android13/u-boot/drivers/power/fuel_gauge/fg_rk818.c

1910 lines
47 KiB
C

/*
* (C) Copyright 2017 Rockchip Electronics Co., Ltd
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <dm.h>
#include <errno.h>
#include <common.h>
#include <malloc.h>
#include <fdtdec.h>
#include <asm/gpio.h>
#include <common.h>
#include <power/pmic.h>
#include <dm/uclass-internal.h>
#include <power/charge_display.h>
#include <power/charge_animation.h>
#include <power/fuel_gauge.h>
#include <power/rk8xx_pmic.h>
#include <linux/usb/phy-rockchip-usb2.h>
#include "fg_regs.h"
DECLARE_GLOBAL_DATA_PTR;
static int dbg_enable = 0;
#define DBG(args...) \
do { \
if (dbg_enable) { \
printf(args); \
} \
} while (0)
#define BAT_INFO(fmt, args...) printf("rk818-bat: "fmt, ##args)
#define DRIVER_VERSION "2.0"
/* THERMAL_REG */
#define TEMP_105C (0x02 << 2)
#define FB_TEMP_MSK 0x0c
/* CHRG_CTRL_REG2 */
#define FINISH_100MA (0x00 << 6)
#define FINISH_150MA (0x01 << 6)
#define FINISH_200MA (0x02 << 6)
#define FINISH_250MA (0x03 << 6)
#define FINISH_CUR_MSK 0xc7
/* CHRG_CTRL_REG3 */
#define CHRG_TERM_DIG_SIGNAL (1 << 5)
#define CHRG_TERM_ANA_SIGNAL (0 << 5)
#define CHRG_TIMER_CCCV_EN (1 << 2)
#define CHRG_TERM_SIG_MSK (1 << 5)
/* CHRG_CTRL_REG */
#define ILIM_450MA (0x00)
#define ILIM_80MA (0x01)
#define ILIM_850MA (0x02)
#define ILIM_2000MA (0x07)
#define CHRG_CT_EN (1 << 7)
/* USB_CTRL_REG */
#define INPUT_CUR_MSK 0x0f
/* VB_MON_REG */
#define PLUG_IN_STS (1 << 6)
/* GGSTS */
#define BAT_CON (1 << 4)
#define VOL_INSTANT (1 << 0)
#define VOL_AVG (0 << 0)
/* TS_CTRL_REG */
#define GG_EN (1 << 7)
/* CHRG_USB_CTRL */
#define CHRG_EN (1 << 7)
/* ADC_CTRL_REG */
#define ADC_TS2_EN (1 << 4)
#define ADC_TS1_EN (1 << 5)
/* TS_CTRL_REG */
#define TS2_ADC_MODE (1 << 5)
/* SUP_STS_REG */
#define BAT_EXS (1 << 7)
#define USB_EXIST (1 << 1)
#define USB_EFF (1 << 0)
#define CHARGE_OFF (0x00 << 4)
#define DEAD_CHARGE (0x01 << 4)
#define TRICKLE_CHARGE (0x02 << 4)
#define CC_OR_CV (0x03 << 4)
#define CHARGE_FINISH (0x04 << 4)
#define USB_OVER_VOL (0x05 << 4)
#define BAT_TMP_ERR (0x06 << 4)
#define TIMER_ERR (0x07 << 4)
#define USB_VLIMIT_EN (1 << 3)
#define USB_CLIMIT_EN (1 << 2)
#define BAT_STATUS_MSK 0x70
/* GGCON */
#define ADC_CUR_MODE (1 << 1)
/* CALI PARAM */
#define FINISH_CALI_CURR 1500
#define TERM_CALI_CURR 600
#define VIRTUAL_POWER_VOL 4200
#define VIRTUAL_POWER_CUR 1000
#define VIRTUAL_POWER_SOC 66
#define SECONDS(n) ((n) * 1000)
/* CALC PARAM */
#define MAX_PERCENTAGE 100
#define MAX_INTERPOLATE 1000
#define MAX_INT 0x7fff
#define MIN_FCC 500
/* sample resistor and division */
#define SAMPLE_RES_10mR 10
#define SAMPLE_RES_20mR 20
#define SAMPLE_RES_DIV1 1
#define SAMPLE_RES_DIV2 2
#define FG_INIT (1 << 5)
#define FG_RESET_LATE (1 << 4)
#define FG_RESET_NOW (1 << 3)
#define DEFAULT_POFFSET 42
#define DEFAULT_COFFSET 0x832
#define INVALID_COFFSET_MIN 0x780
#define INVALID_COFFSET_MAX 0x980
#define CHRG_TERM_DSOC 90
#define CHRG_TERM_K 650
#define CHRG_FULL_K 400
#define ADC_CALIB_THRESHOLD 4
#define TS2_THRESHOLD_VOL 4350
#define TS2_VALID_VOL 1000
#define TS2_VOL_MULTI 0
#define TS2_CHECK_CNT 5
#define ADC_CUR_MSK 0x03
#define ADC_CUR_20UA 0x00
#define ADC_CUR_40UA 0x01
#define ADC_CUR_60UA 0x02
#define ADC_CUR_80UA 0x03
#define NTC_CALC_FACTOR_80UA 7
#define NTC_CALC_FACTOR_60UA 9
#define NTC_CALC_FACTOR_40UA 13
#define NTC_CALC_FACTOR_20UA 27
#define NTC_80UA_MAX_MEASURE 27500
#define NTC_60UA_MAX_MEASURE 36666
#define NTC_40UA_MAX_MEASURE 55000
#define NTC_20UA_MAX_MEASURE 110000
#define ZERO_MIN_VOLTAGE 3800
#define TS1_NOT_READY 0xabcdabcd
#define DIV(x) ((x) ? (x) : 1)
/***********************************************************/
struct battery_priv {
struct udevice *dev;
int chrg_type;
int poffset;
int bat_res;
int current_avg;
int voltage_avg;
int voltage_ocv;
int voltage_k;
int voltage_b;
int dsoc;
int rsoc;
int fcc;
int qmax;
int remain_cap;
int design_cap;
int nac;
u32 *ocv_table;
u32 ocv_size;
u32 *ntc_table;
u32 ntc_size;
u32 ntc_factor;
u32 ntc_uA;
int ntc_degree_from;
int temperature;
int virtual_power;
int ts2_vol_multi;
int pwroff_min;
int sm_old_cap;
int sm_linek;
int sm_chrg_dsoc;
int adc_allow_update;
int chrg_vol_sel;
int chrg_cur_input;
int chrg_cur_sel;
int dts_vol_sel;
int dts_cur_input;
int dts_cur_sel;
int max_soc_offset;
int sample_res;
int res_div;
struct gpio_desc dc_det;
int dc_det_adc;
ulong finish_chrg_base;
ulong term_sig_base;
u8 calc_dsoc;
u8 calc_rsoc;
int sm_meet_soc;
u8 halt_cnt;
u8 dc_active_level;
u8 dc_is_valid;
bool is_halt;
bool is_ocv_calib;
bool is_max_soc_offset;
bool is_first_power_on;
bool is_sw_reset;
int pwr_dsoc;
int pwr_rsoc;
int pwr_vol;
};
enum charger_type {
NO_CHARGER = 0,
USB_CHARGER,
AC_CHARGER,
DC_CHARGER,
UNDEF_CHARGER,
};
static const u32 CHRG_VOL_SEL[] = {
4050, 4100, 4150, 4200, 4250, 4300, 4350
};
static const u32 CHRG_CUR_SEL[] = {
1000, 1200, 1400, 1600, 1800, 2000, 2250, 2400, 2600, 2800, 3000
};
static const u32 CHRG_CUR_INPUT[] = {
450, 800, 850, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000
};
static int rk818_bat_read(struct battery_priv *di, u8 reg)
{
return pmic_reg_read(di->dev->parent, reg);
}
static void rk818_bat_write(struct battery_priv *di, u8 reg, u8 buf)
{
pmic_reg_write(di->dev->parent, reg, buf);
}
static int rk818_bat_dwc_otg_check_dpdm(void)
{
#if defined(CONFIG_PHY_ROCKCHIP_INNO_USB2) && !defined(CONFIG_SPL_BUILD)
return rockchip_chg_get_type();
#else
debug("rockchip_chg_get_type() is not implement\n");
return NO_CHARGER;
#endif
}
static int rk818_bat_get_rsoc(struct battery_priv *di)
{
return (di->remain_cap + di->fcc / 200) * 100 / DIV(di->fcc);
}
static int rk818_bat_get_dsoc(struct battery_priv *di)
{
return rk818_bat_read(di, SOC_REG);
}
static void rk818_bat_enable_gauge(struct battery_priv *di)
{
u8 val;
val = rk818_bat_read(di, TS_CTRL_REG);
val |= GG_EN;
rk818_bat_write(di, TS_CTRL_REG, val);
}
static int rk818_bat_get_vcalib0(struct battery_priv *di)
{
int val = 0;
val |= rk818_bat_read(di, VCALIB0_REGL) << 0;
val |= rk818_bat_read(di, VCALIB0_REGH) << 8;
return val;
}
static int rk818_bat_get_vcalib1(struct battery_priv *di)
{
int val = 0;
val |= rk818_bat_read(di, VCALIB1_REGL) << 0;
val |= rk818_bat_read(di, VCALIB1_REGH) << 8;
return val;
}
static int rk818_bat_get_ioffset(struct battery_priv *di)
{
int val = 0;
val |= rk818_bat_read(di, IOFFSET_REGL) << 0;
val |= rk818_bat_read(di, IOFFSET_REGH) << 8;
DBG("<%s>. ioffset: 0x%x\n", __func__, val);
return val;
}
static int rk818_bat_get_coffset(struct battery_priv *di)
{
int val = 0;
val |= rk818_bat_read(di, CAL_OFFSET_REGL) << 0;
val |= rk818_bat_read(di, CAL_OFFSET_REGH) << 8;
DBG("<%s>. coffset: 0x%x\n", __func__, val);
return val;
}
static void rk818_bat_set_coffset(struct battery_priv *di, int val)
{
u8 buf;
buf = (val >> 0) & 0xff;
rk818_bat_write(di, CAL_OFFSET_REGL, buf);
buf = (val >> 8) & 0xff;
rk818_bat_write(di, CAL_OFFSET_REGH, buf);
DBG("<%s>. set coffset: 0x%x\n", __func__, val);
}
static void rk818_bat_init_coffset(struct battery_priv *di)
{
int ioffset, coffset;
ioffset = rk818_bat_get_ioffset(di);
di->poffset = rk818_bat_read(di, POFFSET_REG);
if (!di->poffset)
di->poffset = DEFAULT_POFFSET;
coffset = di->poffset + ioffset;
if (coffset < INVALID_COFFSET_MIN || coffset > INVALID_COFFSET_MAX)
coffset = DEFAULT_COFFSET;
rk818_bat_set_coffset(di, coffset);
}
static void rk818_bat_init_voltage_kb(struct battery_priv *di)
{
int vcalib0, vcalib1;
vcalib0 = rk818_bat_get_vcalib0(di);
vcalib1 = rk818_bat_get_vcalib1(di);
di->voltage_k = (4200 - 3000) * 1000 / DIV(vcalib1 - vcalib0);
di->voltage_b = 4200 - (di->voltage_k * vcalib1) / 1000;
DBG("%s. vk=%d, vb=%d\n", __func__, di->voltage_k, di->voltage_b);
}
static int rk818_bat_get_ocv_voltage(struct battery_priv *di)
{
int vol, val = 0;
val |= rk818_bat_read(di, BAT_OCV_REGL) << 0;
val |= rk818_bat_read(di, BAT_OCV_REGH) << 8;
vol = di->voltage_k * val / 1000 + di->voltage_b;
return vol;
}
static int rk818_bat_get_avg_current(struct battery_priv *di)
{
int val = 0;
val |= rk818_bat_read(di, BAT_CUR_AVG_REGL) << 0;
val |= rk818_bat_read(di, BAT_CUR_AVG_REGH) << 8;
if (val & 0x800)
val -= 4096;
val = val * di->res_div * 1506 / 1000;
return val;
}
static int rk818_bat_get_avg_voltage(struct battery_priv *di)
{
int vol, val = 0;
val |= rk818_bat_read(di, BAT_VOL_REGL) << 0;
val |= rk818_bat_read(di, BAT_VOL_REGH) << 8;
vol = di->voltage_k * val / 1000 + di->voltage_b;
return vol;
}
static int rk818_bat_get_est_voltage(struct battery_priv *di)
{
struct charge_animation_pdata *pdata = NULL;
struct udevice *dev;
int est_vol, vol, curr;
int plugin, timeout = 0;
int low_power_voltage = 0;
uclass_find_first_device(UCLASS_CHARGE_DISPLAY, &dev);
pdata = dev_get_platdata(dev);
low_power_voltage = pdata->low_power_voltage;
vol = rk818_bat_get_avg_voltage(di);
curr = rk818_bat_get_avg_current(di);
plugin = rk818_bat_read(di, VB_MON_REG) & PLUG_IN_STS ? 1 : 0;
if (di->is_first_power_on || (!plugin && curr >= 0) || (plugin && curr <= 0)) {
DBG("%s: curr=%d, plugin=%d, first_on=%d\n",
__func__, curr, plugin, di->is_first_power_on);
curr = 0;
}
est_vol = vol - (di->bat_res * curr / 1000);
while ((est_vol <= low_power_voltage) &&
(vol <= low_power_voltage)) {
mdelay(100);
/* Update */
vol = rk818_bat_get_avg_voltage(di);
curr = rk818_bat_get_avg_current(di);
plugin = rk818_bat_read(di, VB_MON_REG) & PLUG_IN_STS;
if (di->is_first_power_on || (!plugin && curr >= 0) || (plugin && curr <= 0)) {
DBG("%s: while curr=%d, plugin=%d, first_on=%d\n",
__func__, curr, plugin, di->is_first_power_on);
curr = 0;
}
est_vol = vol - (di->bat_res * curr / 1000);
timeout++;
if (timeout >= 5)
break;
}
return (est_vol >= low_power_voltage) ? est_vol : vol;
}
static u8 rk818_bat_finish_ma(struct battery_priv *di, int fcc)
{
u8 ma;
if (di->res_div == 2)
ma = FINISH_100MA;
else if (fcc > 5000)
ma = FINISH_250MA;
else if (fcc >= 4000)
ma = FINISH_200MA;
else if (fcc >= 3000)
ma = FINISH_150MA;
else
ma = FINISH_100MA;
return ma;
}
static void rk818_bat_select_chrg_cv(struct battery_priv *di)
{
int index, chrg_vol_sel, chrg_cur_sel, chrg_cur_input;
chrg_vol_sel = di->dts_vol_sel;
chrg_cur_sel = di->dts_cur_sel;
chrg_cur_input = di->dts_cur_input;
if (di->sample_res == SAMPLE_RES_10mR) {
if (chrg_cur_sel > 2000)
chrg_cur_sel /= di->res_div;
else
chrg_cur_sel = 1000;
}
for (index = 0; index < ARRAY_SIZE(CHRG_VOL_SEL); index++) {
if (chrg_vol_sel < CHRG_VOL_SEL[index])
break;
di->chrg_vol_sel = (index << 4);
}
for (index = 0; index < ARRAY_SIZE(CHRG_CUR_INPUT); index++) {
if (chrg_cur_input < CHRG_CUR_INPUT[index])
break;
di->chrg_cur_input = (index << 0);
}
for (index = 0; index < ARRAY_SIZE(CHRG_CUR_SEL); index++) {
if (chrg_cur_sel < CHRG_CUR_SEL[index])
break;
di->chrg_cur_sel = (index << 0);
}
DBG("<%s>. vol=0x%x, input=0x%x, sel=0x%x\n",
__func__, di->chrg_vol_sel, di->chrg_cur_input, di->chrg_cur_sel);
}
static void rk818_bat_init_chrg_config(struct battery_priv *di)
{
u8 chrg_ctrl1, usb_ctrl, chrg_ctrl2, chrg_ctrl3;
u8 sup_sts, ggcon, thermal, finish_ma;
rk818_bat_select_chrg_cv(di);
finish_ma = rk818_bat_finish_ma(di, di->fcc);
ggcon = rk818_bat_read(di, GGCON_REG);
sup_sts = rk818_bat_read(di, SUP_STS_REG);
usb_ctrl = rk818_bat_read(di, USB_CTRL_REG);
thermal = rk818_bat_read(di, THERMAL_REG);
chrg_ctrl2 = rk818_bat_read(di, CHRG_CTRL_REG2);
chrg_ctrl3 = rk818_bat_read(di, CHRG_CTRL_REG3);
/* set charge current and voltage */
usb_ctrl &= ~INPUT_CUR_MSK;
usb_ctrl |= di->chrg_cur_input;
chrg_ctrl1 = (CHRG_EN | di->chrg_vol_sel | di->chrg_cur_sel);
/* digital signal and finish current*/
chrg_ctrl3 &= ~CHRG_TERM_SIG_MSK;
chrg_ctrl3 |= CHRG_TERM_ANA_SIGNAL;
chrg_ctrl2 &= ~FINISH_CUR_MSK;
chrg_ctrl2 |= finish_ma;
/* cccv mode */
chrg_ctrl3 &= ~CHRG_TIMER_CCCV_EN;
/* enable voltage limit and enable input current limit */
sup_sts &= ~USB_VLIMIT_EN;
sup_sts |= USB_CLIMIT_EN;
/* set feedback temperature */
usb_ctrl |= CHRG_CT_EN;
thermal &= ~FB_TEMP_MSK;
thermal |= TEMP_105C;
/* adc current mode */
ggcon |= ADC_CUR_MODE;
rk818_bat_write(di, GGCON_REG, ggcon);
rk818_bat_write(di, SUP_STS_REG, sup_sts);
rk818_bat_write(di, USB_CTRL_REG, usb_ctrl);
rk818_bat_write(di, THERMAL_REG, thermal);
rk818_bat_write(di, CHRG_CTRL_REG1, chrg_ctrl1);
rk818_bat_write(di, CHRG_CTRL_REG2, chrg_ctrl2);
rk818_bat_write(di, CHRG_CTRL_REG3, chrg_ctrl3);
}
static u32 interpolate(int value, u32 *table, int size)
{
uint8_t i;
uint16_t d;
for (i = 0; i < size; i++) {
if (value < table[i])
break;
}
if ((i > 0) && (i < size)) {
d = (value - table[i - 1]) * (MAX_INTERPOLATE / (size - 1));
d /= table[i] - table[i - 1];
d = d + (i - 1) * (MAX_INTERPOLATE / (size - 1));
} else {
d = i * ((MAX_INTERPOLATE + size / 2) / size);
}
if (d > 1000)
d = 1000;
return d;
}
/* returns (a * b) / c */
static int32_t ab_div_c(u32 a, u32 b, u32 c)
{
bool sign;
u32 ans = MAX_INT;
int32_t tmp;
sign = ((((a ^ b) ^ c) & 0x80000000) != 0);
if (c != 0) {
if (sign)
c = -c;
tmp = ((int32_t)a * b + (c >> 1)) / c;
if (tmp < MAX_INT)
ans = tmp;
}
if (sign)
ans = -ans;
return ans;
}
static int rk818_bat_vol_to_cap(struct battery_priv *di, int voltage)
{
u32 *ocv_table, tmp;
int ocv_size, ocv_cap;
ocv_table = di->ocv_table;
ocv_size = di->ocv_size;
tmp = interpolate(voltage, ocv_table, ocv_size);
ocv_cap = ab_div_c(tmp, di->fcc, MAX_INTERPOLATE);
return ocv_cap;
}
static int rk818_bat_vol_to_soc(struct battery_priv *di, int voltage)
{
u32 *ocv_table, tmp;
int ocv_size, ocv_soc;
ocv_table = di->ocv_table;
ocv_size = di->ocv_size;
tmp = interpolate(voltage, ocv_table, ocv_size);
ocv_soc = ab_div_c(tmp, MAX_PERCENTAGE, MAX_INTERPOLATE);
return ocv_soc;
}
static int rk818_bat_get_prev_cap(struct battery_priv *di)
{
int val = 0;
val |= rk818_bat_read(di, REMAIN_CAP_REG3) << 24;
val |= rk818_bat_read(di, REMAIN_CAP_REG2) << 16;
val |= rk818_bat_read(di, REMAIN_CAP_REG1) << 8;
val |= rk818_bat_read(di, REMAIN_CAP_REG0) << 0;
return val;
}
static void rk818_bat_save_fcc(struct battery_priv *di, u32 cap)
{
u8 buf;
buf = (cap >> 24) & 0xff;
rk818_bat_write(di, NEW_FCC_REG3, buf);
buf = (cap >> 16) & 0xff;
rk818_bat_write(di, NEW_FCC_REG2, buf);
buf = (cap >> 8) & 0xff;
rk818_bat_write(di, NEW_FCC_REG1, buf);
buf = (cap >> 0) & 0xff;
rk818_bat_write(di, NEW_FCC_REG0, buf);
}
static int rk818_bat_get_fcc(struct battery_priv *di)
{
int val = 0;
val |= rk818_bat_read(di, NEW_FCC_REG3) << 24;
val |= rk818_bat_read(di, NEW_FCC_REG2) << 16;
val |= rk818_bat_read(di, NEW_FCC_REG1) << 8;
val |= rk818_bat_read(di, NEW_FCC_REG0) << 0;
if (val < MIN_FCC)
val = di->design_cap;
else if (val > di->qmax)
val = di->qmax;
return val;
}
static int rk818_bat_get_pwroff_min(struct battery_priv *di)
{
u8 cur, last;
cur = rk818_bat_read(di, NON_ACT_TIMER_CNT_REG);
last = rk818_bat_read(di, NON_ACT_TIMER_CNT_SAVE_REG);
rk818_bat_write(di, NON_ACT_TIMER_CNT_SAVE_REG, cur);
return (cur != last) ? cur : 0;
}
static int rk818_bat_get_coulomb_cap(struct battery_priv *di)
{
int val = 0;
val |= rk818_bat_read(di, GASCNT_REG3) << 24;
val |= rk818_bat_read(di, GASCNT_REG2) << 16;
val |= rk818_bat_read(di, GASCNT_REG1) << 8;
val |= rk818_bat_read(di, GASCNT_REG0) << 0;
val /= 2390;
return val * di->res_div;
}
static void rk818_bat_save_cap(struct battery_priv *di, int cap)
{
u8 buf;
static int old_cap;
if (old_cap == cap)
return;
if (cap >= di->qmax)
cap = di->qmax;
old_cap = cap;
buf = (cap >> 24) & 0xff;
rk818_bat_write(di, REMAIN_CAP_REG3, buf);
buf = (cap >> 16) & 0xff;
rk818_bat_write(di, REMAIN_CAP_REG2, buf);
buf = (cap >> 8) & 0xff;
rk818_bat_write(di, REMAIN_CAP_REG1, buf);
buf = (cap >> 0) & 0xff;
rk818_bat_write(di, REMAIN_CAP_REG0, buf);
}
static void rk818_bat_init_capacity(struct battery_priv *di, u32 capacity)
{
u8 buf;
u32 cap;
int delta;
delta = capacity - di->remain_cap;
if (!delta)
return;
cap = capacity * 2390 / di->res_div;
buf = (cap >> 24) & 0xff;
rk818_bat_write(di, GASCNT_CAL_REG3, buf);
buf = (cap >> 16) & 0xff;
rk818_bat_write(di, GASCNT_CAL_REG2, buf);
buf = (cap >> 8) & 0xff;
rk818_bat_write(di, GASCNT_CAL_REG1, buf);
buf = (cap >> 0) & 0xff;
rk818_bat_write(di, GASCNT_CAL_REG0, buf);
di->remain_cap = rk818_bat_get_coulomb_cap(di);
di->rsoc = rk818_bat_get_rsoc(di);
rk818_bat_save_cap(di, di->remain_cap);
}
static bool is_rk818_bat_ocv_valid(struct battery_priv *di)
{
return di->pwroff_min >= 30 ? true : false;
}
static int rk818_bat_get_usb_state(struct battery_priv *di)
{
int charger_type;
switch (rk818_bat_dwc_otg_check_dpdm()) {
case 0:
if ((rk818_bat_read(di, VB_MON_REG) & PLUG_IN_STS) != 0)
charger_type = DC_CHARGER;
else
charger_type = NO_CHARGER;
break;
case 1:
case 3:
charger_type = USB_CHARGER;
break;
case 2:
case 4:
charger_type = AC_CHARGER;
break;
default:
charger_type = NO_CHARGER;
}
return charger_type;
}
static void rk818_bat_clr_initialized_state(struct battery_priv *di)
{
u8 val;
val = rk818_bat_read(di, MISC_MARK_REG);
val &= ~FG_INIT;
rk818_bat_write(di, MISC_MARK_REG, val);
}
static bool rk818_bat_is_initialized(struct battery_priv *di)
{
return (rk818_bat_read(di, MISC_MARK_REG) & FG_INIT) ? true : false;
}
static void rk818_bat_set_initialized_state(struct battery_priv *di)
{
u8 val;
val = rk818_bat_read(di, MISC_MARK_REG);
if (rk818_bat_get_usb_state(di) != NO_CHARGER) {
val |= FG_INIT;
rk818_bat_write(di, MISC_MARK_REG, val);
BAT_INFO("initialized... estv=%d, ch=%d\n",
rk818_bat_get_est_voltage(di),
rk818_bat_get_usb_state(di));
}
}
static void rk818_bat_save_dsoc(struct battery_priv *di, u8 save_soc)
{
static int old_soc = -1;
if (old_soc != save_soc) {
old_soc = save_soc;
rk818_bat_write(di, SOC_REG, save_soc);
}
}
static void rk818_bat_first_pwron(struct battery_priv *di)
{
int ocv_vol, vol, curr;
rk818_bat_save_fcc(di, di->design_cap);
ocv_vol = rk818_bat_get_ocv_voltage(di);
curr = rk818_bat_get_avg_current(di);
di->fcc = rk818_bat_get_fcc(di);
di->nac = rk818_bat_vol_to_cap(di, ocv_vol);
di->rsoc = rk818_bat_vol_to_soc(di, ocv_vol);
di->dsoc = di->rsoc;
vol = rk818_bat_get_avg_voltage(di);
if (ocv_vol < vol) {
BAT_INFO("%s: ocv voltage %d\n", __func__, ocv_vol);
ocv_vol = vol;
}
rk818_bat_save_dsoc(di, di->dsoc);
rk818_bat_init_capacity(di, di->nac);
rk818_bat_set_initialized_state(di);
BAT_INFO("first power on: soc=%d, Vavg=%d, Vocv=%d, c=%d, ch=%d, fcc=%d\n",
di->dsoc, vol, ocv_vol, curr, rk818_bat_get_usb_state(di), di->fcc);
}
static u8 rk818_bat_get_halt_cnt(struct battery_priv *di)
{
return rk818_bat_read(di, HALT_CNT_REG);
}
static void rk818_bat_inc_halt_cnt(struct battery_priv *di)
{
u8 cnt;
cnt = rk818_bat_read(di, HALT_CNT_REG);
rk818_bat_write(di, HALT_CNT_REG, ++cnt);
}
static bool is_rk818_bat_last_halt(struct battery_priv *di)
{
int pre_cap = rk818_bat_get_prev_cap(di);
int now_cap = rk818_bat_get_coulomb_cap(di);
/* over 5%: system halt last time */
if (abs(now_cap - pre_cap) > (di->fcc / 20)) {
rk818_bat_inc_halt_cnt(di);
return true;
} else {
return false;
}
}
static void rk818_bat_not_first_pwron(struct battery_priv *di)
{
int pre_soc, pre_cap, ocv_cap = 0, ocv_soc = 0, ocv_vol, now_cap;
int voltage;
di->fcc = rk818_bat_get_fcc(di);
pre_soc = rk818_bat_get_dsoc(di);
pre_cap = rk818_bat_get_prev_cap(di);
now_cap = rk818_bat_get_coulomb_cap(di);
voltage = rk818_bat_get_est_voltage(di);
di->pwr_dsoc = pre_soc;
di->pwr_rsoc = (now_cap + di->fcc / 200) * 100 / DIV(di->fcc);
di->is_halt = is_rk818_bat_last_halt(di);
di->halt_cnt = rk818_bat_get_halt_cnt(di);
di->is_ocv_calib = is_rk818_bat_ocv_valid(di);
if (di->is_halt) {
BAT_INFO("system halt last time... cap: pre=%d, now=%d\n",
pre_cap, now_cap);
if (now_cap < 0)
now_cap = 0;
rk818_bat_init_capacity(di, now_cap);
pre_cap = di->remain_cap;
pre_soc = di->rsoc;
goto finish;
} else if (di->is_ocv_calib) {
ocv_vol = rk818_bat_get_ocv_voltage(di);
ocv_soc = rk818_bat_vol_to_soc(di, ocv_vol);
ocv_cap = rk818_bat_vol_to_cap(di, ocv_vol);
pre_cap = ocv_cap;
BAT_INFO("do ocv calib.. rsoc=%d\n", ocv_soc);
if (abs(ocv_soc - pre_soc) >= di->max_soc_offset) {
BAT_INFO("trigger max soc offset, soc: %d -> %d\n",
pre_soc, ocv_soc);
pre_soc = ocv_soc;
di->is_max_soc_offset = true;
}
BAT_INFO("OCV calib: cap=%d, rsoc=%d\n", ocv_cap, ocv_soc);
} else if ((pre_soc == 0) && (voltage >= ZERO_MIN_VOLTAGE)) {
if (now_cap < 0)
now_cap = 0;
rk818_bat_init_capacity(di, now_cap);
pre_cap = di->remain_cap;
pre_soc = di->rsoc;
BAT_INFO("zero calib: voltage=%d\n", voltage);
}
finish:
di->dsoc = pre_soc;
di->nac = pre_cap;
rk818_bat_init_capacity(di, di->nac);
rk818_bat_save_dsoc(di, di->dsoc);
rk818_bat_set_initialized_state(di);
BAT_INFO("dl=%d rl=%d cap=%d m=%d v=%d ov=%d c=%d pl=%d ch=%d fcc=%d, Ver=%s\n",
di->dsoc, di->rsoc, di->remain_cap, di->pwroff_min,
rk818_bat_get_avg_voltage(di), rk818_bat_get_ocv_voltage(di),
rk818_bat_get_avg_current(di), rk818_bat_get_dsoc(di),
rk818_bat_get_usb_state(di), di->fcc, DRIVER_VERSION
);
}
static bool is_rk818_bat_first_poweron(struct battery_priv *di)
{
u8 buf;
buf = rk818_bat_read(di, GGSTS_REG);
if (buf & BAT_CON) {
buf &= ~BAT_CON;
rk818_bat_write(di, GGSTS_REG, buf);
return true;
}
return false;
}
static bool rk818_bat_ocv_sw_reset(struct battery_priv *di)
{
u8 buf;
buf = rk818_bat_read(di, MISC_MARK_REG);
if (((buf & FG_RESET_LATE) && di->pwroff_min >= 30) ||
(buf & FG_RESET_NOW)) {
buf &= ~FG_RESET_LATE;
buf &= ~FG_RESET_NOW;
rk818_bat_write(di, MISC_MARK_REG, buf);
BAT_INFO("manual reset fuel gauge\n");
return true;
} else {
return false;
}
}
static void rk818_bat_init_rsoc(struct battery_priv *di)
{
int charger, voltage, initialize = 0;
struct charge_animation_pdata *pdata;
struct udevice *dev;
uclass_find_first_device(UCLASS_CHARGE_DISPLAY, &dev);
pdata = dev_get_platdata(dev);
charger = rk818_bat_get_usb_state(di);
voltage = rk818_bat_get_est_voltage(di);
di->is_first_power_on = is_rk818_bat_first_poweron(di);
/*
* Do rsoc initialization only when:
*
* 1. first power on;
* 2. charger online + voltage lower than low_power_voltage;
* 3. charger online + uboot_charge enabled.
* 4. dsoc is 0 but voltage high, obvious wrong.
*/
if (di->is_first_power_on) {
initialize = 1;
} else if ((di->dsoc == 0) && (voltage >= ZERO_MIN_VOLTAGE)) {
initialize = 1;
} else if (charger != NO_CHARGER) {
if (voltage < pdata->low_power_voltage + 50)
initialize = 1;
else if (pdata->uboot_charge)
initialize = 1;
}
if (!initialize)
return;
di->pwroff_min = rk818_bat_get_pwroff_min(di);
di->is_sw_reset = rk818_bat_ocv_sw_reset(di);
if (di->is_first_power_on || di->is_sw_reset)
rk818_bat_first_pwron(di);
else
rk818_bat_not_first_pwron(di);
}
static int rk818_bat_calc_linek(struct battery_priv *di)
{
int linek, diff, delta;
di->calc_dsoc = di->dsoc;
di->calc_rsoc = di->rsoc;
di->sm_old_cap = di->remain_cap;
delta = abs(di->dsoc - di->rsoc);
diff = delta * 3;
di->sm_meet_soc = (di->dsoc >= di->rsoc) ?
(di->dsoc + diff) : (di->rsoc + diff);
if (di->dsoc < di->rsoc)
linek = 1000 * (delta + diff) / DIV(diff);
else if (di->dsoc > di->rsoc)
linek = 1000 * diff / DIV(delta + diff);
else
linek = 1000;
di->sm_chrg_dsoc = di->dsoc * 1000;
DBG("<%s>. meet=%d, diff=%d, link=%d, calc: dsoc=%d, rsoc=%d\n",
__func__, di->sm_meet_soc, diff, linek,
di->calc_dsoc, di->calc_rsoc);
return linek;
}
static void rk818_bat_init_ts1(struct battery_priv *di)
{
u8 buf;
u32 *ntc_table = di->ntc_table;
if (!di->ntc_size)
return;
/* select uA */
buf = rk818_bat_read(di, TS_CTRL_REG);
buf &= ~ADC_CUR_MSK;
/* chose suitable UA for temperature detect */
if (ntc_table[0] < NTC_80UA_MAX_MEASURE) {
di->ntc_factor = NTC_CALC_FACTOR_80UA;
di->ntc_uA = 80;
buf |= ADC_CUR_80UA;
} else if (ntc_table[0] < NTC_60UA_MAX_MEASURE) {
di->ntc_factor = NTC_CALC_FACTOR_60UA;
di->ntc_uA = 60;
buf |= ADC_CUR_60UA;
} else if (ntc_table[0] < NTC_40UA_MAX_MEASURE) {
di->ntc_factor = NTC_CALC_FACTOR_40UA;
di->ntc_uA = 40;
buf |= ADC_CUR_40UA;
} else {
di->ntc_factor = NTC_CALC_FACTOR_20UA;
di->ntc_uA = 20;
buf |= ADC_CUR_20UA;
}
rk818_bat_write(di, TS_CTRL_REG, buf);
/* ADC_TS1_EN */
buf = rk818_bat_read(di, ADC_CTRL_REG);
buf |= ADC_TS1_EN;
rk818_bat_write(di, ADC_CTRL_REG, buf);
}
static void rk818_bat_init_ts2(struct battery_priv *di)
{
u8 buf;
if (!di->ts2_vol_multi)
return;
/* TS2 adc mode */
buf = rk818_bat_read(di, TS_CTRL_REG);
buf |= TS2_ADC_MODE;
rk818_bat_write(di, TS_CTRL_REG, buf);
/* TS2 adc enable */
buf = rk818_bat_read(di, ADC_CTRL_REG);
buf |= ADC_TS2_EN;
rk818_bat_write(di, ADC_CTRL_REG, buf);
}
static int rk818_fg_init(struct battery_priv *di)
{
int cap;
rk818_bat_enable_gauge(di);
rk818_bat_init_voltage_kb(di);
rk818_bat_init_coffset(di);
rk818_bat_init_ts1(di);
rk818_bat_init_ts2(di);
rk818_bat_clr_initialized_state(di);
cap = rk818_bat_get_coulomb_cap(di);
di->dsoc = rk818_bat_get_dsoc(di);
di->rsoc = (cap + di->fcc / 200) * 100 / DIV(di->fcc);
/* dsoc and rsoc maybe initialized here */
rk818_bat_init_rsoc(di);
rk818_bat_init_chrg_config(di);
di->voltage_avg = rk818_bat_get_avg_voltage(di);
di->voltage_ocv = rk818_bat_get_ocv_voltage(di);
di->current_avg = rk818_bat_get_avg_current(di);
di->sm_linek = rk818_bat_calc_linek(di);
di->finish_chrg_base = get_timer(0);
di->term_sig_base = get_timer(0);
di->pwr_vol = di->voltage_avg;
DBG("%s: dsoc=%d, rsoc=%d, v=%d, ov=%d, c=%d, estv=%d\n",
__func__, di->dsoc, di->rsoc, di->voltage_avg, di->voltage_ocv,
di->current_avg, rk818_bat_get_est_voltage(di));
return 0;
}
static bool is_rk818_bat_exist(struct battery_priv *di)
{
return (rk818_bat_read(di, SUP_STS_REG) & BAT_EXS) ? true : false;
}
static void rk818_bat_set_current(struct battery_priv *di, int input_current)
{
u8 usb_ctrl;
usb_ctrl = rk818_bat_read(di, USB_CTRL_REG);
usb_ctrl &= ~INPUT_CUR_MSK;
usb_ctrl |= (input_current);
rk818_bat_write(di, USB_CTRL_REG, usb_ctrl);
}
static int rk818_bat_get_ts2_voltage(struct battery_priv *di)
{
u32 val = 0;
val |= rk818_bat_read(di, RK818_TS2_ADC_REGL) << 0;
val |= rk818_bat_read(di, RK818_TS2_ADC_REGH) << 8;
/* refer voltage 2.2V, 12bit adc accuracy */
val = val * 2200 * di->ts2_vol_multi / 4095;
DBG("<%s>. ts2 voltage=%d\n", __func__, val);
return val;
}
static void rk818_bat_ts2_update_current(struct battery_priv *di)
{
int ts2_vol, input_current, invalid_cnt = 0, confirm_cnt = 0;
rk818_bat_set_current(di, ILIM_450MA);
input_current = ILIM_850MA;
while (input_current < di->chrg_cur_input) {
mdelay(100);
ts2_vol = rk818_bat_get_ts2_voltage(di);
DBG("******** ts2 vol=%d\n", ts2_vol);
/* filter invalid voltage */
if (ts2_vol <= TS2_VALID_VOL) {
invalid_cnt++;
DBG("%s: invalid ts2 voltage: %d\n, cnt=%d",
__func__, ts2_vol, invalid_cnt);
if (invalid_cnt < TS2_CHECK_CNT)
continue;
/* if fail, set max input current as default */
input_current = di->chrg_cur_input;
rk818_bat_set_current(di, input_current);
break;
}
/* update input current */
if (ts2_vol >= TS2_THRESHOLD_VOL) {
/* update input current */
input_current++;
rk818_bat_set_current(di, input_current);
DBG("********* input=%d\n",
CHRG_CUR_INPUT[input_current & 0x0f]);
} else {
/* confirm lower threshold voltage */
confirm_cnt++;
if (confirm_cnt < TS2_CHECK_CNT) {
DBG("%s: confirm ts2 voltage: %d\n, cnt=%d",
__func__, ts2_vol, confirm_cnt);
continue;
}
/* trigger threshold, so roll back 1 step */
input_current--;
if (input_current == ILIM_80MA ||
input_current < 0)
input_current = ILIM_450MA;
rk818_bat_set_current(di, input_current);
break;
}
}
BAT_INFO("DC_CHARGER charge_cur_input=%d\n",
CHRG_CUR_INPUT[input_current]);
}
static void rk818_bat_charger_setting(struct battery_priv *di, int charger)
{
static u8 old_charger = UNDEF_CHARGER;
struct charge_animation_pdata *pdata;
struct udevice *dev;
int low_power_voltage = 0;
uclass_find_first_device(UCLASS_CHARGE_DISPLAY, &dev);
pdata = dev_get_platdata(dev);
low_power_voltage = pdata->low_power_voltage;
/* charger changed */
if (old_charger != charger) {
if (charger == NO_CHARGER) {
BAT_INFO("NO_CHARGER\n");
rk818_bat_set_current(di, ILIM_450MA);
} else if (charger == USB_CHARGER) {
BAT_INFO("USB_CHARGER\n");
rk818_bat_set_current(di, ILIM_450MA);
} else if (charger == DC_CHARGER || charger == AC_CHARGER) {
if (pdata->uboot_charge && di->ts2_vol_multi) {
rk818_bat_ts2_update_current(di);
} else if ((rk818_bat_get_est_voltage(di) < low_power_voltage) &&
(di->ts2_vol_multi)) {
rk818_bat_ts2_update_current(di);
} else {
rk818_bat_set_current(di, di->chrg_cur_input);
BAT_INFO("DC_CHARGER\n");
}
} else {
BAT_INFO("charger setting error %d\n", charger);
}
old_charger = charger;
}
}
static int rk818_bat_get_dc_state(struct battery_priv *di)
{
if (!di->dc_is_valid)
return NO_CHARGER;
return dm_gpio_get_value(&di->dc_det) ? DC_CHARGER : NO_CHARGER;
}
static int rk818_bat_get_charger_type(struct battery_priv *di)
{
int charger_type = NO_CHARGER;
/* check by ic hardware: this check make check work safer */
if ((rk818_bat_read(di, VB_MON_REG) & PLUG_IN_STS) == 0)
return NO_CHARGER;
/* virtual or bat not exist */
if (di->virtual_power)
return DC_CHARGER;
/* check DC firstly */
charger_type = rk818_bat_get_dc_state(di);
if (charger_type == DC_CHARGER)
return charger_type;
/* check USB secondly */
return rk818_bat_get_usb_state(di);
}
static u8 rk818_bat_get_chrg_status(struct battery_priv *di)
{
u8 status;
status = rk818_bat_read(di, SUP_STS_REG) & BAT_STATUS_MSK;
switch (status) {
case CHARGE_OFF:
DBG("CHARGE-OFF...\n");
break;
case DEAD_CHARGE:
DBG("DEAD CHARGE...\n");
break;
case TRICKLE_CHARGE:
DBG("TRICKLE CHARGE...\n ");
break;
case CC_OR_CV:
DBG("CC or CV...\n");
break;
case CHARGE_FINISH:
DBG("CHARGE FINISH...\n");
break;
case USB_OVER_VOL:
DBG("USB OVER VOL...\n");
break;
case BAT_TMP_ERR:
DBG("BAT TMP ERROR...\n");
break;
case TIMER_ERR:
DBG("TIMER ERROR...\n");
break;
case USB_EXIST:
DBG("USB EXIST...\n");
break;
case USB_EFF:
DBG("USB EFF...\n");
break;
default:
return -EINVAL;
}
return status;
}
static void rk818_bat_finish_chrg(struct battery_priv *di)
{
u32 tgt_sec = 0;
if (di->dsoc < 100) {
tgt_sec = di->fcc * 3600 / 100 / FINISH_CALI_CURR;
if (get_timer(di->finish_chrg_base) > SECONDS(tgt_sec)) {
di->finish_chrg_base = get_timer(0);
di->dsoc++;
}
}
DBG("<%s>. sec=%d, finish_sec=%lu\n", __func__, SECONDS(tgt_sec),
get_timer(di->finish_chrg_base));
}
static void rk818_bat_debug_info(struct battery_priv *di)
{
u8 sup_sts, ggcon, ggsts, vb_mod, rtc, thermal, misc;
u8 usb_ctrl, chrg_ctrl1, chrg_ctrl2, chrg_ctrl3;
static const char *name[] = {"NONE", "USB", "AC", "DC", "UNDEF"};
if (!dbg_enable)
return;
ggcon = rk818_bat_read(di, GGCON_REG);
ggsts = rk818_bat_read(di, GGSTS_REG);
sup_sts = rk818_bat_read(di, SUP_STS_REG);
usb_ctrl = rk818_bat_read(di, USB_CTRL_REG);
thermal = rk818_bat_read(di, THERMAL_REG);
vb_mod = rk818_bat_read(di, VB_MON_REG);
misc = rk818_bat_read(di, MISC_MARK_REG);
rtc = rk818_bat_read(di, SECONDS_REG);
chrg_ctrl1 = rk818_bat_read(di, CHRG_CTRL_REG1);
chrg_ctrl2 = rk818_bat_read(di, CHRG_CTRL_REG2);
chrg_ctrl3 = rk818_bat_read(di, CHRG_CTRL_REG3);
DBG("\n---------------------- DEBUG REGS ------------------------\n"
"GGCON=0x%2x, GGSTS=0x%2x, RTC=0x%2x, SUP_STS= 0x%2x\n"
"VB_MOD=0x%2x, USB_CTRL=0x%2x, THERMAL=0x%2x, MISC=0x%2x\n"
"CHRG_CTRL:REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n",
ggcon, ggsts, rtc, sup_sts, vb_mod, usb_ctrl,
thermal, misc, chrg_ctrl1, chrg_ctrl2, chrg_ctrl3
);
DBG("----------------------------------------------------------\n"
"Dsoc=%d, Rsoc=%d, Vavg=%d, Iavg=%d, Cap=%d, Fcc=%d, d=%d\n"
"K=%d, old_cap=%d, charger=%s, Is=%d, Ip=%d, Vs=%d\n"
"min=%d, meet: soc=%d, calc: dsoc=%d, rsoc=%d, Vocv=%d\n"
"off: i=0x%x, c=0x%x, max=%d, ocv_c=%d, halt: st=%d, cnt=%d\n"
"pwr: dsoc=%d, rsoc=%d, vol=%d, Res=%d, mode=%s, T=%d'C\n",
di->dsoc, rk818_bat_get_rsoc(di), rk818_bat_get_avg_voltage(di),
rk818_bat_get_avg_current(di), di->remain_cap, di->fcc,
di->rsoc - di->dsoc,
di->sm_linek, di->sm_old_cap, name[di->chrg_type],
di->res_div * CHRG_CUR_SEL[chrg_ctrl1 & 0x0f],
CHRG_CUR_INPUT[usb_ctrl & 0x0f],
CHRG_VOL_SEL[(chrg_ctrl1 & 0x70) >> 4], di->pwroff_min,
di->sm_meet_soc, di->calc_dsoc, di->calc_rsoc,
rk818_bat_get_ocv_voltage(di), rk818_bat_get_ioffset(di),
rk818_bat_get_coffset(di), di->is_max_soc_offset,
di->is_ocv_calib, di->is_halt, di->halt_cnt, di->pwr_dsoc,
di->pwr_rsoc, di->pwr_vol, di->sample_res,
di->virtual_power ? "VIRTUAL" : "BAT",
di->temperature
);
rk818_bat_get_chrg_status(di);
DBG("###########################################################\n");
}
static void rk818_bat_linek_algorithm(struct battery_priv *di)
{
int delta_cap, ydsoc, tmp;
u8 chg_st = rk818_bat_get_chrg_status(di);
/* slow down */
if (di->dsoc == 99)
di->sm_linek = CHRG_FULL_K;
else if (di->dsoc >= CHRG_TERM_DSOC && di->current_avg > TERM_CALI_CURR)
di->sm_linek = CHRG_TERM_K;
delta_cap = di->remain_cap - di->sm_old_cap;
ydsoc = di->sm_linek * delta_cap * 100 / DIV(di->fcc);
if (ydsoc > 0) {
tmp = (di->sm_chrg_dsoc + 1) / 1000;
if (tmp != di->dsoc)
di->sm_chrg_dsoc = di->dsoc * 1000;
di->sm_chrg_dsoc += ydsoc;
di->dsoc = (di->sm_chrg_dsoc + 1) / 1000;
di->sm_old_cap = di->remain_cap;
if (di->dsoc == di->rsoc && di->sm_linek != CHRG_FULL_K &&
di->sm_linek != CHRG_TERM_K)
di->sm_linek = 1000;
}
if ((di->sm_linek == 1000 || di->dsoc >= 100) &&
(chg_st != CHARGE_FINISH)) {
if (di->sm_linek == 1000)
di->dsoc = di->rsoc;
di->sm_chrg_dsoc = di->dsoc * 1000;
}
DBG("linek=%d, sm_dsoc=%d, delta_cap=%d, ydsoc=%d, old_cap=%d\n"
"calc: dsoc=%d, rsoc=%d, meet=%d\n",
di->sm_linek, di->sm_chrg_dsoc, delta_cap, ydsoc, di->sm_old_cap,
di->calc_dsoc, di->calc_rsoc, di->sm_meet_soc);
}
static void rk818_bat_set_term_mode(struct battery_priv *di, int mode)
{
u8 buf;
buf = rk818_bat_read(di, CHRG_CTRL_REG3);
buf &= ~CHRG_TERM_SIG_MSK;
buf |= mode;
rk818_bat_write(di, CHRG_CTRL_REG3, buf);
DBG("set charge to %s term mode\n", mode ? "digital" : "analog");
}
static int rk818_bat_get_iadc(struct battery_priv *di)
{
int val = 0;
val |= rk818_bat_read(di, BAT_CUR_AVG_REGL) << 0;
val |= rk818_bat_read(di, BAT_CUR_AVG_REGH) << 8;
if (val > 2047)
val -= 4096;
return val;
}
static bool rk818_bat_adc_calib(struct battery_priv *di)
{
int i, ioffset, coffset, adc;
if (abs(di->current_avg) < ADC_CALIB_THRESHOLD)
return false;
for (i = 0; i < 5; i++) {
adc = rk818_bat_get_iadc(di);
coffset = rk818_bat_get_coffset(di);
rk818_bat_set_coffset(di, coffset + adc);
mdelay(200);
adc = rk818_bat_get_iadc(di);
if (abs(adc) < ADC_CALIB_THRESHOLD) {
coffset = rk818_bat_get_coffset(di);
ioffset = rk818_bat_get_ioffset(di);
di->poffset = coffset - ioffset;
rk818_bat_write(di, POFFSET_REG, di->poffset);
BAT_INFO("new offset:c=0x%x, i=0x%x, p=0x%x\n",
coffset, ioffset, di->poffset);
return true;
} else {
BAT_INFO("coffset calib again %d..\n", i);
rk818_bat_set_coffset(di, coffset);
mdelay(200);
}
}
return false;
}
static void rk818_bat_smooth_charge(struct battery_priv *di)
{
u8 chg_st = rk818_bat_get_chrg_status(di);
/* set terminal charge mode */
if (di->term_sig_base && get_timer(di->term_sig_base) > SECONDS(1)) {
DBG("%s: terminal signal finish mode\n", __func__);
rk818_bat_set_term_mode(di, CHRG_TERM_DIG_SIGNAL);
di->term_sig_base = 0;
}
/* not charge mode and not keep in uboot charge: exit */
if ((di->chrg_type == NO_CHARGER) ||
!rk818_bat_is_initialized(di)) {
DBG("chrg=%d, initialized=%d\n", di->chrg_type,
rk818_bat_is_initialized(di));
goto out;
}
/* update rsoc and remain cap */
di->remain_cap = rk818_bat_get_coulomb_cap(di);
di->rsoc = rk818_bat_get_rsoc(di);
if (di->remain_cap > di->fcc) {
di->sm_old_cap -= (di->remain_cap - di->fcc);
rk818_bat_init_capacity(di, di->fcc);
DBG("%s: init capacity: %d\n", __func__, di->fcc);
}
/* finish charge step */
if (chg_st == CHARGE_FINISH) {
DBG("%s: finish charge step...\n", __func__);
if (di->adc_allow_update)
di->adc_allow_update = !rk818_bat_adc_calib(di);
rk818_bat_finish_chrg(di);
rk818_bat_init_capacity(di, di->fcc);
} else {
DBG("%s: smooth charge step...\n", __func__);
di->adc_allow_update = true;
di->finish_chrg_base = get_timer(0);
rk818_bat_linek_algorithm(di);
}
/* dsoc limit */
if (di->dsoc > 100)
di->dsoc = 100;
else if (di->dsoc < 0)
di->dsoc = 0;
DBG("%s: save dsoc=%d and rsoc=%d\n",
__func__, di->dsoc, rk818_bat_get_rsoc(di));
rk818_bat_save_dsoc(di, di->dsoc);
rk818_bat_save_cap(di, di->remain_cap);
out:
rk818_bat_debug_info(di);
}
/*
* Due to hardware design issue, Vdelta = "(R_sample + R_other) * I_avg" will be
* included into TS1 adc value. We must subtract it to get correct adc value.
* The solution:
*
* (1) calculate Vdelta:
*
* adc1 - Vdelta ua1 (adc2 * ua1) - (adc1 * ua2)
* ------------- = ----- ==> equals: Vdelta = -----------------------------
* adc2 - Vdelta ua2 ua1 - ua2
*
*
* (2) calculate correct ADC value:
*
* charging: ADC = adc1 - abs(Vdelta);
* discharging: ADC = adc1 + abs(Vdelta);
*/
static int rk818_bat_get_ntc_res(struct battery_priv *di)
{
static int adc1 = 0, adc2 = 0, ua1 = 0, ua2 = 0;
static int adc1_update = 0, first_in = 1;
static ulong seconds;
int v_delta, val, res;
u8 buf;
/* hold adc1 and wait 1s for adc2 updated */
if (!adc1_update) {
/* update flag and init adc1,adc2 !! */
adc1_update = 1;
seconds = get_timer(0);
adc1 = 0;
adc2 = 0;
/* read sample ua1 */
buf = rk818_bat_read(di, TS_CTRL_REG);
DBG("<%s>. read adc1, sample uA=%d\n",
__func__, ((buf & 0x03) + 1) * 20);
/* read adc adc1 */
ua1 = di->ntc_uA;
adc1 |= rk818_bat_read(di, TS_ADC_REGL) << 0;
adc1 |= rk818_bat_read(di, TS_ADC_REGH) << 8;
/* chose reference UA for adc2 */
ua2 = (ua1 != 20) ? 20 : 40;
buf = rk818_bat_read(di, TS_CTRL_REG);
buf &= ~ADC_CUR_MSK;
buf |= ((ua2 - 20) / 20);
rk818_bat_write(di, TS_CTRL_REG, buf);
}
/* wait 1s for adc2 updated */
if (get_timer(seconds) < SECONDS(1)) {
if (first_in)
first_in = 0;
else
return TS1_NOT_READY;
}
/* update flags ! */
adc1_update = 0;
/* read sample ua2 */
buf = rk818_bat_read(di, TS_CTRL_REG);
DBG("<%s>. read adc2, sample uA=%d\n",
__func__, ((buf & 0x03) + 1) * 20);
/* read adc adc2 */
adc2 |= rk818_bat_read(di, TS_ADC_REGL) << 0;
adc2 |= rk818_bat_read(di, TS_ADC_REGH) << 8;
DBG("<%s>. ua1=%d, ua2=%d, adc1=%d, adc2=%d\n",
__func__, ua1, ua2, adc1, adc2);
/* calculate delta voltage */
if (adc2 != adc1)
v_delta = abs((adc2 * ua1 - adc1 * ua2) / (ua2 - ua1));
else
v_delta = 0;
/* considering current avg direction, calcuate real adc value */
val = (di->current_avg >= 0) ? (adc1 - v_delta) : (adc1 + v_delta);
DBG("<%s>. Iavg=%d, Vdelta=%d, Vadc=%d\n",
__func__, di->current_avg, v_delta, val);
res = val * di->ntc_factor;
DBG("<%s>. val=%d, ntc_res=%d, ntc_factor=%d\n",
__func__, val, res, di->ntc_factor);
DBG("<%s>. t=[%d'C(%d) ~ %dC(%d)]\n", __func__,
di->ntc_degree_from, di->ntc_table[0],
di->ntc_degree_from + di->ntc_size - 1,
di->ntc_table[di->ntc_size - 1]);
rk818_bat_init_ts1(di);
return res;
}
static int rk818_bat_update_temperature(struct battery_priv *di)
{
static int first_time = 1, old_temperature = 25;
u32 ntc_size, *ntc_table;
int i, res, temp;
ntc_table = di->ntc_table;
ntc_size = di->ntc_size;
if (ntc_size) {
res = rk818_bat_get_ntc_res(di);
if (res == TS1_NOT_READY) {
di->temperature = old_temperature;
return TS1_NOT_READY;
}
if (res < ntc_table[ntc_size - 1]) {
di->temperature = di->ntc_degree_from;
old_temperature = di->ntc_degree_from;
printf("bat ntc upper max degree: R=%d\n", res);
} else if (res > ntc_table[0]) {
di->temperature = di->ntc_degree_from + di->ntc_size - 1;
old_temperature = di->ntc_degree_from + di->ntc_size - 1;
printf("bat ntc lower min degree: R=%d\n", res);
} else {
for (i = 0; i < ntc_size; i++) {
if (res >= ntc_table[i])
break;
}
/* if first in, init old_temperature */
temp = (i + di->ntc_degree_from);
if (first_time) {
di->temperature = temp;
old_temperature = temp;
first_time = 0;
}
old_temperature = temp;
di->temperature = temp;
}
}
DBG("temperature=%d\n", di->temperature);
return 0;
}
static int rk818_bat_bat_is_exit(struct udevice *dev)
{
struct battery_priv *di = dev_get_priv(dev);
return is_rk818_bat_exist(di);
}
static int rk818_bat_update_get_soc(struct udevice *dev)
{
struct battery_priv *di = dev_get_priv(dev);
static ulong seconds, ts1_seconds;
int wait;
/* set charge current */
di->chrg_type =
rk818_bat_get_charger_type(di);
rk818_bat_charger_setting(di, di->chrg_type);
/* fg calc every 5 seconds */
if (!seconds || !ts1_seconds) {
seconds = get_timer(0);
ts1_seconds = get_timer(0);
}
/* temperature calc every 5 seconds */
if (get_timer(ts1_seconds) >= SECONDS(5)) {
DBG("%s: update temperature\n", __func__);
wait = rk818_bat_update_temperature(di);
if (!wait)
ts1_seconds = get_timer(0);
}
if (get_timer(seconds) >= SECONDS(5)) {
DBG("%s: smooth charge\n", __func__);
seconds = get_timer(0);
rk818_bat_smooth_charge(di);
}
/* bat exist, fg init success(dts pass) and uboot charge: report data */
if (!di->virtual_power && di->voltage_k)
return di->dsoc;
else
return VIRTUAL_POWER_SOC;
}
static int rk818_bat_update_get_current(struct udevice *dev)
{
struct battery_priv *di = dev_get_priv(dev);
if (!di->virtual_power && di->voltage_k)
return rk818_bat_get_avg_current(di);
else
return VIRTUAL_POWER_CUR;
}
static int rk818_bat_update_get_voltage(struct udevice *dev)
{
struct battery_priv *di = dev_get_priv(dev);
if (!di->virtual_power && di->voltage_k)
return rk818_bat_get_est_voltage(di);
else
return VIRTUAL_POWER_VOL;
}
static bool rk818_bat_update_get_chrg_online(struct udevice *dev)
{
struct battery_priv *di = dev_get_priv(dev);
return rk818_bat_get_charger_type(di);
}
static struct dm_fuel_gauge_ops fg_ops = {
.bat_is_exist = rk818_bat_bat_is_exit,
.get_soc = rk818_bat_update_get_soc,
.get_voltage = rk818_bat_update_get_voltage,
.get_current = rk818_bat_update_get_current,
.get_chrg_online = rk818_bat_update_get_chrg_online,
};
static int rk818_fg_ofdata_to_platdata(struct udevice *dev)
{
struct rk8xx_priv *rk8xx = dev_get_priv(dev->parent);
struct battery_priv *di = dev_get_priv(dev);
u32 sign, degree_from[2];
const char *prop;
int len, ret;
if (rk8xx->variant != 0x8180) {
debug("%s: Not support pmic variant: rk%x\n",
__func__, rk8xx->variant);
return -EINVAL;
} else {
di->dev = dev;
}
/* Parse ocv table */
prop = dev_read_prop(dev, "ocv_table", &len);
if (!prop) {
printf("can't find ocv_table prop\n");
return -EINVAL;
}
di->ocv_table = calloc(len, 1);
if (!di->ocv_table) {
printf("can't calloc ocv_table\n");
return -ENOMEM;
}
di->ocv_size = len / 4;
if (dev_read_u32_array(dev, "ocv_table",
di->ocv_table, di->ocv_size)) {
printf("can't read ocv_table\n");
free(di->ocv_table);
return -EINVAL;
}
/* Parse neccessay */
di->design_cap = dev_read_u32_default(dev, "design_capacity", -1);
if (di->design_cap < 0) {
printf("can't read design_capacity\n");
return -EINVAL;
}
di->qmax = dev_read_u32_default(dev, "design_qmax", -1);
if (di->qmax < 0) {
printf("can't read design_qmax\n");
return -EINVAL;
}
/* Parse un-neccessay */
di->dts_vol_sel = dev_read_u32_default(dev, "max_chrg_voltage", 4200);
if (di->dts_vol_sel < 0)
di->dts_vol_sel = dev_read_u32_default(dev,
"max_charge_voltagemV", 4200);
di->dts_cur_input = dev_read_u32_default(dev, "max_input_current", 2000);
if (di->dts_cur_input < 0)
di->dts_cur_input = dev_read_u32_default(dev,
"max_input_currentmA", 2000);
di->dts_cur_sel = dev_read_u32_default(dev, "max_chrg_current", 1200);
if (di->dts_cur_sel < 0)
di->dts_cur_sel = dev_read_u32_default(dev,
"max_chrg_currentmA", 1400);
di->max_soc_offset = dev_read_u32_default(dev, "max_soc_offset", 70);
di->virtual_power = dev_read_u32_default(dev, "virtual_power", 0);
di->bat_res = dev_read_u32_default(dev, "bat_res", 135);
di->sample_res = dev_read_u32_default(dev, "sample_res", SAMPLE_RES_20mR);
di->ts2_vol_multi = dev_read_u32_default(dev, "ts2_vol_multi", 0);
di->res_div = (di->sample_res == SAMPLE_RES_20mR) ?
SAMPLE_RES_DIV1 : SAMPLE_RES_DIV2;
ret = gpio_request_by_name_nodev(dev_ofnode(dev), "dc_det_gpio",
0, &di->dc_det, GPIOD_IS_IN);
if (!ret) {
di->dc_is_valid = 1;
debug("DC is valid\n");
} else {
debug("DC is invalid, ret=%d\n", ret);
}
prop = dev_read_prop(dev, "ntc_table", &len);
if (!prop) {
di->ntc_size = 0;
} else {
ret = dev_read_u32_array(dev, "ntc_degree_from",
degree_from, ARRAY_SIZE(degree_from));
if (ret < 0) {
printf("invalid ntc_degree_from\n");
return -EINVAL;
}
sign = degree_from[0];
di->ntc_degree_from = degree_from[1];
if (sign)
di->ntc_degree_from = -di->ntc_degree_from;
di->ntc_size = len / sizeof(u32);
}
if (di->ntc_size) {
di->ntc_table = calloc(len, 1);
if (!di->ntc_table) {
printf("calloc ocv_table fail\n");
return -ENOMEM;
}
ret = dev_read_u32_array(dev, "ntc_table",
di->ntc_table, di->ntc_size);
if (ret < 0) {
printf("read ntc_table array failed\n");
return ret;
}
}
/* Is battery attached */
if (!is_rk818_bat_exist(di))
di->virtual_power = 1;
DBG("-------------------------------:\n");
DBG("max_input_current:%d\n", di->dts_cur_input);
DBG("max_chrg_current:%d\n", di->dts_cur_sel);
DBG("max_chrg_voltage:%d\n", di->dts_vol_sel);
DBG("design_capacity :%d\n", di->design_cap);
DBG("design_qmax:%d\n", di->qmax);
DBG("max_soc_offset:%d\n", di->max_soc_offset);
DBG("sample_res:%d\n", di->sample_res);
DBG("virtual_power:%d\n", di->virtual_power);
DBG("ts2_vol_multi:%d\n", di->ts2_vol_multi);
DBG("dc det: %d\n", di->dc_is_valid);
DBG("ntc_size:%d\n", di->ntc_size);
DBG("ntc_degree_from:%d\n", di->ntc_degree_from);
DBG("ntc_degree_to:%d\n", di->ntc_degree_from + di->ntc_size - 1);
return 0;
}
static int rk818_fg_probe(struct udevice *dev)
{
struct rk8xx_priv *rk8xx = dev_get_priv(dev->parent);
struct battery_priv *di = dev_get_priv(dev);
if (rk8xx->variant != 0x8180) {
printf("Not support pmic variant: rk%x\n", rk8xx->variant);
return -EINVAL;
}
return rk818_fg_init(di);
}
U_BOOT_DRIVER(rk818_fg) = {
.name = "rk818_fg",
.id = UCLASS_FG,
.probe = rk818_fg_probe,
.ops = &fg_ops,
.ofdata_to_platdata = rk818_fg_ofdata_to_platdata,
.priv_auto_alloc_size = sizeof(struct battery_priv),
};