64_t addr, void* dst, size_t size) {
 | 
						|
  if (addr < offset_) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t read_offset = addr - offset_;
 | 
						|
  if (read_offset >= length_) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t read_length = std::min(static_cast<uint64_t>(size), length_ - read_offset);
 | 
						|
  uint64_t read_addr;
 | 
						|
  if (__builtin_add_overflow(read_offset, begin_, &read_addr)) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return memory_->Read(read_addr, dst, read_length);
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryRanges::Insert(MemoryRange* memory) {
 | 
						|
  uint64_t last_addr;
 | 
						|
  if (__builtin_add_overflow(memory->offset(), memory->length(), &last_addr)) {
 | 
						|
    // This should never happen in the real world. However, it is possible
 | 
						|
    // that an offset in a mapped in segment could be crafted such that
 | 
						|
    // this value overflows. In that case, clamp the value to the max uint64
 | 
						|
    // value.
 | 
						|
    last_addr = UINT64_MAX;
 | 
						|
  }
 | 
						|
  auto entry = maps_.try_emplace(last_addr, memory);
 | 
						|
  if (entry.second) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  delete memory;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
size_t MemoryRanges::Read(uint64_t addr, void* dst, size_t size) {
 | 
						|
  auto entry = maps_.upper_bound(addr);
 | 
						|
  if (entry != maps_.end()) {
 | 
						|
    return entry->second->Read(addr, dst, size);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryOffline::Init(const std::string& file, uint64_t offset) {
 | 
						|
  auto memory_file = std::make_shared<MemoryFileAtOffset>();
 | 
						|
  if (!memory_file->Init(file, offset)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // The first uint64_t value is the start of memory.
 | 
						|
  uint64_t start;
 | 
						|
  if (!memory_file->ReadFully(0, &start, sizeof(start))) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t size = memory_file->Size();
 | 
						|
  if (__builtin_sub_overflow(size, sizeof(start), &size)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  memory_ = std::make_unique<MemoryRange>(memory_file, sizeof(start), size, start);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryOffline::Init(const std::string& file, uint64_t offset, uint64_t start, uint64_t size) {
 | 
						|
  auto memory_file = std::make_shared<MemoryFileAtOffset>();
 | 
						|
  if (!memory_file->Init(file, offset)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  memory_ = std::make_unique<MemoryRange>(memory_file, 0, size, start);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
size_t MemoryOffline::Read(uint64_t addr, void* dst, size_t size) {
 | 
						|
  if (!memory_) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return memory_->Read(addr, dst, size);
 | 
						|
}
 | 
						|
 | 
						|
MemoryOfflineBuffer::MemoryOfflineBuffer(const uint8_t* data, uint64_t start, uint64_t end)
 | 
						|
    : data_(data), start_(start), end_(end) {}
 | 
						|
 | 
						|
void MemoryOfflineBuffer::Reset(const uint8_t* data, uint64_t start, uint64_t end) {
 | 
						|
  data_ = data;
 | 
						|
  start_ = start;
 | 
						|
  end_ = end;
 | 
						|
}
 | 
						|
 | 
						|
size_t MemoryOfflineBuffer::Read(uint64_t addr, void* dst, size_t size) {
 | 
						|
  if (addr < start_ || addr >= end_) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  size_t read_length = std::min(size, static_cast<size_t>(end_ - addr));
 | 
						|
  memcpy(dst, &data_[addr - start_], read_length);
 | 
						|
  return read_length;
 | 
						|
}
 | 
						|
 | 
						|
MemoryOfflineParts::~MemoryOfflineParts() {
 | 
						|
  for (auto memory : memories_) {
 | 
						|
    delete memory;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
size_t MemoryOfflineParts::Read(uint64_t addr, void* dst, size_t size) {
 | 
						|
  if (memories_.empty()) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do a read on each memory object, no support for reading across the
 | 
						|
  // different memory objects.
 | 
						|
  for (MemoryOffline* memory : memories_) {
 | 
						|
    size_t bytes = memory->Read(addr, dst, size);
 | 
						|
    if (bytes != 0) {
 | 
						|
      return bytes;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
size_t MemoryCacheBase::InternalCachedRead(uint64_t addr, void* dst, size_t size,
 | 
						|
                                           CacheDataType* cache) {
 | 
						|
  uint64_t addr_page = addr >> kCacheBits;
 | 
						|
  auto entry = cache->find(addr_page);
 | 
						|
  uint8_t* cache_dst;
 | 
						|
  if (entry != cache->end()) {
 | 
						|
    cache_dst = entry->second;
 | 
						|
  } else {
 | 
						|
    cache_dst = (*cache)[addr_page];
 | 
						|
    if (!impl_->ReadFully(addr_page << kCacheBits, cache_dst, kCacheSize)) {
 | 
						|
      // Erase the entry.
 | 
						|
      cache->erase(addr_page);
 | 
						|
      return impl_->Read(addr, dst, size);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  size_t max_read = ((addr_page + 1) << kCacheBits) - addr;
 | 
						|
  if (size <= max_read) {
 | 
						|
    memcpy(dst, &cache_dst[addr & kCacheMask], size);
 | 
						|
    return size;
 | 
						|
  }
 | 
						|
 | 
						|
  // The read crossed into another cached entry, since a read can only cross
 | 
						|
  // into one extra cached page, duplicate the code rather than looping.
 | 
						|
  memcpy(dst, &cache_dst[addr & kCacheMask], max_read);
 | 
						|
  dst = &reinterpret_cast<uint8_t*>(dst)[max_read];
 | 
						|
  addr_page++;
 | 
						|
 | 
						|
  entry = cache->find(addr_page);
 | 
						|
  if (entry != cache->end()) {
 | 
						|
    cache_dst = entry->second;
 | 
						|
  } else {
 | 
						|
    cache_dst = (*cache)[addr_page];
 | 
						|
    if (!impl_->ReadFully(addr_page << kCacheBits, cache_dst, kCacheSize)) {
 | 
						|
      // Erase the entry.
 | 
						|
      cache->erase(addr_page);
 | 
						|
      return impl_->Read(addr_page << kCacheBits, dst, size - max_read) + max_read;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  memcpy(dst, cache_dst, size - max_read);
 | 
						|
  return size;
 | 
						|
}
 | 
						|
 | 
						|
void MemoryCache::Clear() {
 | 
						|
  std::lock_guard<std::mutex> lock(cache_lock_);
 | 
						|
  cache_.clear();
 | 
						|
}
 | 
						|
 | 
						|
size_t MemoryCache::CachedRead(uint64_t addr, void* dst, size_t size) {
 | 
						|
  // Use a single lock since this object is not designed to be performant
 | 
						|
  // for multiple object reading from multiple threads.
 | 
						|
  std::lock_guard<std::mutex> lock(cache_lock_);
 | 
						|
 | 
						|
  return InternalCachedRead(addr, dst, size, &cache_);
 | 
						|
}
 | 
						|
 | 
						|
MemoryThreadCache::MemoryThreadCache(Memory* memory) : MemoryCacheBase(memory) {
 | 
						|
  thread_cache_ = std::make_optional<pthread_t>();
 | 
						|
  if (pthread_key_create(&*thread_cache_, [](void* memory) {
 | 
						|
        CacheDataType* cache = reinterpret_cast<CacheDataType*>(memory);
 | 
						|
        delete cache;
 | 
						|
      }) != 0) {
 | 
						|
    Log::AsyncSafe("Failed to create pthread key.");
 | 
						|
    thread_cache_.reset();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MemoryThreadCache::~MemoryThreadCache() {
 | 
						|
  if (thread_cache_) {
 | 
						|
    CacheDataType* cache = reinterpret_cast<CacheDataType*>(pthread_getspecific(*thread_cache_));
 | 
						|
    delete cache;
 | 
						|
    pthread_key_delete(*thread_cache_);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
size_t MemoryThreadCache::CachedRead(uint64_t addr, void* dst, size_t size) {
 | 
						|
  if (!thread_cache_) {
 | 
						|
    return impl_->Read(addr, dst, size);
 | 
						|
  }
 | 
						|
 | 
						|
  CacheDataType* cache = reinterpret_cast<CacheDataType*>(pthread_getspecific(*thread_cache_));
 | 
						|
  if (cache == nullptr) {
 | 
						|
    cache = new CacheDataType;
 | 
						|
    pthread_setspecific(*thread_cache_, cache);
 | 
						|
  }
 | 
						|
 | 
						|
  return InternalCachedRead(addr, dst, size, cache);
 | 
						|
}
 | 
						|
 | 
						|
void MemoryThreadCache::Clear() {
 | 
						|
  if (!thread_cache_) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  CacheDataType* cache = reinterpret_cast<CacheDataType*>(pthread_getspecific(*thread_cache_));
 | 
						|
  if (cache != nullptr) {
 | 
						|
    delete cache;
 | 
						|
    pthread_setspecific(*thread_cache_, nullptr);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace unwindstack
 |