android13/u-boot/drivers/clk/rockchip/clk_rk3036.c

664 lines
17 KiB
C

/*
* (C) Copyright 2015 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <errno.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/cru_rk3036.h>
#include <asm/arch/hardware.h>
#include <dm/lists.h>
#include <dt-bindings/clock/rk3036-cru.h>
#include <linux/log2.h>
DECLARE_GLOBAL_DATA_PTR;
enum {
VCO_MAX_HZ = 2400U * 1000000,
VCO_MIN_HZ = 600 * 1000000,
OUTPUT_MAX_HZ = 2400U * 1000000,
OUTPUT_MIN_HZ = 24 * 1000000,
};
#ifndef CONFIG_SPL_BUILD
#define RK3036_CLK_DUMP(_id, _name, _iscru) \
{ \
.id = _id, \
.name = _name, \
.is_cru = _iscru, \
}
static const struct rk3036_clk_info clks_dump[] = {
RK3036_CLK_DUMP(PLL_APLL, "apll", true),
RK3036_CLK_DUMP(PLL_DPLL, "dpll", true),
RK3036_CLK_DUMP(PLL_GPLL, "gpll", true),
};
#endif
#define RATE_TO_DIV(input_rate, output_rate) \
((input_rate) / (output_rate) - 1);
#define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
#define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
.refdiv = _refdiv,\
.fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
.postdiv1 = _postdiv1, .postdiv2 = _postdiv2};\
_Static_assert(((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ) *\
OSC_HZ / (_refdiv * _postdiv1 * _postdiv2) == hz,\
#hz "Hz cannot be hit with PLL "\
"divisors on line " __stringify(__LINE__));
/* use integer mode*/
static const struct pll_div apll_init_cfg = PLL_DIVISORS(APLL_HZ, 1, 3, 1);
static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
static int rkclk_set_pll(struct rk3036_cru *cru, enum rk_clk_id clk_id,
const struct pll_div *div)
{
int pll_id = rk_pll_id(clk_id);
struct rk3036_pll *pll = &cru->pll[pll_id];
/* All PLLs have same VCO and output frequency range restrictions. */
uint vco_hz = OSC_HZ / 1000 * div->fbdiv / div->refdiv * 1000;
uint output_hz = vco_hz / div->postdiv1 / div->postdiv2;
debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, postdiv2=%d,\
vco=%u Hz, output=%u Hz\n",
pll, div->fbdiv, div->refdiv, div->postdiv1,
div->postdiv2, vco_hz, output_hz);
assert(vco_hz >= VCO_MIN_HZ && vco_hz <= VCO_MAX_HZ &&
output_hz >= OUTPUT_MIN_HZ && output_hz <= OUTPUT_MAX_HZ);
/* use integer mode */
rk_setreg(&pll->con1, 1 << PLL_DSMPD_SHIFT);
/* Power down */
rk_setreg(&pll->con1, 1 << PLL_PD_SHIFT);
rk_clrsetreg(&pll->con0,
PLL_POSTDIV1_MASK | PLL_FBDIV_MASK,
(div->postdiv1 << PLL_POSTDIV1_SHIFT) | div->fbdiv);
rk_clrsetreg(&pll->con1, PLL_POSTDIV2_MASK | PLL_REFDIV_MASK,
(div->postdiv2 << PLL_POSTDIV2_SHIFT |
div->refdiv << PLL_REFDIV_SHIFT));
/* Power Up */
rk_clrreg(&pll->con1, 1 << PLL_PD_SHIFT);
/* waiting for pll lock */
while (readl(&pll->con1) & (1 << PLL_LOCK_STATUS_SHIFT))
udelay(1);
return 0;
}
static void rkclk_init(struct rk3036_cru *cru)
{
u32 aclk_div;
u32 hclk_div;
u32 pclk_div;
u32 nandc_div;
/* pll enter slow-mode */
rk_clrsetreg(&cru->cru_mode_con,
GPLL_MODE_MASK | APLL_MODE_MASK,
GPLL_MODE_SLOW << GPLL_MODE_SHIFT |
APLL_MODE_SLOW << APLL_MODE_SHIFT);
/* init pll */
rkclk_set_pll(cru, CLK_ARM, &apll_init_cfg);
rkclk_set_pll(cru, CLK_GENERAL, &gpll_init_cfg);
/*
* select apll as cpu/core clock pll source and
* set up dependent divisors for PERI and ACLK clocks.
* core hz : apll = 1:1
*/
aclk_div = APLL_HZ / CORE_ACLK_HZ - 1;
assert((aclk_div + 1) * CORE_ACLK_HZ <= APLL_HZ && aclk_div < 0x7);
pclk_div = APLL_HZ / CORE_PERI_HZ - 1;
assert((pclk_div + 1) * CORE_PERI_HZ <= APLL_HZ && pclk_div < 0xf);
rk_clrsetreg(&cru->cru_clksel_con[0],
CORE_CLK_PLL_SEL_MASK | CORE_DIV_CON_MASK,
CORE_CLK_PLL_SEL_APLL << CORE_CLK_PLL_SEL_SHIFT |
0 << CORE_DIV_CON_SHIFT);
rk_clrsetreg(&cru->cru_clksel_con[1],
CORE_ACLK_DIV_MASK | CORE_PERI_DIV_MASK,
aclk_div << CORE_ACLK_DIV_SHIFT |
pclk_div << CORE_PERI_DIV_SHIFT);
/*
* select gpll as pd_bus bus clock source and
* set up dependent divisors for PCLK/HCLK and ACLK clocks.
*/
aclk_div = GPLL_HZ / BUS_ACLK_HZ - 1;
assert((aclk_div + 1) * BUS_ACLK_HZ <= GPLL_HZ && aclk_div <= 0x1f);
pclk_div = BUS_ACLK_HZ / BUS_PCLK_HZ - 1;
assert((pclk_div + 1) * BUS_PCLK_HZ <= BUS_ACLK_HZ && pclk_div <= 0x7);
hclk_div = BUS_ACLK_HZ / BUS_HCLK_HZ - 1;
assert((hclk_div + 1) * BUS_HCLK_HZ <= BUS_ACLK_HZ && hclk_div <= 0x3);
rk_clrsetreg(&cru->cru_clksel_con[0],
BUS_ACLK_PLL_SEL_MASK | BUS_ACLK_DIV_MASK,
BUS_ACLK_PLL_SEL_GPLL << BUS_ACLK_PLL_SEL_SHIFT |
aclk_div << BUS_ACLK_DIV_SHIFT);
rk_clrsetreg(&cru->cru_clksel_con[1],
BUS_PCLK_DIV_MASK | BUS_HCLK_DIV_MASK,
pclk_div << BUS_PCLK_DIV_SHIFT |
hclk_div << BUS_HCLK_DIV_SHIFT);
/*
* select gpll as pd_peri bus clock source and
* set up dependent divisors for PCLK/HCLK and ACLK clocks.
*/
aclk_div = GPLL_HZ / PERI_ACLK_HZ - 1;
assert((aclk_div + 1) * PERI_ACLK_HZ <= GPLL_HZ && aclk_div < 0x1f);
hclk_div = ilog2(PERI_ACLK_HZ / PERI_HCLK_HZ);
assert((1 << hclk_div) * PERI_HCLK_HZ <=
PERI_ACLK_HZ && (hclk_div < 0x4));
pclk_div = ilog2(PERI_ACLK_HZ / PERI_PCLK_HZ);
assert((1 << pclk_div) * PERI_PCLK_HZ <=
PERI_ACLK_HZ && pclk_div < 0x8);
rk_clrsetreg(&cru->cru_clksel_con[10],
PERI_PLL_SEL_MASK | PERI_PCLK_DIV_MASK |
PERI_HCLK_DIV_MASK | PERI_ACLK_DIV_MASK,
PERI_PLL_GPLL << PERI_PLL_SEL_SHIFT |
pclk_div << PERI_PCLK_DIV_SHIFT |
hclk_div << PERI_HCLK_DIV_SHIFT |
aclk_div << PERI_ACLK_DIV_SHIFT);
nandc_div = DIV_ROUND_UP(GPLL_HZ, 150 * 1000000);
rk_clrsetreg(&cru->cru_clksel_con[16],
NANDC_PLL_MASK | NANDC_DIV_MASK,
NANDC_SEL_GPLL << NANDC_PLL_SHIFT |
nandc_div << NANDC_DIV_SHIFT);
/* PLL enter normal-mode */
rk_clrsetreg(&cru->cru_mode_con,
GPLL_MODE_MASK | APLL_MODE_MASK,
GPLL_MODE_NORM << GPLL_MODE_SHIFT |
APLL_MODE_NORM << APLL_MODE_SHIFT);
}
/* Get pll rate by id */
static uint32_t rkclk_pll_get_rate(struct rk3036_cru *cru,
enum rk_clk_id clk_id)
{
uint32_t refdiv, fbdiv, postdiv1, postdiv2;
uint32_t con;
int pll_id = rk_pll_id(clk_id);
struct rk3036_pll *pll = &cru->pll[pll_id];
static u8 clk_shift[CLK_COUNT] = {
0xff, APLL_MODE_SHIFT, DPLL_MODE_SHIFT, 0xff,
GPLL_MODE_SHIFT, 0xff
};
static u32 clk_mask[CLK_COUNT] = {
0xffffffff, APLL_MODE_MASK, DPLL_MODE_MASK, 0xffffffff,
GPLL_MODE_MASK, 0xffffffff
};
uint shift;
uint mask;
con = readl(&cru->cru_mode_con);
shift = clk_shift[clk_id];
mask = clk_mask[clk_id];
switch ((con & mask) >> shift) {
case GPLL_MODE_SLOW:
return OSC_HZ;
case GPLL_MODE_NORM:
/* normal mode */
con = readl(&pll->con0);
postdiv1 = (con & PLL_POSTDIV1_MASK) >> PLL_POSTDIV1_SHIFT;
fbdiv = (con & PLL_FBDIV_MASK) >> PLL_FBDIV_SHIFT;
con = readl(&pll->con1);
postdiv2 = (con & PLL_POSTDIV2_MASK) >> PLL_POSTDIV2_SHIFT;
refdiv = (con & PLL_REFDIV_MASK) >> PLL_REFDIV_SHIFT;
return (24 * fbdiv / (refdiv * postdiv1 * postdiv2)) * 1000000;
case GPLL_MODE_DEEP:
default:
return 32768;
}
}
static ulong rockchip_mmc_get_clk(struct rk3036_cru *cru, uint clk_general_rate,
int periph)
{
uint src_rate;
uint div, mux;
u32 con;
switch (periph) {
case HCLK_EMMC:
case SCLK_EMMC:
con = readl(&cru->cru_clksel_con[12]);
mux = (con & EMMC_PLL_MASK) >> EMMC_PLL_SHIFT;
div = (con & EMMC_DIV_MASK) >> EMMC_DIV_SHIFT;
break;
case HCLK_SDIO:
case SCLK_SDIO:
con = readl(&cru->cru_clksel_con[12]);
mux = (con & MMC0_PLL_MASK) >> MMC0_PLL_SHIFT;
div = (con & MMC0_DIV_MASK) >> MMC0_DIV_SHIFT;
break;
default:
return -EINVAL;
}
src_rate = mux == EMMC_SEL_24M ? OSC_HZ : clk_general_rate;
return DIV_TO_RATE(src_rate, div) / 2;
}
static ulong rockchip_mmc_set_clk(struct rk3036_cru *cru, uint clk_general_rate,
int periph, uint freq)
{
int src_clk_div;
int mux;
debug("%s: clk_general_rate=%u\n", __func__, clk_general_rate);
/* mmc clock auto divide 2 in internal */
src_clk_div = DIV_ROUND_UP(clk_general_rate / 2, freq);
if (src_clk_div > 128) {
src_clk_div = DIV_ROUND_UP(OSC_HZ / 2, freq);
assert(src_clk_div - 1 < 128);
mux = EMMC_SEL_24M;
} else {
mux = EMMC_SEL_GPLL;
}
switch (periph) {
case HCLK_EMMC:
case SCLK_EMMC:
rk_clrsetreg(&cru->cru_clksel_con[12],
EMMC_PLL_MASK | EMMC_DIV_MASK,
mux << EMMC_PLL_SHIFT |
(src_clk_div - 1) << EMMC_DIV_SHIFT);
break;
case HCLK_SDIO:
case SCLK_SDIO:
rk_clrsetreg(&cru->cru_clksel_con[11],
MMC0_PLL_MASK | MMC0_DIV_MASK,
mux << MMC0_PLL_SHIFT |
(src_clk_div - 1) << MMC0_DIV_SHIFT);
break;
default:
return -EINVAL;
}
return rockchip_mmc_get_clk(cru, clk_general_rate, periph);
}
static ulong rk3036_spi_get_clk(struct rk3036_cru *cru, uint clk_general_rate)
{
u32 div, con;
con = readl(&cru->cru_clksel_con[25]);
div = (con & SPI_DIV_MASK) >> SPI_DIV_SHIFT;
return DIV_TO_RATE(clk_general_rate, div);
}
static ulong rk3036_spi_set_clk(struct rk3036_cru *cru,
uint clk_general_rate,
ulong hz)
{
int div;
div = DIV_ROUND_UP(clk_general_rate, hz);
assert(div - 1 < 128);
rk_clrsetreg(&cru->cru_clksel_con[25],
SPI_PLL_SEL_MASK | SPI_DIV_MASK,
SPI_PLL_SEL_GPLL << SPI_PLL_SEL_SHIFT |
(div - 1) << SPI_DIV_SHIFT);
return rk3036_spi_get_clk(cru, clk_general_rate);
}
static ulong rockchip_dclk_lcdc_get_clk(struct rk3036_cru *cru,
uint clk_general_rate)
{
u32 con, div, sel, parent;
con = readl(&cru->cru_clksel_con[28]);
div = (con & LCDC_DCLK_DIV_MASK) >> LCDC_DCLK_DIV_SHIFT;
sel = (con & LCDC_DCLK_SEL_MASK) >> LCDC_DCLK_SEL_SHIFT;
if (sel == LCDC_DCLK_SEL_GPLL)
parent = clk_general_rate;
else
return -ENOENT;
return DIV_TO_RATE(parent, div);
}
static ulong rockchip_dclk_lcdc_set_clk(struct rk3036_cru *cru,
uint clk_general_rate, uint freq)
{
int src_clk_div;
src_clk_div = DIV_ROUND_UP(clk_general_rate, freq);
assert(src_clk_div - 1 <= 255);
rk_clrsetreg(&cru->cru_clksel_con[28],
LCDC_DCLK_SEL_MASK | LCDC_DCLK_DIV_MASK,
LCDC_DCLK_SEL_GPLL << LCDC_DCLK_SEL_SHIFT |
(src_clk_div - 1) << LCDC_DCLK_DIV_SHIFT);
return rockchip_dclk_lcdc_get_clk(cru, clk_general_rate);
}
static ulong rockchip_aclk_lcdc_get_clk(struct rk3036_cru *cru,
uint clk_general_rate)
{
u32 con, div, sel, parent;
con = readl(&cru->cru_clksel_con[31]);
div = (con & LCDC_ACLK_DIV_MASK) >> LCDC_ACLK_DIV_SHIFT;
sel = (con & LCDC_ACLK_SEL_MASK) >> LCDC_ACLK_SEL_SHIFT;
if (sel == LCDC_ACLK_SEL_GPLL)
parent = clk_general_rate;
else
return -ENOENT;
return DIV_TO_RATE(parent, div);
}
static ulong rockchip_aclk_lcdc_set_clk(struct rk3036_cru *cru,
uint clk_general_rate, uint freq)
{
int src_clk_div;
src_clk_div = DIV_ROUND_UP(clk_general_rate, freq);
assert(src_clk_div - 1 <= 31);
rk_clrsetreg(&cru->cru_clksel_con[31],
LCDC_ACLK_SEL_MASK | LCDC_ACLK_DIV_MASK,
LCDC_ACLK_SEL_GPLL << LCDC_ACLK_SEL_SHIFT |
(src_clk_div - 1) << LCDC_ACLK_DIV_SHIFT);
return rockchip_aclk_lcdc_get_clk(cru, clk_general_rate);
}
static ulong rk3036_peri_get_clk(struct rk3036_clk_priv *priv, ulong clk_id,
uint clk_general_rate)
{
struct rk3036_cru *cru = priv->cru;
u32 div, con, parent;
switch (clk_id) {
case ACLK_PERI:
con = readl(&cru->cru_clksel_con[10]);
div = (con & PERI_ACLK_DIV_MASK) >> PERI_ACLK_DIV_SHIFT;
parent = clk_general_rate;
break;
case PCLK_PWM:
con = readl(&cru->cru_clksel_con[10]);
div = (con & PERI_PCLK_DIV_MASK) >> PERI_PCLK_DIV_SHIFT;
parent = rk3036_peri_get_clk(priv, ACLK_PERI, clk_general_rate);
break;
default:
printf("do not support this peripheral bus\n");
return -EINVAL;
}
return DIV_TO_RATE(parent, div);
}
static ulong rk3036_peri_set_clk(struct rk3036_clk_priv *priv,
ulong clk_id, uint clk_general_rate,
uint hz)
{
struct rk3036_cru *cru = priv->cru;
int src_clk_div;
switch (clk_id) {
case ACLK_PERI:
src_clk_div = DIV_ROUND_UP(clk_general_rate, hz);
assert(src_clk_div - 1 < 32);
rk_clrsetreg(&cru->cru_clksel_con[10],
PERI_PLL_SEL_MASK | PERI_ACLK_DIV_MASK,
PERI_PLL_GPLL << PERI_PLL_SEL_SHIFT |
(src_clk_div - 1) << PERI_ACLK_DIV_SHIFT);
break;
case PCLK_PWM:
src_clk_div = DIV_ROUND_UP(rk3036_peri_get_clk(priv,
ACLK_PERI,
clk_general_rate),
hz);
assert(src_clk_div - 1 < 8);
rk_clrsetreg(&cru->cru_clksel_con[10],
PERI_PCLK_DIV_MASK,
(src_clk_div - 1) << PERI_PCLK_DIV_SHIFT);
break;
default:
printf("do not support this peripheral bus\n");
return -EINVAL;
}
return rk3036_peri_get_clk(priv, clk_id, clk_general_rate);
}
static ulong rk3036_clk_get_rate(struct clk *clk)
{
struct rk3036_clk_priv *priv = dev_get_priv(clk->dev);
ulong gclk_rate = rkclk_pll_get_rate(priv->cru, CLK_GENERAL);
switch (clk->id) {
case 0 ... 63:
return rkclk_pll_get_rate(priv->cru, clk->id);
case SCLK_LCDC:
return rockchip_dclk_lcdc_get_clk(priv->cru, gclk_rate);
case ACLK_LCDC:
return rockchip_aclk_lcdc_get_clk(priv->cru, gclk_rate);
case SCLK_SPI:
return rk3036_spi_get_clk(priv->cru, gclk_rate);
case PCLK_PWM:
return rk3036_peri_get_clk(priv, clk->id, gclk_rate);
default:
return -ENOENT;
}
}
static ulong rk3036_clk_set_rate(struct clk *clk, ulong rate)
{
struct rk3036_clk_priv *priv = dev_get_priv(clk->dev);
ulong new_rate, gclk_rate;
gclk_rate = rkclk_pll_get_rate(priv->cru, CLK_GENERAL);
switch (clk->id) {
case 0 ... 63:
return 0;
case HCLK_EMMC:
case SCLK_EMMC:
new_rate = rockchip_mmc_set_clk(priv->cru, gclk_rate,
clk->id, rate);
break;
case SCLK_LCDC:
new_rate = rockchip_dclk_lcdc_set_clk(priv->cru, gclk_rate,
rate);
break;
case ACLK_LCDC:
new_rate = rockchip_aclk_lcdc_set_clk(priv->cru, gclk_rate,
rate);
break;
case SCLK_SPI:
new_rate = rk3036_spi_set_clk(priv->cru, gclk_rate,
rate);
break;
case PCLK_PWM:
new_rate = rk3036_peri_set_clk(priv, clk->id, gclk_rate,
rate);
break;
default:
return -ENOENT;
}
return new_rate;
}
static struct clk_ops rk3036_clk_ops = {
.get_rate = rk3036_clk_get_rate,
.set_rate = rk3036_clk_set_rate,
};
static int rk3036_clk_ofdata_to_platdata(struct udevice *dev)
{
struct rk3036_clk_priv *priv = dev_get_priv(dev);
priv->cru = dev_read_addr_ptr(dev);
return 0;
}
static int rk3036_clk_probe(struct udevice *dev)
{
struct rk3036_clk_priv *priv = dev_get_priv(dev);
priv->sync_kernel = false;
if (!priv->armclk_enter_hz)
priv->armclk_enter_hz = rkclk_pll_get_rate(priv->cru,
CLK_ARM);
rkclk_init(priv->cru);
if (!priv->armclk_init_hz)
priv->armclk_init_hz = rkclk_pll_get_rate(priv->cru,
CLK_ARM);
return 0;
}
static int rk3036_clk_bind(struct udevice *dev)
{
int ret;
struct udevice *sys_child, *sf_child;
struct sysreset_reg *priv;
struct softreset_reg *sf_priv;
/* The reset driver does not have a device node, so bind it here */
ret = device_bind_driver(dev, "rockchip_sysreset", "sysreset",
&sys_child);
if (ret) {
debug("Warning: No sysreset driver: ret=%d\n", ret);
} else {
priv = malloc(sizeof(struct sysreset_reg));
priv->glb_srst_fst_value = offsetof(struct rk3036_cru,
cru_glb_srst_fst_value);
priv->glb_srst_snd_value = offsetof(struct rk3036_cru,
cru_glb_srst_snd_value);
sys_child->priv = priv;
}
ret = device_bind_driver_to_node(dev, "rockchip_reset", "reset",
dev_ofnode(dev), &sf_child);
if (ret) {
debug("Warning: No rockchip reset driver: ret=%d\n", ret);
} else {
sf_priv = malloc(sizeof(struct softreset_reg));
sf_priv->sf_reset_offset = offsetof(struct rk3036_cru,
cru_softrst_con[0]);
sf_priv->sf_reset_num = 9;
sf_child->priv = sf_priv;
}
return 0;
}
static const struct udevice_id rk3036_clk_ids[] = {
{ .compatible = "rockchip,rk3036-cru" },
{ }
};
U_BOOT_DRIVER(rockchip_rk3036_cru) = {
.name = "clk_rk3036",
.id = UCLASS_CLK,
.of_match = rk3036_clk_ids,
.priv_auto_alloc_size = sizeof(struct rk3036_clk_priv),
.ofdata_to_platdata = rk3036_clk_ofdata_to_platdata,
.ops = &rk3036_clk_ops,
.bind = rk3036_clk_bind,
.probe = rk3036_clk_probe,
};
#ifndef CONFIG_SPL_BUILD
/**
* soc_clk_dump() - Print clock frequencies
* Returns zero on success
*
* Implementation for the clk dump command.
*/
int soc_clk_dump(void)
{
struct udevice *cru_dev;
struct rk3036_clk_priv *priv;
const struct rk3036_clk_info *clk_dump;
struct clk clk;
unsigned long clk_count = ARRAY_SIZE(clks_dump);
unsigned long rate;
int i, ret;
ret = uclass_get_device_by_driver(UCLASS_CLK,
DM_GET_DRIVER(rockchip_rk3036_cru),
&cru_dev);
if (ret) {
printf("%s failed to get cru device\n", __func__);
return ret;
}
priv = dev_get_priv(cru_dev);
printf("CLK: (%s. arm: enter %lu KHz, init %lu KHz, kernel %lu%s)\n",
priv->sync_kernel ? "sync kernel" : "uboot",
priv->armclk_enter_hz / 1000,
priv->armclk_init_hz / 1000,
priv->set_armclk_rate ? priv->armclk_hz / 1000 : 0,
priv->set_armclk_rate ? " KHz" : "N/A");
for (i = 0; i < clk_count; i++) {
clk_dump = &clks_dump[i];
if (clk_dump->name) {
clk.id = clk_dump->id;
if (clk_dump->is_cru)
ret = clk_request(cru_dev, &clk);
if (ret < 0)
return ret;
rate = clk_get_rate(&clk);
clk_free(&clk);
if (i == 0) {
if (rate < 0)
printf(" %s %s\n", clk_dump->name,
"unknown");
else
printf(" %s %lu KHz\n", clk_dump->name,
rate / 1000);
} else {
if (rate < 0)
printf(" %s %s\n", clk_dump->name,
"unknown");
else
printf(" %s %lu KHz\n", clk_dump->name,
rate / 1000);
}
}
}
return 0;
}
#endif