android13/u-boot/drivers/power/power_delivery/tcpm.c

3533 lines
90 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2015-2017 Google, Inc
*
* USB Power Delivery protocol stack.
*/
#include <asm/io.h>
#include <common.h>
#include <dm.h>
#include <asm/gpio.h>
#include <irq-generic.h>
#include <rk_timer_irq.h>
#include <power/power_delivery/tcpm.h>
#include <power/power_delivery/pd_vdo.h>
#define FOREACH_STATE(S) \
S(INVALID_STATE), \
S(TOGGLING), \
S(SRC_UNATTACHED), \
S(SRC_ATTACH_WAIT), \
S(SRC_ATTACHED), \
S(SRC_STARTUP), \
S(SRC_SEND_CAPABILITIES), \
S(SRC_SEND_CAPABILITIES_TIMEOUT), \
S(SRC_NEGOTIATE_CAPABILITIES), \
S(SRC_TRANSITION_SUPPLY), \
S(SRC_READY), \
S(SRC_WAIT_NEW_CAPABILITIES), \
\
S(SNK_UNATTACHED), \
S(SNK_ATTACH_WAIT), \
S(SNK_DEBOUNCED), \
S(SNK_ATTACHED), \
S(SNK_STARTUP), \
S(SNK_DISCOVERY), \
S(SNK_DISCOVERY_DEBOUNCE), \
S(SNK_DISCOVERY_DEBOUNCE_DONE), \
S(SNK_WAIT_CAPABILITIES), \
S(SNK_NEGOTIATE_CAPABILITIES), \
S(SNK_NEGOTIATE_PPS_CAPABILITIES), \
S(SNK_TRANSITION_SINK), \
S(SNK_TRANSITION_SINK_VBUS), \
S(SNK_READY), \
\
S(ACC_UNATTACHED), \
S(DEBUG_ACC_ATTACHED), \
S(AUDIO_ACC_ATTACHED), \
S(AUDIO_ACC_DEBOUNCE), \
\
S(HARD_RESET_SEND), \
S(HARD_RESET_START), \
S(SRC_HARD_RESET_VBUS_OFF), \
S(SRC_HARD_RESET_VBUS_ON), \
S(SNK_HARD_RESET_SINK_OFF), \
S(SNK_HARD_RESET_WAIT_VBUS), \
S(SNK_HARD_RESET_SINK_ON), \
\
S(SOFT_RESET), \
S(SRC_SOFT_RESET_WAIT_SNK_TX), \
S(SNK_SOFT_RESET), \
S(SOFT_RESET_SEND), \
\
S(DR_SWAP_ACCEPT), \
S(DR_SWAP_SEND), \
S(DR_SWAP_SEND_TIMEOUT), \
S(DR_SWAP_CANCEL), \
S(DR_SWAP_CHANGE_DR), \
\
S(PR_SWAP_ACCEPT), \
S(PR_SWAP_SEND), \
S(PR_SWAP_SEND_TIMEOUT), \
S(PR_SWAP_CANCEL), \
S(PR_SWAP_START), \
S(PR_SWAP_SRC_SNK_TRANSITION_OFF), \
S(PR_SWAP_SRC_SNK_SOURCE_OFF), \
S(PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED), \
S(PR_SWAP_SRC_SNK_SINK_ON), \
S(PR_SWAP_SNK_SRC_SINK_OFF), \
S(PR_SWAP_SNK_SRC_SOURCE_ON), \
S(PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP), \
\
S(VCONN_SWAP_ACCEPT), \
S(VCONN_SWAP_SEND), \
S(VCONN_SWAP_SEND_TIMEOUT), \
S(VCONN_SWAP_CANCEL), \
S(VCONN_SWAP_START), \
S(VCONN_SWAP_WAIT_FOR_VCONN), \
S(VCONN_SWAP_TURN_ON_VCONN), \
S(VCONN_SWAP_TURN_OFF_VCONN), \
\
S(FR_SWAP_SEND), \
S(FR_SWAP_SEND_TIMEOUT), \
S(FR_SWAP_SNK_SRC_TRANSITION_TO_OFF), \
S(FR_SWAP_SNK_SRC_NEW_SINK_READY), \
S(FR_SWAP_SNK_SRC_SOURCE_VBUS_APPLIED), \
S(FR_SWAP_CANCEL), \
\
S(SNK_TRY), \
S(SNK_TRY_WAIT), \
S(SNK_TRY_WAIT_DEBOUNCE), \
S(SNK_TRY_WAIT_DEBOUNCE_CHECK_VBUS), \
S(SRC_TRYWAIT), \
S(SRC_TRYWAIT_DEBOUNCE), \
S(SRC_TRYWAIT_UNATTACHED), \
\
S(SRC_TRY), \
S(SRC_TRY_WAIT), \
S(SRC_TRY_DEBOUNCE), \
S(SNK_TRYWAIT), \
S(SNK_TRYWAIT_DEBOUNCE), \
S(SNK_TRYWAIT_VBUS), \
S(BIST_RX), \
\
S(GET_STATUS_SEND), \
S(GET_STATUS_SEND_TIMEOUT), \
S(GET_PPS_STATUS_SEND), \
S(GET_PPS_STATUS_SEND_TIMEOUT), \
\
S(GET_SINK_CAP), \
S(GET_SINK_CAP_TIMEOUT), \
\
S(ERROR_RECOVERY), \
S(PORT_RESET), \
S(PORT_RESET_WAIT_OFF), \
\
S(AMS_START), \
S(CHUNK_NOT_SUPP)
#define FOREACH_AMS(S) \
S(NONE_AMS), \
S(POWER_NEGOTIATION), \
S(GOTOMIN), \
S(SOFT_RESET_AMS), \
S(HARD_RESET), \
S(CABLE_RESET), \
S(GET_SOURCE_CAPABILITIES), \
S(GET_SINK_CAPABILITIES), \
S(POWER_ROLE_SWAP), \
S(FAST_ROLE_SWAP), \
S(DATA_ROLE_SWAP), \
S(VCONN_SWAP), \
S(SOURCE_ALERT), \
S(GETTING_SOURCE_EXTENDED_CAPABILITIES),\
S(GETTING_SOURCE_SINK_STATUS), \
S(GETTING_BATTERY_CAPABILITIES), \
S(GETTING_BATTERY_STATUS), \
S(GETTING_MANUFACTURER_INFORMATION), \
S(SECURITY), \
S(FIRMWARE_UPDATE), \
S(DISCOVER_IDENTITY), \
S(SOURCE_STARTUP_CABLE_PLUG_DISCOVER_IDENTITY), \
S(DISCOVER_SVIDS), \
S(DISCOVER_MODES), \
S(DFP_TO_UFP_ENTER_MODE), \
S(DFP_TO_UFP_EXIT_MODE), \
S(DFP_TO_CABLE_PLUG_ENTER_MODE), \
S(DFP_TO_CABLE_PLUG_EXIT_MODE), \
S(ATTENTION), \
S(BIST), \
S(UNSTRUCTURED_VDMS), \
S(STRUCTURED_VDMS), \
S(COUNTRY_INFO), \
S(COUNTRY_CODES)
#define GENERATE_ENUM(e) e
#define GENERATE_STRING(s) #s
#define TCPM_POLL_EVENT_TIME_OUT 2000
enum tcpm_state {
FOREACH_STATE(GENERATE_ENUM)
};
static const char * const tcpm_states[] = {
FOREACH_STATE(GENERATE_STRING)
};
enum tcpm_ams {
FOREACH_AMS(GENERATE_ENUM)
};
static const char * const tcpm_ams_str[] = {
FOREACH_AMS(GENERATE_STRING)
};
enum vdm_states {
VDM_STATE_ERR_BUSY = -3,
VDM_STATE_ERR_SEND = -2,
VDM_STATE_ERR_TMOUT = -1,
VDM_STATE_DONE = 0,
/* Anything >0 represents an active state */
VDM_STATE_READY = 1,
VDM_STATE_BUSY = 2,
VDM_STATE_WAIT_RSP_BUSY = 3,
VDM_STATE_SEND_MESSAGE = 4,
};
enum pd_msg_request {
PD_MSG_NONE = 0,
PD_MSG_CTRL_REJECT,
PD_MSG_CTRL_WAIT,
PD_MSG_CTRL_NOT_SUPP,
PD_MSG_DATA_SINK_CAP,
PD_MSG_DATA_SOURCE_CAP,
};
enum adev_actions {
ADEV_NONE = 0,
ADEV_NOTIFY_USB_AND_QUEUE_VDM,
ADEV_QUEUE_VDM,
ADEV_QUEUE_VDM_SEND_EXIT_MODE_ON_FAIL,
ADEV_ATTENTION,
};
/*
* Initial current capability of the new source when vSafe5V is applied during PD3.0 Fast Role Swap.
* Based on "Table 6-14 Fixed Supply PDO - Sink" of "USB Power Delivery Specification Revision 3.0,
* Version 1.2"
*/
enum frs_typec_current {
FRS_NOT_SUPPORTED,
FRS_DEFAULT_POWER,
FRS_5V_1P5A,
FRS_5V_3A,
};
/* Events from low level driver */
#define TCPM_CC_EVENT BIT(0)
#define TCPM_VBUS_EVENT BIT(1)
#define TCPM_RESET_EVENT BIT(2)
#define TCPM_FRS_EVENT BIT(3)
#define TCPM_SOURCING_VBUS BIT(4)
#define LOG_BUFFER_ENTRIES 1024
#define LOG_BUFFER_ENTRY_SIZE 128
/* Alternate mode support */
#define SVID_DISCOVERY_MAX 16
#define ALTMODE_DISCOVERY_MAX (SVID_DISCOVERY_MAX * MODE_DISCOVERY_MAX)
#define GET_SINK_CAP_RETRY_MS 100
#define SEND_DISCOVER_RETRY_MS 100
/*
* @min_volt: Actual min voltage at the local port
* @req_min_volt: Requested min voltage to the port partner
* @max_volt: Actual max voltage at the local port
* @req_max_volt: Requested max voltage to the port partner
* @max_curr: Actual max current at the local port
* @req_max_curr: Requested max current of the port partner
* @req_out_volt: Requested output voltage to the port partner
* @req_op_curr: Requested operating current to the port partner
* @supported: Parter has atleast one APDO hence supports PPS
* @active: PPS mode is active
*/
struct pd_pps_data {
u32 min_volt;
u32 req_min_volt;
u32 max_volt;
u32 req_max_volt;
u32 max_curr;
u32 req_max_curr;
u32 req_out_volt;
u32 req_op_curr;
bool supported;
bool active;
};
enum power_supply_usb_type {
POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */
POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */
POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */
POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */
POWER_SUPPLY_USB_TYPE_C, /* Type C Port */
POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */
POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */
POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */
POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
};
struct tcpm_port {
struct udevice *dev;
struct typec_capability typec_caps;
struct tcpc_dev *tcpc;
enum typec_role vconn_role;
enum typec_role pwr_role;
enum typec_data_role data_role;
enum typec_pwr_opmode pwr_opmode;
struct usb_pd_identity partner_ident;
struct typec_partner_desc partner_desc;
struct typec_partner *partner;
enum typec_cc_status cc_req;
enum typec_cc_status cc1;
enum typec_cc_status cc2;
enum typec_cc_polarity polarity;
bool attached;
bool connected;
int poll_event_cnt;
enum typec_port_type port_type;
/*
* Set to true when vbus is greater than VSAFE5V min.
* Set to false when vbus falls below vSinkDisconnect max threshold.
*/
bool vbus_present;
/*
* Set to true when vbus is less than VSAFE0V max.
* Set to false when vbus is greater than VSAFE0V max.
*/
bool vbus_vsafe0v;
bool vbus_never_low;
bool vbus_source;
bool vbus_charge;
/* Set to true when Discover_Identity Command is expected to be sent in Ready states. */
bool send_discover;
bool op_vsafe5v;
int try_role;
int try_snk_count;
int try_src_count;
enum pd_msg_request queued_message;
enum tcpm_state enter_state;
enum tcpm_state prev_state;
enum tcpm_state state;
enum tcpm_state delayed_state;
unsigned long delay_ms;
spinlock_t pd_event_lock;
u32 pd_events;
bool state_machine_running;
/* Set to true when VDM State Machine has following actions. */
bool vdm_sm_running;
bool tx_complete;
enum tcpm_transmit_status tx_status;
struct mutex swap_lock; /* swap command lock */
bool swap_pending;
bool non_pd_role_swap;
int swap_status;
unsigned int negotiated_rev;
unsigned int message_id;
unsigned int caps_count;
unsigned int hard_reset_count;
bool pd_capable;
bool explicit_contract;
unsigned int rx_msgid;
/* Partner capabilities/requests */
u32 sink_request;
u32 source_caps[PDO_MAX_OBJECTS];
unsigned int nr_source_caps;
u32 sink_caps[PDO_MAX_OBJECTS];
unsigned int nr_sink_caps;
/*
* whether to wait for the Type-C device to send the DR_SWAP Message flag
* For Type-C device with Dual-Role Power and Dual-Role Data, the port side
* is used as sink + ufp, then the tcpm framework needs to wait for Type-C
* device to initiate DR_swap Message.
*/
bool wait_dr_swap_Message;
/* Local capabilities */
u32 src_pdo[PDO_MAX_OBJECTS];
unsigned int nr_src_pdo;
u32 snk_pdo[PDO_MAX_OBJECTS];
unsigned int nr_snk_pdo;
u32 snk_vdo_v1[VDO_MAX_OBJECTS];
unsigned int nr_snk_vdo_v1;
u32 snk_vdo[VDO_MAX_OBJECTS];
unsigned int nr_snk_vdo;
unsigned int operating_snk_mw;
bool update_sink_caps;
/* Requested current / voltage to the port partner */
u32 req_current_limit;
u32 req_supply_voltage;
/* Actual current / voltage limit of the local port */
u32 current_limit;
u32 supply_voltage;
enum power_supply_usb_type usb_type;
u32 bist_request;
/* PD state for Vendor Defined Messages */
enum vdm_states vdm_state;
u32 vdm_retries;
/* next Vendor Defined Message to send */
u32 vdo_data[VDO_MAX_SIZE];
u8 vdo_count;
/* VDO to retry if UFP responder replied busy */
u32 vdo_retry;
/* PPS */
struct pd_pps_data pps_data;
bool pps_pending;
int pps_status;
/* Deadline in jiffies to exit src_try_wait state */
unsigned long max_wait;
/* port belongs to a self powered device */
bool self_powered;
/* Sink FRS */
enum frs_typec_current new_source_frs_current;
/* Sink caps have been queried */
bool sink_cap_done;
/* Port is still in tCCDebounce */
bool debouncing;
/* Collision Avoidance and Atomic Message Sequence */
enum tcpm_state upcoming_state;
enum tcpm_ams ams;
enum tcpm_ams next_ams;
bool in_ams;
/* Auto vbus discharge status */
bool auto_vbus_discharge_enabled;
/*
* When set, port requests PD_P_SNK_STDBY_MW upon entering SNK_DISCOVERY and
* the actual currrent limit after RX of PD_CTRL_PSRDY for PD link,
* SNK_READY for non-pd link.
*/
bool slow_charger_loop;
#ifdef CONFIG_DEBUG_FS
struct dentry *dentry;
struct mutex logbuffer_lock; /* log buffer access lock */
int logbuffer_head;
int logbuffer_tail;
u8 *logbuffer[LOG_BUFFER_ENTRIES];
#endif
};
struct pd_rx_event {
struct tcpm_port *port;
struct pd_message msg;
};
static const char * const pd_rev[] = {
[PD_REV10] = "rev1",
[PD_REV20] = "rev2",
[PD_REV30] = "rev3",
};
#define tcpm_cc_is_sink(cc) \
((cc) == TYPEC_CC_RP_DEF || (cc) == TYPEC_CC_RP_1_5 || \
(cc) == TYPEC_CC_RP_3_0)
#define tcpm_port_is_sink(port) \
((tcpm_cc_is_sink((port)->cc1) && !tcpm_cc_is_sink((port)->cc2)) || \
(tcpm_cc_is_sink((port)->cc2) && !tcpm_cc_is_sink((port)->cc1)))
#define tcpm_cc_is_source(cc) ((cc) == TYPEC_CC_RD)
#define tcpm_cc_is_audio(cc) ((cc) == TYPEC_CC_RA)
#define tcpm_cc_is_open(cc) ((cc) == TYPEC_CC_OPEN)
#define tcpm_port_is_source(port) \
((tcpm_cc_is_source((port)->cc1) && \
!tcpm_cc_is_source((port)->cc2)) || \
(tcpm_cc_is_source((port)->cc2) && \
!tcpm_cc_is_source((port)->cc1)))
#define tcpm_port_is_debug(port) \
(tcpm_cc_is_source((port)->cc1) && tcpm_cc_is_source((port)->cc2))
#define tcpm_port_is_audio(port) \
(tcpm_cc_is_audio((port)->cc1) && tcpm_cc_is_audio((port)->cc2))
#define tcpm_port_is_audio_detached(port) \
((tcpm_cc_is_audio((port)->cc1) && tcpm_cc_is_open((port)->cc2)) || \
(tcpm_cc_is_audio((port)->cc2) && tcpm_cc_is_open((port)->cc1)))
#define tcpm_try_snk(port) \
((port)->try_snk_count == 0 && (port)->try_role == TYPEC_SINK && \
(port)->port_type == TYPEC_PORT_DRP)
#define tcpm_try_src(port) \
((port)->try_src_count == 0 && (port)->try_role == TYPEC_SOURCE && \
(port)->port_type == TYPEC_PORT_DRP)
#define tcpm_data_role_for_source(port) \
((port)->typec_caps.data == TYPEC_PORT_UFP ? \
TYPEC_DEVICE : TYPEC_HOST)
#define tcpm_data_role_for_sink(port) \
((port)->typec_caps.data == TYPEC_PORT_DFP ? \
TYPEC_HOST : TYPEC_DEVICE)
static enum tcpm_state tcpm_default_state(struct tcpm_port *port)
{
if (port->port_type == TYPEC_PORT_DRP) {
if (port->try_role == TYPEC_SINK)
return SNK_UNATTACHED;
else if (port->try_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
/* Fall through to return SRC_UNATTACHED */
} else if (port->port_type == TYPEC_PORT_SNK) {
return SNK_UNATTACHED;
}
return SRC_UNATTACHED;
}
static bool tcpm_port_is_disconnected(struct tcpm_port *port)
{
return (!port->attached && port->cc1 == TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN) ||
(port->attached && ((port->polarity == TYPEC_POLARITY_CC1 &&
port->cc1 == TYPEC_CC_OPEN) ||
(port->polarity == TYPEC_POLARITY_CC2 &&
port->cc2 == TYPEC_CC_OPEN)));
}
static void tcpm_set_cc(struct tcpm_port *port, enum typec_cc_status cc)
{
debug("%s: cc = %d", __func__, cc);
port->cc_req = cc;
port->tcpc->set_cc(port->tcpc, cc);
}
/*
* Determine RP value to set based on maximum current supported
* by a port if configured as source.
* Returns CC value to report to link partner.
*/
static enum typec_cc_status tcpm_rp_cc(struct tcpm_port *port)
{
const u32 *src_pdo = port->src_pdo;
int nr_pdo = port->nr_src_pdo;
int i;
/*
* Search for first entry with matching voltage.
* It should report the maximum supported current.
*/
for (i = 0; i < nr_pdo; i++) {
const u32 pdo = src_pdo[i];
if (pdo_type(pdo) == PDO_TYPE_FIXED &&
pdo_fixed_voltage(pdo) == 5000) {
unsigned int curr = pdo_max_current(pdo);
if (curr >= 3000)
return TYPEC_CC_RP_3_0;
else if (curr >= 1500)
return TYPEC_CC_RP_1_5;
return TYPEC_CC_RP_DEF;
}
}
return TYPEC_CC_RP_DEF;
}
static int tcpm_pd_transmit(struct tcpm_port *port,
enum tcpm_transmit_type type,
const struct pd_message *msg)
{
int ret;
int timeout = PD_T_TCPC_TX_TIMEOUT;
if (msg)
debug("PD TX, header: %#x\n", le16_to_cpu(msg->header));
else
debug("PD TX, type: %#x\n", type);
port->tx_complete = false;
ret = port->tcpc->pd_transmit(port->tcpc, type, msg, port->negotiated_rev);
if (ret < 0)
return ret;
while ((timeout > 0) && (!port->tx_complete)) {
port->tcpc->poll_event(port->tcpc);
udelay(1000);
timeout--;
}
if (!timeout) {
printf("%s: pd transmit data timeout\n", __func__);
return -ETIMEDOUT;
}
switch (port->tx_status) {
case TCPC_TX_SUCCESS:
port->message_id = (port->message_id + 1) & PD_HEADER_ID_MASK;
break;
case TCPC_TX_DISCARDED:
ret = -EAGAIN;
break;
case TCPC_TX_FAILED:
default:
ret = -EIO;
break;
}
return ret;
}
void tcpm_pd_transmit_complete(struct tcpm_port *port,
enum tcpm_transmit_status status)
{
debug("%s: PD TX complete, status: %u\n", __func__, status);
port->poll_event_cnt = 0;
port->tx_status = status;
port->tx_complete = true;
}
EXPORT_SYMBOL_GPL(tcpm_pd_transmit_complete);
static int tcpm_set_polarity(struct tcpm_port *port,
enum typec_cc_polarity polarity)
{
int ret;
debug("%s: polarity %d\n", __func__, polarity);
ret = port->tcpc->set_polarity(port->tcpc, polarity);
if (ret < 0)
return ret;
port->polarity = polarity;
return 0;
}
static int tcpm_set_vconn(struct tcpm_port *port, bool enable)
{
int ret;
debug("%s: vconn = %d\n", __func__, enable);
ret = port->tcpc->set_vconn(port->tcpc, enable);
if (!ret)
port->vconn_role = enable ? TYPEC_SOURCE : TYPEC_SINK;
return ret;
}
static u32 tcpm_get_current_limit(struct tcpm_port *port)
{
enum typec_cc_status cc;
u32 limit;
cc = port->polarity ? port->cc2 : port->cc1;
switch (cc) {
case TYPEC_CC_RP_1_5:
limit = 1500;
break;
case TYPEC_CC_RP_3_0:
limit = 3000;
break;
case TYPEC_CC_RP_DEF:
default:
if (port->tcpc->get_current_limit)
limit = port->tcpc->get_current_limit(port->tcpc);
else
limit = 0;
break;
}
return limit;
}
static int tcpm_set_current_limit(struct tcpm_port *port, u32 max_ma, u32 mv)
{
int ret = -EOPNOTSUPP;
debug("Setting voltage/current limit %u mV %u mA\n", mv, max_ma);
port->supply_voltage = mv;
port->current_limit = max_ma;
if (port->tcpc->set_current_limit)
ret = port->tcpc->set_current_limit(port->tcpc, max_ma, mv);
return ret;
}
static int tcpm_set_attached_state(struct tcpm_port *port, bool attached)
{
return port->tcpc->set_roles(port->tcpc, attached, port->pwr_role,
port->data_role);
}
static int tcpm_set_roles(struct tcpm_port *port, bool attached,
enum typec_role role, enum typec_data_role data)
{
#if 0
enum typec_orientation orientation;
enum usb_role usb_role;
#endif
int ret;
#if 0
if (port->polarity == TYPEC_POLARITY_CC1)
orientation = TYPEC_ORIENTATION_NORMAL;
else
orientation = TYPEC_ORIENTATION_REVERSE;
if (data == TYPEC_HOST)
usb_role = USB_ROLE_HOST;
else
usb_role = USB_ROLE_DEVICE;
ret = tcpm_mux_set(port, TYPEC_STATE_USB, usb_role, orientation);
if (ret < 0)
return ret;
#endif
ret = port->tcpc->set_roles(port->tcpc, attached, role, data);
if (ret < 0)
return ret;
port->pwr_role = role;
port->data_role = data;
#if 0
typec_set_data_role(port->typec_port, data);
typec_set_pwr_role(port->typec_port, role);
#endif
return 0;
}
static int tcpm_pd_send_source_caps(struct tcpm_port *port)
{
struct pd_message msg;
int i;
memset(&msg, 0, sizeof(msg));
if (!port->nr_src_pdo) {
/* No source capabilities defined, sink only */
msg.header = PD_HEADER_LE(PD_CTRL_REJECT,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
} else {
msg.header = PD_HEADER_LE(PD_DATA_SOURCE_CAP,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id,
port->nr_src_pdo);
}
for (i = 0; i < port->nr_src_pdo; i++)
msg.payload[i] = cpu_to_le32(port->src_pdo[i]);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static int tcpm_pd_send_sink_caps(struct tcpm_port *port)
{
struct pd_message msg;
unsigned int i;
memset(&msg, 0, sizeof(msg));
if (!port->nr_snk_pdo) {
/* No sink capabilities defined, source only */
msg.header = PD_HEADER_LE(PD_CTRL_REJECT,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
} else {
msg.header = PD_HEADER_LE(PD_DATA_SINK_CAP,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id,
port->nr_snk_pdo);
}
for (i = 0; i < port->nr_snk_pdo; i++)
msg.payload[i] = cpu_to_le32(port->snk_pdo[i]);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static void tcpm_state_machine(struct tcpm_port *port);
static void tcpm_timer_uninit(struct tcpm_port *port);
static void tcpm_timer_irq(int irq, void *data)
{
struct tcpm_port *port = data;
writel(TIMER_CLR_INT, TIMER_BASE + TIMER_INTSTATUS);
tcpm_timer_uninit(port);
tcpm_state_machine(port);
}
static void tcpm_timer_init(struct tcpm_port *port, uint32_t ms)
{
uint64_t period = 24000ULL * ms;
/* Disable before conifg */
writel(0, TIMER_BASE + TIMER_CTRL);
/* Config */
writel((uint32_t)period, TIMER_BASE + TIMER_LOAD_COUNT0);
writel((uint32_t)(period >> 32), TIMER_BASE + TIMER_LOAD_COUNT1);
writel(TIMER_CLR_INT, TIMER_BASE + TIMER_INTSTATUS);
writel(TIMER_EN | TIMER_INT_EN, TIMER_BASE + TIMER_CTRL);
/* IRQ */
irq_install_handler(TIMER_IRQ,
(interrupt_handler_t *)tcpm_timer_irq, port);
irq_handler_enable(TIMER_IRQ);
}
static void tcpm_timer_uninit(struct tcpm_port *port)
{
writel(0, TIMER_BASE + TIMER_CTRL);
irq_handler_disable(TIMER_IRQ);
irq_free_handler(TIMER_IRQ);
}
static void mod_tcpm_delayed_work(struct tcpm_port *port, unsigned int delay_ms)
{
if (delay_ms) {
tcpm_timer_init(port, delay_ms);
} else {
tcpm_timer_uninit(port);
tcpm_state_machine(port);
}
}
static void tcpm_set_state(struct tcpm_port *port, enum tcpm_state state,
unsigned int delay_ms)
{
debug("%s: line = %d, delay_ms = %d, set state = %s\n",
__func__, __LINE__, delay_ms, tcpm_states[state]);
if (delay_ms) {
debug("pending state change %s -> %s @ %u ms [%s]\n",
tcpm_states[port->state], tcpm_states[state], delay_ms,
pd_rev[port->negotiated_rev]);
port->delayed_state = state;
mod_tcpm_delayed_work(port, delay_ms);
port->delay_ms = delay_ms;
} else {
debug("state change %s -> %s\n",
tcpm_states[port->state], tcpm_states[state]);
port->delayed_state = INVALID_STATE;
port->prev_state = port->state;
port->state = state;
/*
* Don't re-queue the state machine work item if we're currently
* in the state machine and we're immediately changing states.
* tcpm_state_machine_work() will continue running the state
* machine.
*/
if (!port->state_machine_running)
mod_tcpm_delayed_work(port, 0);
}
}
static void tcpm_set_state_cond(struct tcpm_port *port, enum tcpm_state state,
unsigned int delay_ms)
{
if (port->enter_state == port->state)
tcpm_set_state(port, state, delay_ms);
else
debug("skipped %sstate change %s -> %s [%u ms], context state %s [%s %s]\n",
delay_ms ? "delayed " : "",
tcpm_states[port->state], tcpm_states[state],
delay_ms, tcpm_states[port->enter_state],
pd_rev[port->negotiated_rev], tcpm_ams_str[port->ams]);
}
static void tcpm_queue_message(struct tcpm_port *port,
enum pd_msg_request message)
{
port->queued_message = message;
mod_tcpm_delayed_work(port, 0);
}
#if 0
static void tcpm_pd_handle_msg(struct tcpm_port *port,
enum pd_msg_request message,
enum tcpm_ams ams);
#endif
enum pdo_err {
PDO_NO_ERR,
PDO_ERR_NO_VSAFE5V,
PDO_ERR_VSAFE5V_NOT_FIRST,
PDO_ERR_PDO_TYPE_NOT_IN_ORDER,
PDO_ERR_FIXED_NOT_SORTED,
PDO_ERR_VARIABLE_BATT_NOT_SORTED,
PDO_ERR_DUPE_PDO,
PDO_ERR_PPS_APDO_NOT_SORTED,
PDO_ERR_DUPE_PPS_APDO,
};
static const char * const pdo_err_msg[] = {
[PDO_ERR_NO_VSAFE5V] =
" err: source/sink caps should atleast have vSafe5V",
[PDO_ERR_VSAFE5V_NOT_FIRST] =
" err: vSafe5V Fixed Supply Object Shall always be the first object",
[PDO_ERR_PDO_TYPE_NOT_IN_ORDER] =
" err: PDOs should be in the following order: Fixed; Battery; Variable",
[PDO_ERR_FIXED_NOT_SORTED] =
" err: Fixed supply pdos should be in increasing order of their fixed voltage",
[PDO_ERR_VARIABLE_BATT_NOT_SORTED] =
" err: Variable/Battery supply pdos should be in increasing order of their minimum voltage",
[PDO_ERR_DUPE_PDO] =
" err: Variable/Batt supply pdos cannot have same min/max voltage",
[PDO_ERR_PPS_APDO_NOT_SORTED] =
" err: Programmable power supply apdos should be in increasing order of their maximum voltage",
[PDO_ERR_DUPE_PPS_APDO] =
" err: Programmable power supply apdos cannot have same min/max voltage and max current",
};
static enum pdo_err tcpm_caps_err(struct tcpm_port *port, const u32 *pdo,
unsigned int nr_pdo)
{
unsigned int i;
/* Should at least contain vSafe5v */
if (nr_pdo < 1)
return PDO_ERR_NO_VSAFE5V;
/* The vSafe5V Fixed Supply Object Shall always be the first object */
if (pdo_type(pdo[0]) != PDO_TYPE_FIXED ||
pdo_fixed_voltage(pdo[0]) != VSAFE5V)
return PDO_ERR_VSAFE5V_NOT_FIRST;
for (i = 1; i < nr_pdo; i++) {
if (pdo_type(pdo[i]) < pdo_type(pdo[i - 1])) {
return PDO_ERR_PDO_TYPE_NOT_IN_ORDER;
} else if (pdo_type(pdo[i]) == pdo_type(pdo[i - 1])) {
enum pd_pdo_type type = pdo_type(pdo[i]);
switch (type) {
/*
* The remaining Fixed Supply Objects, if
* present, shall be sent in voltage order;
* lowest to highest.
*/
case PDO_TYPE_FIXED:
if (pdo_fixed_voltage(pdo[i]) <=
pdo_fixed_voltage(pdo[i - 1]))
return PDO_ERR_FIXED_NOT_SORTED;
break;
/*
* The Battery Supply Objects and Variable
* supply, if present shall be sent in Minimum
* Voltage order; lowest to highest.
*/
case PDO_TYPE_VAR:
case PDO_TYPE_BATT:
if (pdo_min_voltage(pdo[i]) <
pdo_min_voltage(pdo[i - 1]))
return PDO_ERR_VARIABLE_BATT_NOT_SORTED;
else if ((pdo_min_voltage(pdo[i]) ==
pdo_min_voltage(pdo[i - 1])) &&
(pdo_max_voltage(pdo[i]) ==
pdo_max_voltage(pdo[i - 1])))
return PDO_ERR_DUPE_PDO;
break;
/*
* The Programmable Power Supply APDOs, if present,
* shall be sent in Maximum Voltage order;
* lowest to highest.
*/
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo[i]) != APDO_TYPE_PPS)
break;
if (pdo_pps_apdo_max_voltage(pdo[i]) <
pdo_pps_apdo_max_voltage(pdo[i - 1]))
return PDO_ERR_PPS_APDO_NOT_SORTED;
else if (pdo_pps_apdo_min_voltage(pdo[i]) ==
pdo_pps_apdo_min_voltage(pdo[i - 1]) &&
pdo_pps_apdo_max_voltage(pdo[i]) ==
pdo_pps_apdo_max_voltage(pdo[i - 1]) &&
pdo_pps_apdo_max_current(pdo[i]) ==
pdo_pps_apdo_max_current(pdo[i - 1]))
return PDO_ERR_DUPE_PPS_APDO;
break;
default:
printf("%s: Unknown pdo type\n", __func__);
}
}
}
return PDO_NO_ERR;
}
static int tcpm_validate_caps(struct tcpm_port *port, const u32 *pdo,
unsigned int nr_pdo)
{
enum pdo_err err_index = tcpm_caps_err(port, pdo, nr_pdo);
if (err_index != PDO_NO_ERR) {
printf("%s", pdo_err_msg[err_index]);
return -EINVAL;
}
return 0;
}
/*
* PD (data, control) command handling functions
*/
static inline enum tcpm_state ready_state(struct tcpm_port *port)
{
if (port->pwr_role == TYPEC_SOURCE)
return SRC_READY;
else
return SNK_READY;
}
static int tcpm_pd_send_control(struct tcpm_port *port,
enum pd_ctrl_msg_type type);
#if 0
static void tcpm_pd_handle_msg(struct tcpm_port *port,
enum pd_msg_request message,
enum tcpm_ams ams)
{
switch (port->state) {
case SRC_READY:
case SNK_READY:
port->ams = ams;
tcpm_queue_message(port, message);
break;
/* PD 3.0 Spec 8.3.3.4.1.1 and 6.8.1 */
case SNK_TRANSITION_SINK:
case SNK_TRANSITION_SINK_VBUS:
case SRC_TRANSITION_SUPPLY:
tcpm_set_state(port, HARD_RESET_SEND, 0);
break;
default:
if (!tcpm_ams_interruptible(port)) {
tcpm_set_state(port, port->pwr_role == TYPEC_SOURCE ?
SRC_SOFT_RESET_WAIT_SNK_TX :
SNK_SOFT_RESET,
0);
} else {
port->next_ams = ams;
tcpm_set_state(port, ready_state(port), 0);
/* 6.8.1 process the Message */
tcpm_queue_message(port, message);
}
break;
}
}
#endif
static void tcpm_pd_data_request(struct tcpm_port *port,
const struct pd_message *msg)
{
enum pd_data_msg_type type = pd_header_type_le(msg->header);
unsigned int cnt = pd_header_cnt_le(msg->header);
unsigned int rev = pd_header_rev_le(msg->header);
unsigned int i;
switch (type) {
case PD_DATA_SOURCE_CAP:
for (i = 0; i < cnt; i++)
port->source_caps[i] = le32_to_cpu(msg->payload[i]);
port->nr_source_caps = cnt;
tcpm_validate_caps(port, port->source_caps,
port->nr_source_caps);
/*
* Adjust revision in subsequent message headers, as required,
* to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't
* support Rev 1.0 so just do nothing in that scenario.
*/
if (rev == PD_REV10) {
break;
}
if (rev < PD_MAX_REV)
port->negotiated_rev = rev;
if ((pdo_type(port->source_caps[0]) == PDO_TYPE_FIXED) &&
(port->source_caps[0] & PDO_FIXED_DUAL_ROLE) &&
(port->source_caps[0] & PDO_FIXED_DATA_SWAP)) {
/* Dual role power and data, eg: self-powered Type-C */
port->wait_dr_swap_Message = true;
} else {
/* Non-Dual role power, eg: adapter */
port->wait_dr_swap_Message = false;
}
/*
* This message may be received even if VBUS is not
* present. This is quite unexpected; see USB PD
* specification, sections 8.3.3.6.3.1 and 8.3.3.6.3.2.
* However, at the same time, we must be ready to
* receive this message and respond to it 15ms after
* receiving PS_RDY during power swap operations, no matter
* if VBUS is available or not (USB PD specification,
* section 6.5.9.2).
* So we need to accept the message either way,
* but be prepared to keep waiting for VBUS after it was
* handled.
*/
tcpm_set_state(port, SNK_NEGOTIATE_CAPABILITIES, 0);
break;
case PD_DATA_REQUEST:
/*
* Adjust revision in subsequent message headers, as required,
* to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't
* support Rev 1.0 so just reject in that scenario.
*/
if (rev == PD_REV10) {
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
if (rev < PD_MAX_REV)
port->negotiated_rev = rev;
port->sink_request = le32_to_cpu(msg->payload[0]);
tcpm_set_state(port, SRC_NEGOTIATE_CAPABILITIES, 0);
break;
case PD_DATA_SINK_CAP:
/* We don't do anything with this at the moment... */
for (i = 0; i < cnt; i++)
port->sink_caps[i] = le32_to_cpu(msg->payload[i]);
port->nr_sink_caps = cnt;
break;
default:
break;
}
}
static void tcpm_pd_ctrl_request(struct tcpm_port *port,
const struct pd_message *msg)
{
enum pd_ctrl_msg_type type = pd_header_type_le(msg->header);
enum tcpm_state next_state;
switch (type) {
case PD_CTRL_GOOD_CRC:
case PD_CTRL_PING:
break;
case PD_CTRL_GET_SOURCE_CAP:
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_queue_message(port, PD_MSG_DATA_SOURCE_CAP);
break;
default:
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
break;
case PD_CTRL_GET_SINK_CAP:
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_queue_message(port, PD_MSG_DATA_SINK_CAP);
break;
default:
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
break;
case PD_CTRL_GOTO_MIN:
break;
case PD_CTRL_PS_RDY:
switch (port->state) {
case SNK_TRANSITION_SINK:
if (port->vbus_present) {
tcpm_set_current_limit(port,
port->req_current_limit,
port->req_supply_voltage);
port->explicit_contract = true;
tcpm_set_state(port, SNK_READY, 0);
} else {
/*
* Seen after power swap. Keep waiting for VBUS
* in a transitional state.
*/
tcpm_set_state(port,
SNK_TRANSITION_SINK_VBUS, 0);
}
break;
default:
break;
}
break;
case PD_CTRL_REJECT:
case PD_CTRL_WAIT:
case PD_CTRL_NOT_SUPP:
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
/* USB PD specification, Figure 8-43 */
if (port->explicit_contract)
next_state = SNK_READY;
else
next_state = SNK_WAIT_CAPABILITIES;
tcpm_set_state(port, next_state, 0);
break;
case SNK_NEGOTIATE_PPS_CAPABILITIES:
/* Revert data back from any requested PPS updates */
port->pps_data.req_out_volt = port->supply_voltage;
port->pps_data.req_op_curr = port->current_limit;
port->pps_status = (type == PD_CTRL_WAIT ?
-EAGAIN : -EOPNOTSUPP);
tcpm_set_state(port, SNK_READY, 0);
break;
default:
break;
}
break;
case PD_CTRL_ACCEPT:
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
port->pps_data.active = false;
tcpm_set_state(port, SNK_TRANSITION_SINK, 0);
break;
case SNK_NEGOTIATE_PPS_CAPABILITIES:
port->pps_data.active = true;
/* ???? */
port->pps_data.min_volt = port->pps_data.req_min_volt;
port->pps_data.max_volt = port->pps_data.req_max_volt;
port->pps_data.max_curr = port->pps_data.req_max_curr;
port->req_supply_voltage = port->pps_data.req_out_volt;
port->req_current_limit = port->pps_data.req_op_curr;
tcpm_set_state(port, SNK_TRANSITION_SINK, 0);
break;
case SOFT_RESET_SEND:
port->message_id = 0;
port->rx_msgid = -1;
if (port->pwr_role == TYPEC_SOURCE)
next_state = SRC_SEND_CAPABILITIES;
else
next_state = SNK_WAIT_CAPABILITIES;
tcpm_set_state(port, next_state, 0);
break;
default:
break;
}
break;
case PD_CTRL_SOFT_RESET:
tcpm_set_state(port, SOFT_RESET, 0);
break;
case PD_CTRL_DR_SWAP:
if (port->port_type != TYPEC_PORT_DRP) {
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
/*
* XXX
* 6.3.9: If an alternate mode is active, a request to swap
* alternate modes shall trigger a port reset.
*/
switch (port->state) {
case SRC_READY:
case SNK_READY:
#if 0
if (port->vdm_sm_running) {
tcpm_queue_message(port, PD_MSG_CTRL_WAIT);
break;
}
#endif
tcpm_set_state(port, DR_SWAP_ACCEPT, 0);
break;
default:
tcpm_queue_message(port, PD_MSG_CTRL_WAIT);
break;
}
break;
case PD_CTRL_PR_SWAP:
case PD_CTRL_VCONN_SWAP:
case PD_CTRL_GET_SOURCE_CAP_EXT:
case PD_CTRL_GET_STATUS:
case PD_CTRL_FR_SWAP:
case PD_CTRL_GET_PPS_STATUS:
case PD_CTRL_GET_COUNTRY_CODES:
/* Currently not supported */
printf("Currently not supported type %#x \n", type);
tcpm_queue_message(port, PD_MSG_CTRL_NOT_SUPP);
break;
default:
printf("Unrecognized ctrl message type %#x\n", type);
break;
}
}
#if 0
static void tcpm_pd_ext_msg_request(struct tcpm_port *port,
const struct pd_message *msg)
{
enum pd_ext_msg_type type = pd_header_type_le(msg->header);
unsigned int data_size = pd_ext_header_data_size_le(msg->ext_msg.header);
if (!(le16_to_cpu(msg->ext_msg.header) & PD_EXT_HDR_CHUNKED)) {
tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS);
printf("Unchunked extended messages unsupported\n");
return;
}
if (data_size > PD_EXT_MAX_CHUNK_DATA) {
tcpm_pd_handle_state(port, CHUNK_NOT_SUPP, NONE_AMS, PD_T_CHUNK_NOT_SUPP);
printf("Chunk handling not yet supported\n");
return;
}
switch (type) {
case PD_EXT_STATUS:
case PD_EXT_PPS_STATUS:
tcpm_set_state(port, ready_state(port), 0);
}
break;
case PD_EXT_SOURCE_CAP_EXT:
case PD_EXT_GET_BATT_CAP:
case PD_EXT_GET_BATT_STATUS:
case PD_EXT_BATT_CAP:
case PD_EXT_GET_MANUFACTURER_INFO:
case PD_EXT_MANUFACTURER_INFO:
case PD_EXT_SECURITY_REQUEST:
case PD_EXT_SECURITY_RESPONSE:
case PD_EXT_FW_UPDATE_REQUEST:
case PD_EXT_FW_UPDATE_RESPONSE:
case PD_EXT_COUNTRY_INFO:
case PD_EXT_COUNTRY_CODES:
tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS);
break;
default:
tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS);
printf("Unrecognized extended message type %#x\n", type);
break;
}
}
#endif
static void tcpm_pd_rx_handler(struct tcpm_port *port,
struct pd_rx_event *event)
{
const struct pd_message *msg = &event->msg;
unsigned int cnt = pd_header_cnt_le(msg->header);
debug("PD RX, header: %#x [%d]\n", le16_to_cpu(msg->header),
port->attached);
if (port->attached) {
enum pd_ctrl_msg_type type = pd_header_type_le(msg->header);
unsigned int msgid = pd_header_msgid_le(msg->header);
/*
* USB PD standard, 6.6.1.2:
* "... if MessageID value in a received Message is the
* same as the stored value, the receiver shall return a
* GoodCRC Message with that MessageID value and drop
* the Message (this is a retry of an already received
* Message). Note: this shall not apply to the Soft_Reset
* Message which always has a MessageID value of zero."
*/
if (msgid == port->rx_msgid && type != PD_CTRL_SOFT_RESET)
goto done;
port->rx_msgid = msgid;
/*
* If both ends believe to be DFP/host, we have a data role
* mismatch.
*/
if (!!(le16_to_cpu(msg->header) & PD_HEADER_DATA_ROLE) ==
(port->data_role == TYPEC_HOST)) {
printf("Data role mismatch, initiating error recovery\n");
tcpm_set_state(port, ERROR_RECOVERY, 0);
} else {
if (cnt)
tcpm_pd_data_request(port, msg);
else
tcpm_pd_ctrl_request(port, msg);
}
}
done:
kfree(event);
}
void tcpm_pd_receive(struct tcpm_port *port, const struct pd_message *msg)
{
struct pd_rx_event *event;
port->poll_event_cnt = 0;
event = kzalloc(sizeof(*event), GFP_ATOMIC);
if (!event)
return;
event->port = port;
memcpy(&event->msg, msg, sizeof(*msg));
tcpm_pd_rx_handler(port, event);
}
EXPORT_SYMBOL_GPL(tcpm_pd_receive);
static int tcpm_pd_send_control(struct tcpm_port *port,
enum pd_ctrl_msg_type type)
{
struct pd_message msg;
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(type, port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
/*
* Send queued message without affecting state.
* Return true if state machine should go back to sleep,
* false otherwise.
*/
static bool tcpm_send_queued_message(struct tcpm_port *port)
{
enum pd_msg_request queued_message;
do {
queued_message = port->queued_message;
port->queued_message = PD_MSG_NONE;
switch (queued_message) {
case PD_MSG_CTRL_WAIT:
tcpm_pd_send_control(port, PD_CTRL_WAIT);
break;
case PD_MSG_CTRL_REJECT:
tcpm_pd_send_control(port, PD_CTRL_REJECT);
break;
case PD_MSG_CTRL_NOT_SUPP:
tcpm_pd_send_control(port, PD_CTRL_NOT_SUPP);
break;
case PD_MSG_DATA_SINK_CAP:
tcpm_pd_send_sink_caps(port);
break;
case PD_MSG_DATA_SOURCE_CAP:
tcpm_pd_send_source_caps(port);
break;
default:
break;
}
} while (port->queued_message != PD_MSG_NONE);
#if 0
/* ??? */
if (port->delayed_state != INVALID_STATE) {
if (ktime_after(port->delayed_runtime, ktime_get())) {
mod_tcpm_delayed_work(port, ktime_to_ms(ktime_sub(port->delayed_runtime,
ktime_get())));
return true;
}
port->delayed_state = INVALID_STATE;
}
#endif
return false;
}
static int tcpm_pd_check_request(struct tcpm_port *port)
{
u32 pdo, rdo = port->sink_request;
unsigned int max, op, pdo_max, index;
enum pd_pdo_type type;
index = rdo_index(rdo);
if (!index || index > port->nr_src_pdo)
return -EINVAL;
pdo = port->src_pdo[index - 1];
type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
case PDO_TYPE_VAR:
max = rdo_max_current(rdo);
op = rdo_op_current(rdo);
pdo_max = pdo_max_current(pdo);
if (op > pdo_max)
return -EINVAL;
if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH))
return -EINVAL;
if (type == PDO_TYPE_FIXED)
debug("Requested %u mV, %u mA for %u / %u mA\n",
pdo_fixed_voltage(pdo), pdo_max, op, max);
else
debug("Requested %u -> %u mV, %u mA for %u / %u mA\n",
pdo_min_voltage(pdo), pdo_max_voltage(pdo),
pdo_max, op, max);
break;
case PDO_TYPE_BATT:
max = rdo_max_power(rdo);
op = rdo_op_power(rdo);
pdo_max = pdo_max_power(pdo);
if (op > pdo_max)
return -EINVAL;
if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH))
return -EINVAL;
printf("Requested %u -> %u mV, %u mW for %u / %u mW\n",
pdo_min_voltage(pdo), pdo_max_voltage(pdo),
pdo_max, op, max);
break;
default:
return -EINVAL;
}
port->op_vsafe5v = index == 1;
return 0;
}
#define min_power(x, y) min(pdo_max_power(x), pdo_max_power(y))
#define min_current(x, y) min(pdo_max_current(x), pdo_max_current(y))
static int tcpm_pd_select_pdo(struct tcpm_port *port, int *sink_pdo,
int *src_pdo)
{
unsigned int i, j, max_src_mv = 0, min_src_mv = 0, max_mw = 0,
max_mv = 0, src_mw = 0, src_ma = 0, max_snk_mv = 0,
min_snk_mv = 0;
int ret = -EINVAL;
port->pps_data.supported = false;
port->usb_type = POWER_SUPPLY_USB_TYPE_PD;
/*
* Select the source PDO providing the most power which has a
* matchig sink cap.
*/
for (i = 0; i < port->nr_source_caps; i++) {
u32 pdo = port->source_caps[i];
enum pd_pdo_type type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
max_src_mv = pdo_fixed_voltage(pdo);
min_src_mv = max_src_mv;
break;
case PDO_TYPE_BATT:
case PDO_TYPE_VAR:
max_src_mv = pdo_max_voltage(pdo);
min_src_mv = pdo_min_voltage(pdo);
break;
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo) == APDO_TYPE_PPS) {
port->pps_data.supported = true;
port->usb_type =
POWER_SUPPLY_USB_TYPE_PD_PPS;
}
continue;
default:
printf("Invalid source PDO type, ignoring\n");
continue;
}
switch (type) {
case PDO_TYPE_FIXED:
case PDO_TYPE_VAR:
src_ma = pdo_max_current(pdo);
src_mw = src_ma * min_src_mv / 1000;
break;
case PDO_TYPE_BATT:
src_mw = pdo_max_power(pdo);
break;
case PDO_TYPE_APDO:
continue;
default:
printf("Invalid source PDO type, ignoring\n");
continue;
}
for (j = 0; j < port->nr_snk_pdo; j++) {
pdo = port->snk_pdo[j];
switch (pdo_type(pdo)) {
case PDO_TYPE_FIXED:
max_snk_mv = pdo_fixed_voltage(pdo);
min_snk_mv = max_snk_mv;
break;
case PDO_TYPE_BATT:
case PDO_TYPE_VAR:
max_snk_mv = pdo_max_voltage(pdo);
min_snk_mv = pdo_min_voltage(pdo);
break;
case PDO_TYPE_APDO:
continue;
default:
printf("Invalid sink PDO type, ignoring\n");
continue;
}
if (max_src_mv <= max_snk_mv &&
min_src_mv >= min_snk_mv) {
/* Prefer higher voltages if available */
if ((src_mw == max_mw && min_src_mv > max_mv) ||
src_mw > max_mw) {
*src_pdo = i;
*sink_pdo = j;
max_mw = src_mw;
max_mv = min_src_mv;
ret = 0;
}
}
}
}
return ret;
}
#define min_pps_apdo_current(x, y) \
min(pdo_pps_apdo_max_current(x), pdo_pps_apdo_max_current(y))
static unsigned int tcpm_pd_select_pps_apdo(struct tcpm_port *port)
{
unsigned int i, j, max_mw = 0, max_mv = 0;
unsigned int min_src_mv, max_src_mv, src_ma, src_mw;
unsigned int min_snk_mv, max_snk_mv;
unsigned int max_op_mv;
u32 pdo, src, snk;
unsigned int src_pdo = 0, snk_pdo = 0;
/*
* Select the source PPS APDO providing the most power while staying
* within the board's limits. We skip the first PDO as this is always
* 5V 3A.
*/
for (i = 1; i < port->nr_source_caps; ++i) {
pdo = port->source_caps[i];
switch (pdo_type(pdo)) {
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo) != APDO_TYPE_PPS) {
printf("Not PPS APDO (source), ignoring\n");
continue;
}
min_src_mv = pdo_pps_apdo_min_voltage(pdo);
max_src_mv = pdo_pps_apdo_max_voltage(pdo);
src_ma = pdo_pps_apdo_max_current(pdo);
src_mw = (src_ma * max_src_mv) / 1000;
/*
* Now search through the sink PDOs to find a matching
* PPS APDO. Again skip the first sink PDO as this will
* always be 5V 3A.
*/
for (j = 1; j < port->nr_snk_pdo; j++) {
pdo = port->snk_pdo[j];
switch (pdo_type(pdo)) {
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo) != APDO_TYPE_PPS) {
printf("Not PPS APDO (sink), ignoring\n");
continue;
}
min_snk_mv =
pdo_pps_apdo_min_voltage(pdo);
max_snk_mv =
pdo_pps_apdo_max_voltage(pdo);
break;
default:
printf("Not APDO type (sink), ignoring\n");
continue;
}
if (min_src_mv <= max_snk_mv &&
max_src_mv >= min_snk_mv) {
max_op_mv = min(max_src_mv, max_snk_mv);
src_mw = (max_op_mv * src_ma) / 1000;
/* Prefer higher voltages if available */
if ((src_mw == max_mw &&
max_op_mv > max_mv) ||
src_mw > max_mw) {
src_pdo = i;
snk_pdo = j;
max_mw = src_mw;
max_mv = max_op_mv;
}
}
}
break;
default:
printf("Not APDO type (source), ignoring\n");
continue;
}
}
if (src_pdo) {
src = port->source_caps[src_pdo];
snk = port->snk_pdo[snk_pdo];
port->pps_data.req_min_volt = max(pdo_pps_apdo_min_voltage(src),
pdo_pps_apdo_min_voltage(snk));
port->pps_data.req_max_volt = min(pdo_pps_apdo_max_voltage(src),
pdo_pps_apdo_max_voltage(snk));
port->pps_data.req_max_curr = min_pps_apdo_current(src, snk);
port->pps_data.req_out_volt = min(port->pps_data.req_max_volt,
max(port->pps_data.req_min_volt,
port->pps_data.req_out_volt));
port->pps_data.req_op_curr = min(port->pps_data.req_max_curr,
port->pps_data.req_op_curr);
}
return src_pdo;
}
static int tcpm_pd_build_request(struct tcpm_port *port, u32 *rdo)
{
unsigned int mv, ma, mw, flags;
unsigned int max_ma, max_mw;
enum pd_pdo_type type;
u32 pdo, matching_snk_pdo;
int src_pdo_index = 0;
int snk_pdo_index = 0;
int ret;
ret = tcpm_pd_select_pdo(port, &snk_pdo_index, &src_pdo_index);
if (ret < 0)
return ret;
pdo = port->source_caps[src_pdo_index];
matching_snk_pdo = port->snk_pdo[snk_pdo_index];
type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
mv = pdo_fixed_voltage(pdo);
break;
case PDO_TYPE_BATT:
case PDO_TYPE_VAR:
mv = pdo_min_voltage(pdo);
break;
default:
printf("Invalid PDO selected!\n");
return -EINVAL;
}
/* Select maximum available current within the sink pdo's limit */
if (type == PDO_TYPE_BATT) {
mw = min_power(pdo, matching_snk_pdo);
ma = 1000 * mw / mv;
} else {
ma = min_current(pdo, matching_snk_pdo);
mw = ma * mv / 1000;
}
flags = RDO_USB_COMM | RDO_NO_SUSPEND;
/* Set mismatch bit if offered power is less than operating power */
max_ma = ma;
max_mw = mw;
if (mw < port->operating_snk_mw) {
flags |= RDO_CAP_MISMATCH;
if (type == PDO_TYPE_BATT &&
(pdo_max_power(matching_snk_pdo) > pdo_max_power(pdo)))
max_mw = pdo_max_power(matching_snk_pdo);
else if (pdo_max_current(matching_snk_pdo) >
pdo_max_current(pdo))
max_ma = pdo_max_current(matching_snk_pdo);
}
debug("cc=%d cc1=%d cc2=%d vbus=%d vconn=%s polarity=%d\n",
port->cc_req, port->cc1, port->cc2, port->vbus_source,
port->vconn_role == TYPEC_SOURCE ? "source" : "sink",
port->polarity);
if (type == PDO_TYPE_BATT) {
*rdo = RDO_BATT(src_pdo_index + 1, mw, max_mw, flags);
printf("Requesting PDO %d: %u mV, %u mW%s\n",
src_pdo_index, mv, mw,
flags & RDO_CAP_MISMATCH ? " [mismatch]" : "");
} else {
*rdo = RDO_FIXED(src_pdo_index + 1, ma, max_ma, flags);
printf("Requesting PDO %d: %u mV, %u mA%s\n",
src_pdo_index, mv, ma,
flags & RDO_CAP_MISMATCH ? " [mismatch]" : "");
}
port->req_current_limit = ma;
port->req_supply_voltage = mv;
return 0;
}
static int tcpm_pd_send_request(struct tcpm_port *port)
{
struct pd_message msg;
int ret;
u32 rdo;
ret = tcpm_pd_build_request(port, &rdo);
if (ret < 0)
return ret;
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(PD_DATA_REQUEST,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 1);
msg.payload[0] = cpu_to_le32(rdo);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static int tcpm_pd_build_pps_request(struct tcpm_port *port, u32 *rdo)
{
unsigned int out_mv, op_ma, op_mw, max_mv, max_ma, flags;
enum pd_pdo_type type;
unsigned int src_pdo_index;
u32 pdo;
src_pdo_index = tcpm_pd_select_pps_apdo(port);
if (!src_pdo_index)
return -EOPNOTSUPP;
pdo = port->source_caps[src_pdo_index];
type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo) != APDO_TYPE_PPS) {
printf("Invalid APDO selected!\n");
return -EINVAL;
}
max_mv = port->pps_data.req_max_volt;
max_ma = port->pps_data.req_max_curr;
out_mv = port->pps_data.req_out_volt;
op_ma = port->pps_data.req_op_curr;
break;
default:
printf("Invalid PDO selected!\n");
return -EINVAL;
}
flags = RDO_USB_COMM | RDO_NO_SUSPEND;
op_mw = (op_ma * out_mv) / 1000;
if (op_mw < port->operating_snk_mw) {
/*
* Try raising current to meet power needs. If that's not enough
* then try upping the voltage. If that's still not enough
* then we've obviously chosen a PPS APDO which really isn't
* suitable so abandon ship.
*/
op_ma = (port->operating_snk_mw * 1000) / out_mv;
if ((port->operating_snk_mw * 1000) % out_mv)
++op_ma;
op_ma += RDO_PROG_CURR_MA_STEP - (op_ma % RDO_PROG_CURR_MA_STEP);
if (op_ma > max_ma) {
op_ma = max_ma;
out_mv = (port->operating_snk_mw * 1000) / op_ma;
if ((port->operating_snk_mw * 1000) % op_ma)
++out_mv;
out_mv += RDO_PROG_VOLT_MV_STEP -
(out_mv % RDO_PROG_VOLT_MV_STEP);
if (out_mv > max_mv) {
printf("Invalid PPS APDO selected!\n");
return -EINVAL;
}
}
}
debug("cc=%d cc1=%d cc2=%d vbus=%d vconn=%s polarity=%d\n",
port->cc_req, port->cc1, port->cc2, port->vbus_source,
port->vconn_role == TYPEC_SOURCE ? "source" : "sink",
port->polarity);
*rdo = RDO_PROG(src_pdo_index + 1, out_mv, op_ma, flags);
printf("Requesting APDO %d: %u mV, %u mA\n",
src_pdo_index, out_mv, op_ma);
port->pps_data.req_op_curr = op_ma;
port->pps_data.req_out_volt = out_mv;
return 0;
}
static int tcpm_pd_send_pps_request(struct tcpm_port *port)
{
struct pd_message msg;
int ret;
u32 rdo;
ret = tcpm_pd_build_pps_request(port, &rdo);
if (ret < 0)
return ret;
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(PD_DATA_REQUEST,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 1);
msg.payload[0] = cpu_to_le32(rdo);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static int tcpm_set_vbus(struct tcpm_port *port, bool enable)
{
int ret;
if (enable && port->vbus_charge)
return -EINVAL;
debug("vbus = %d charge = %d\n", enable, port->vbus_charge);
ret = port->tcpc->set_vbus(port->tcpc, enable, port->vbus_charge);
if (ret < 0)
return ret;
port->vbus_source = enable;
return 0;
}
static int tcpm_set_charge(struct tcpm_port *port, bool charge)
{
int ret;
if (charge && port->vbus_source)
return -EINVAL;
if (charge != port->vbus_charge) {
debug("vbus = %d charge = %d\n", port->vbus_source, charge);
ret = port->tcpc->set_vbus(port->tcpc, port->vbus_source,
charge);
if (ret < 0)
return ret;
}
port->vbus_charge = charge;
return 0;
}
static bool tcpm_start_toggling(struct tcpm_port *port, enum typec_cc_status cc)
{
int ret;
if (!port->tcpc->start_toggling)
return false;
printf("Start toggling\n");
ret = port->tcpc->start_toggling(port->tcpc, port->port_type, cc);
return ret == 0;
}
static int tcpm_init_vbus(struct tcpm_port *port)
{
int ret;
ret = port->tcpc->set_vbus(port->tcpc, false, false);
port->vbus_source = false;
port->vbus_charge = false;
return ret;
}
static int tcpm_init_vconn(struct tcpm_port *port)
{
int ret;
ret = port->tcpc->set_vconn(port->tcpc, false);
port->vconn_role = TYPEC_SINK;
return ret;
}
static void tcpm_typec_connect(struct tcpm_port *port)
{
if (!port->connected) {
port->connected = true;
}
}
static int tcpm_src_attach(struct tcpm_port *port)
{
enum typec_cc_polarity polarity =
port->cc2 == TYPEC_CC_RD ? TYPEC_POLARITY_CC2
: TYPEC_POLARITY_CC1;
int ret;
if (port->attached)
return 0;
ret = tcpm_set_polarity(port, polarity);
if (ret < 0)
return ret;
ret = tcpm_set_roles(port, true, TYPEC_SOURCE, TYPEC_HOST);
if (ret < 0)
return ret;
ret = port->tcpc->set_pd_rx(port->tcpc, true);
if (ret < 0)
goto out_disable_mux;
/*
* USB Type-C specification, version 1.2,
* chapter 4.5.2.2.8.1 (Attached.SRC Requirements)
* Enable VCONN only if the non-RD port is set to RA.
*/
if ((polarity == TYPEC_POLARITY_CC1 && port->cc2 == TYPEC_CC_RA) ||
(polarity == TYPEC_POLARITY_CC2 && port->cc1 == TYPEC_CC_RA)) {
ret = tcpm_set_vconn(port, true);
if (ret < 0)
goto out_disable_pd;
}
ret = tcpm_set_vbus(port, true);
if (ret < 0)
goto out_disable_vconn;
port->pd_capable = false;
port->partner = NULL;
port->attached = true;
port->debouncing = false;
//port->send_discover = true;
return 0;
out_disable_vconn:
tcpm_set_vconn(port, false);
out_disable_pd:
port->tcpc->set_pd_rx(port->tcpc, false);
out_disable_mux:
printf("CC connected in %s as DFP\n",
polarity ? "CC2" : "CC1");
return 0;
}
static void tcpm_typec_disconnect(struct tcpm_port *port)
{
if (port->connected) {
port->partner = NULL;
port->connected = false;
}
}
static void tcpm_reset_port(struct tcpm_port *port)
{
tcpm_timer_uninit(port);
tcpm_typec_disconnect(port);
port->poll_event_cnt = 0;
port->wait_dr_swap_Message = false;
port->attached = false;
port->pd_capable = false;
port->pps_data.supported = false;
/*
* First Rx ID should be 0; set this to a sentinel of -1 so that
* we can check tcpm_pd_rx_handler() if we had seen it before.
*/
port->rx_msgid = -1;
port->tcpc->set_pd_rx(port->tcpc, false);
tcpm_init_vbus(port); /* also disables charging */
tcpm_init_vconn(port);
tcpm_set_current_limit(port, 0, 0);
tcpm_set_polarity(port, TYPEC_POLARITY_CC1);
tcpm_set_attached_state(port, false);
port->usb_type = POWER_SUPPLY_USB_TYPE_C;
port->nr_sink_caps = 0;
port->sink_cap_done = false;
}
static void tcpm_detach(struct tcpm_port *port)
{
if (tcpm_port_is_disconnected(port))
port->hard_reset_count = 0;
if (!port->attached)
return;
tcpm_reset_port(port);
}
static void tcpm_src_detach(struct tcpm_port *port)
{
tcpm_detach(port);
}
static int tcpm_snk_attach(struct tcpm_port *port)
{
int ret;
if (port->attached)
return 0;
ret = tcpm_set_polarity(port, port->cc2 != TYPEC_CC_OPEN ?
TYPEC_POLARITY_CC2 : TYPEC_POLARITY_CC1);
if (ret < 0)
return ret;
ret = tcpm_set_roles(port, true, TYPEC_SINK, TYPEC_DEVICE);
if (ret < 0)
return ret;
port->pd_capable = false;
port->partner = NULL;
port->attached = true;
port->debouncing = false;
printf("CC connected in %s as UFP\n",
port->cc1 != TYPEC_CC_OPEN ? "CC1" : "CC2");
return 0;
}
static void tcpm_snk_detach(struct tcpm_port *port)
{
tcpm_detach(port);
}
static int tcpm_acc_attach(struct tcpm_port *port)
{
int ret;
if (port->attached)
return 0;
ret = tcpm_set_roles(port, true, TYPEC_SOURCE, TYPEC_HOST);
if (ret < 0)
return ret;
port->partner = NULL;
tcpm_typec_connect(port);
port->attached = true;
dev_info(port->dev, "CC connected as Audio Accessory\n");
return 0;
}
static void tcpm_acc_detach(struct tcpm_port *port)
{
tcpm_detach(port);
}
static inline enum tcpm_state hard_reset_state(struct tcpm_port *port)
{
if (port->hard_reset_count < PD_N_HARD_RESET_COUNT)
return HARD_RESET_SEND;
if (port->pd_capable)
return ERROR_RECOVERY;
if (port->pwr_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
if (port->state == SNK_WAIT_CAPABILITIES)
return SNK_READY;
return SNK_UNATTACHED;
}
static inline enum tcpm_state unattached_state(struct tcpm_port *port)
{
if (port->port_type == TYPEC_PORT_DRP) {
if (port->pwr_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
else
return SNK_UNATTACHED;
} else if (port->port_type == TYPEC_PORT_SRC) {
return SRC_UNATTACHED;
}
return SNK_UNATTACHED;
}
bool tcpm_is_toggling(struct tcpm_port *port)
{
if (port->port_type == TYPEC_PORT_DRP)
return port->state == SRC_UNATTACHED || port->state == SNK_UNATTACHED ||
port->state == TOGGLING;
return false;
}
EXPORT_SYMBOL_GPL(tcpm_is_toggling);
static void run_state_machine(struct tcpm_port *port)
{
int ret;
port->enter_state = port->state;
switch (port->state) {
case TOGGLING:
break;
/* SRC states */
case SRC_UNATTACHED:
tcpm_src_detach(port);
if (tcpm_start_toggling(port, tcpm_rp_cc(port))) {
tcpm_set_state(port, TOGGLING, 0);
break;
}
tcpm_set_cc(port, tcpm_rp_cc(port));
if (port->port_type == TYPEC_PORT_DRP)
tcpm_set_state(port, SNK_UNATTACHED, PD_T_DRP_SNK);
break;
case SRC_ATTACH_WAIT:
if (tcpm_port_is_debug(port))
tcpm_set_state(port, DEBUG_ACC_ATTACHED,
PD_T_CC_DEBOUNCE);
else if (tcpm_port_is_audio(port))
tcpm_set_state(port, AUDIO_ACC_ATTACHED,
PD_T_CC_DEBOUNCE);
else if (tcpm_port_is_source(port))
tcpm_set_state(port, SRC_ATTACHED, PD_T_CC_DEBOUNCE);
break;
case SRC_ATTACHED:
ret = tcpm_src_attach(port);
/*
* Currently, vbus control is not implemented,
* and the SRC detection process cannot be fully implemented.
*/
tcpm_set_state(port, SRC_READY, 0);
#if 0
tcpm_set_state(port, SRC_UNATTACHED,
ret < 0 ? 0 : PD_T_PS_SOURCE_ON);
#endif
break;
case SRC_STARTUP:
port->caps_count = 0;
port->negotiated_rev = PD_MAX_REV;
port->message_id = 0;
port->rx_msgid = -1;
port->explicit_contract = false;
tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0);
break;
case SRC_SEND_CAPABILITIES:
port->caps_count++;
if (port->caps_count > PD_N_CAPS_COUNT) {
tcpm_set_state(port, SRC_READY, 0);
break;
}
ret = tcpm_pd_send_source_caps(port);
if (ret < 0) {
tcpm_set_state(port, SRC_SEND_CAPABILITIES,
PD_T_SEND_SOURCE_CAP);
} else {
/*
* Per standard, we should clear the reset counter here.
* However, that can result in state machine hang-ups.
* Reset it only in READY state to improve stability.
*/
/* port->hard_reset_count = 0; */
port->caps_count = 0;
port->pd_capable = true;
tcpm_set_state_cond(port, SRC_SEND_CAPABILITIES_TIMEOUT,
PD_T_SEND_SOURCE_CAP);
}
break;
case SRC_SEND_CAPABILITIES_TIMEOUT:
/*
* Error recovery for a PD_DATA_SOURCE_CAP reply timeout.
*
* PD 2.0 sinks are supposed to accept src-capabilities with a
* 3.0 header and simply ignore any src PDOs which the sink does
* not understand such as PPS but some 2.0 sinks instead ignore
* the entire PD_DATA_SOURCE_CAP message, causing contract
* negotiation to fail.
*
* After PD_N_HARD_RESET_COUNT hard-reset attempts, we try
* sending src-capabilities with a lower PD revision to
* make these broken sinks work.
*/
if (port->hard_reset_count < PD_N_HARD_RESET_COUNT) {
tcpm_set_state(port, HARD_RESET_SEND, 0);
} else if (port->negotiated_rev > PD_REV20) {
port->negotiated_rev--;
port->hard_reset_count = 0;
tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0);
} else {
tcpm_set_state(port, hard_reset_state(port), 0);
}
break;
case SRC_NEGOTIATE_CAPABILITIES:
ret = tcpm_pd_check_request(port);
if (ret < 0) {
tcpm_pd_send_control(port, PD_CTRL_REJECT);
if (!port->explicit_contract) {
tcpm_set_state(port,
SRC_WAIT_NEW_CAPABILITIES, 0);
} else {
tcpm_set_state(port, SRC_READY, 0);
}
} else {
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
tcpm_set_state(port, SRC_TRANSITION_SUPPLY,
PD_T_SRC_TRANSITION);
}
break;
case SRC_TRANSITION_SUPPLY:
/* XXX: regulator_set_voltage(vbus, ...) */
tcpm_pd_send_control(port, PD_CTRL_PS_RDY);
port->explicit_contract = true;
tcpm_set_state_cond(port, SRC_READY, 0);
break;
case SRC_READY:
#if 1
port->hard_reset_count = 0;
#endif
port->try_src_count = 0;
tcpm_typec_connect(port);
break;
case SRC_WAIT_NEW_CAPABILITIES:
/* Nothing to do... */
break;
/* SNK states */
case SNK_UNATTACHED:
tcpm_snk_detach(port);
if (tcpm_start_toggling(port, TYPEC_CC_RD)) {
tcpm_set_state(port, TOGGLING, 0);
break;
}
tcpm_set_cc(port, TYPEC_CC_RD);
if (port->port_type == TYPEC_PORT_DRP)
tcpm_set_state(port, SRC_UNATTACHED, PD_T_DRP_SRC);
break;
case SNK_ATTACH_WAIT:
if ((port->cc1 == TYPEC_CC_OPEN &&
port->cc2 != TYPEC_CC_OPEN) ||
(port->cc1 != TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN))
tcpm_set_state(port, SNK_DEBOUNCED,
PD_T_CC_DEBOUNCE);
else if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, SNK_UNATTACHED,
PD_T_CC_DEBOUNCE);
break;
case SNK_DEBOUNCED:
if (tcpm_port_is_disconnected(port)) {
tcpm_set_state(port, SNK_UNATTACHED,
PD_T_PD_DEBOUNCE);
} else if (port->vbus_present)
tcpm_set_state(port, SNK_ATTACHED, 0);
else
/* Wait for VBUS, but not forever */
tcpm_set_state(port, PORT_RESET, PD_T_PS_SOURCE_ON);
break;
case SNK_ATTACHED:
ret = tcpm_snk_attach(port);
if (ret < 0)
tcpm_set_state(port, SNK_UNATTACHED, 0);
else
tcpm_set_state(port, SNK_STARTUP, 0);
break;
case SNK_STARTUP:
port->negotiated_rev = PD_MAX_REV;
port->message_id = 0;
port->rx_msgid = -1;
port->explicit_contract = false;
tcpm_set_state(port, SNK_DISCOVERY, 0);
break;
case SNK_DISCOVERY:
if (port->vbus_present) {
tcpm_set_current_limit(port,
tcpm_get_current_limit(port),
5000);
tcpm_set_charge(port, true);
tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0);
break;
}
/*
* For DRP, timeouts differ. Also, handling is supposed to be
* different and much more complex (dead battery detection;
* see USB power delivery specification, section 8.3.3.6.1.5.1).
*/
tcpm_set_state(port, hard_reset_state(port),
port->port_type == TYPEC_PORT_DRP ?
PD_T_DB_DETECT : PD_T_NO_RESPONSE);
break;
case SNK_DISCOVERY_DEBOUNCE:
tcpm_set_state(port, SNK_DISCOVERY_DEBOUNCE_DONE,
PD_T_CC_DEBOUNCE);
break;
case SNK_DISCOVERY_DEBOUNCE_DONE:
#if 0
if (!tcpm_port_is_disconnected(port) &&
tcpm_port_is_sink(port) &&
ktime_after(port->delayed_runtime, ktime_get())) {
tcpm_set_state(port, SNK_DISCOVERY,
ktime_to_ms(ktime_sub(port->delayed_runtime, ktime_get())));
break;
}
#endif
tcpm_set_state(port, unattached_state(port), 0);
break;
case SNK_WAIT_CAPABILITIES:
ret = port->tcpc->set_pd_rx(port->tcpc, true);
if (ret < 0) {
tcpm_set_state(port, SNK_READY, 0);
break;
}
/*
* If VBUS has never been low, and we time out waiting
* for source cap, try a soft reset first, in case we
* were already in a stable contract before this boot.
* Do this only once.
*/
if (port->vbus_never_low) {
port->vbus_never_low = false;
tcpm_set_state(port, SOFT_RESET_SEND,
PD_T_SINK_WAIT_CAP);
} else {
tcpm_set_state(port, hard_reset_state(port),
PD_T_SINK_WAIT_CAP);
}
break;
case SNK_NEGOTIATE_CAPABILITIES:
port->pd_capable = true;
port->hard_reset_count = 0;
ret = tcpm_pd_send_request(port);
if (ret < 0) {
/* Let the Source send capabilities again. */
tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0);
} else {
tcpm_set_state_cond(port, hard_reset_state(port),
PD_T_SENDER_RESPONSE);
}
break;
case SNK_NEGOTIATE_PPS_CAPABILITIES:
ret = tcpm_pd_send_pps_request(port);
if (ret < 0) {
port->pps_status = ret;
/*
* If this was called due to updates to sink
* capabilities, and pps is no longer valid, we should
* safely fall back to a standard PDO.
*/
if (port->update_sink_caps)
tcpm_set_state(port, SNK_NEGOTIATE_CAPABILITIES, 0);
else
tcpm_set_state(port, SNK_READY, 0);
} else {
tcpm_set_state_cond(port, hard_reset_state(port),
PD_T_SENDER_RESPONSE);
}
break;
case SNK_TRANSITION_SINK:
case SNK_TRANSITION_SINK_VBUS:
tcpm_set_state(port, hard_reset_state(port),
PD_T_PS_TRANSITION);
break;
case SNK_READY:
port->try_snk_count = 0;
port->update_sink_caps = false;
tcpm_typec_connect(port);
/*
* Here poll_event_cnt is cleared, waiting for self-powered Type-C devices
* to send DR_swap Messge until 1s (TCPM_POLL_EVENT_TIME_OUT * 500us)timeout
*/
if (port->wait_dr_swap_Message)
port->poll_event_cnt = 0;
break;
/* Accessory states */
case ACC_UNATTACHED:
tcpm_acc_detach(port);
tcpm_set_state(port, SRC_UNATTACHED, 0);
break;
case DEBUG_ACC_ATTACHED:
case AUDIO_ACC_ATTACHED:
ret = tcpm_acc_attach(port);
if (ret < 0)
tcpm_set_state(port, ACC_UNATTACHED, 0);
break;
case AUDIO_ACC_DEBOUNCE:
tcpm_set_state(port, ACC_UNATTACHED, PD_T_CC_DEBOUNCE);
break;
/* Hard_Reset states */
case HARD_RESET_SEND:
tcpm_pd_transmit(port, TCPC_TX_HARD_RESET, NULL);
tcpm_set_state(port, HARD_RESET_START, 0);
port->wait_dr_swap_Message = false;
break;
case HARD_RESET_START:
port->hard_reset_count++;
port->tcpc->set_pd_rx(port->tcpc, false);
port->nr_sink_caps = 0;
port->send_discover = true;
if (port->pwr_role == TYPEC_SOURCE)
tcpm_set_state(port, SRC_HARD_RESET_VBUS_OFF,
PD_T_PS_HARD_RESET);
else
tcpm_set_state(port, SNK_HARD_RESET_SINK_OFF, 0);
break;
case SRC_HARD_RESET_VBUS_OFF:
tcpm_set_vconn(port, true);
tcpm_set_vbus(port, false);
tcpm_set_roles(port, port->self_powered, TYPEC_SOURCE,
TYPEC_HOST);
tcpm_set_state(port, SRC_HARD_RESET_VBUS_ON, PD_T_SRC_RECOVER);
break;
case SRC_HARD_RESET_VBUS_ON:
tcpm_set_vconn(port, true);
tcpm_set_vbus(port, true);
port->tcpc->set_pd_rx(port->tcpc, true);
tcpm_set_attached_state(port, true);
tcpm_set_state(port, SRC_UNATTACHED, PD_T_PS_SOURCE_ON);
break;
case SNK_HARD_RESET_SINK_OFF:
memset(&port->pps_data, 0, sizeof(port->pps_data));
tcpm_set_vconn(port, false);
if (port->pd_capable)
tcpm_set_charge(port, false);
tcpm_set_roles(port, port->self_powered, TYPEC_SINK,
TYPEC_DEVICE);
/*
* VBUS may or may not toggle, depending on the adapter.
* If it doesn't toggle, transition to SNK_HARD_RESET_SINK_ON
* directly after timeout.
*/
tcpm_set_state(port, SNK_HARD_RESET_SINK_ON, PD_T_SAFE_0V);
break;
case SNK_HARD_RESET_WAIT_VBUS:
/* Assume we're disconnected if VBUS doesn't come back. */
tcpm_set_state(port, SNK_UNATTACHED,
PD_T_SRC_RECOVER_MAX + PD_T_SRC_TURN_ON);
break;
case SNK_HARD_RESET_SINK_ON:
/* Note: There is no guarantee that VBUS is on in this state */
/*
* XXX:
* The specification suggests that dual mode ports in sink
* mode should transition to state PE_SRC_Transition_to_default.
* See USB power delivery specification chapter 8.3.3.6.1.3.
* This would mean to to
* - turn off VCONN, reset power supply
* - request hardware reset
* - turn on VCONN
* - Transition to state PE_Src_Startup
* SNK only ports shall transition to state Snk_Startup
* (see chapter 8.3.3.3.8).
* Similar, dual-mode ports in source mode should transition
* to PE_SNK_Transition_to_default.
*/
if (port->pd_capable) {
tcpm_set_current_limit(port,
tcpm_get_current_limit(port),
5000);
tcpm_set_charge(port, true);
}
tcpm_set_attached_state(port, true);
tcpm_set_state(port, SNK_STARTUP, 0);
break;
/* Soft_Reset states */
case SOFT_RESET:
port->message_id = 0;
port->rx_msgid = -1;
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
if (port->pwr_role == TYPEC_SOURCE) {
tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0);
} else {
tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0);
}
break;
case SOFT_RESET_SEND:
port->message_id = 0;
port->rx_msgid = -1;
if (tcpm_pd_send_control(port, PD_CTRL_SOFT_RESET))
tcpm_set_state_cond(port, hard_reset_state(port), 0);
else
tcpm_set_state_cond(port, hard_reset_state(port),
PD_T_SENDER_RESPONSE);
break;
/* DR_Swap states */
case DR_SWAP_SEND:
tcpm_pd_send_control(port, PD_CTRL_DR_SWAP);
tcpm_set_state_cond(port, DR_SWAP_SEND_TIMEOUT,
PD_T_SENDER_RESPONSE);
break;
case DR_SWAP_ACCEPT:
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
#if 0
/* Set VDM state machine running flag ASAP */
if (port->data_role == TYPEC_DEVICE && port->send_discover)
port->vdm_sm_running = true;
#endif
tcpm_set_state_cond(port, DR_SWAP_CHANGE_DR, 0);
break;
case DR_SWAP_SEND_TIMEOUT:
//tcpm_swap_complete(port, -ETIMEDOUT);
tcpm_set_state(port, ready_state(port), 0);
break;
case DR_SWAP_CHANGE_DR:
if (port->data_role == TYPEC_HOST) {
//tcpm_unregister_altmodes(port);
tcpm_set_roles(port, true, port->pwr_role,
TYPEC_DEVICE);
} else {
tcpm_set_roles(port, true, port->pwr_role,
TYPEC_HOST);
//port->send_discover = true;
}
/* DR_swap process complete, wait_dr_swap_Message is cleared */
port->wait_dr_swap_Message = false;
tcpm_set_state(port, ready_state(port), 0);
break;
#if 0
/* PR_Swap states */
case PR_SWAP_ACCEPT:
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
tcpm_set_state(port, PR_SWAP_START, 0);
break;
case PR_SWAP_SEND:
tcpm_pd_send_control(port, PD_CTRL_PR_SWAP);
tcpm_set_state_cond(port, PR_SWAP_SEND_TIMEOUT,
PD_T_SENDER_RESPONSE);
break;
case PR_SWAP_SEND_TIMEOUT:
tcpm_set_state(port, ready_state(port), 0);
break;
case PR_SWAP_START:
tcpm_apply_rc(port);
if (port->pwr_role == TYPEC_SOURCE)
tcpm_set_state(port, PR_SWAP_SRC_SNK_TRANSITION_OFF,
PD_T_SRC_TRANSITION);
else
tcpm_set_state(port, PR_SWAP_SNK_SRC_SINK_OFF, 0);
break;
case PR_SWAP_SRC_SNK_TRANSITION_OFF:
/*
* Prevent vbus discharge circuit from turning on during PR_SWAP
* as this is not a disconnect.
*/
tcpm_set_vbus(port, false);
port->explicit_contract = false;
/* allow time for Vbus discharge, must be < tSrcSwapStdby */
tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF,
PD_T_SRCSWAPSTDBY);
break;
case PR_SWAP_SRC_SNK_SOURCE_OFF:
timer_val_msecs = PD_T_CC_DEBOUNCE;
trace_android_vh_typec_tcpm_get_timer(tcpm_states[PR_SWAP_SRC_SNK_SOURCE_OFF],
CC_DEBOUNCE, &timer_val_msecs);
tcpm_set_cc(port, TYPEC_CC_RD);
/* allow CC debounce */
tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED,
timer_val_msecs);
break;
case PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED:
/*
* USB-PD standard, 6.2.1.4, Port Power Role:
* "During the Power Role Swap Sequence, for the initial Source
* Port, the Port Power Role field shall be set to Sink in the
* PS_RDY Message indicating that the initial Sources power
* supply is turned off"
*/
tcpm_set_pwr_role(port, TYPEC_SINK);
if (tcpm_pd_send_control(port, PD_CTRL_PS_RDY)) {
tcpm_set_state(port, ERROR_RECOVERY, 0);
break;
}
tcpm_set_state(port, ERROR_RECOVERY, PD_T_PS_SOURCE_ON_PRS);
break;
case PR_SWAP_SRC_SNK_SINK_ON:
tcpm_enable_auto_vbus_discharge(port, true);
/* Set the vbus disconnect threshold for implicit contract */
tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_USB, false, VSAFE5V);
tcpm_set_state(port, SNK_STARTUP, 0);
break;
case PR_SWAP_SNK_SRC_SINK_OFF:
timer_val_msecs = PD_T_PS_SOURCE_OFF;
trace_android_vh_typec_tcpm_get_timer(tcpm_states[PR_SWAP_SNK_SRC_SINK_OFF],
SOURCE_OFF, &timer_val_msecs);
/*
* Prevent vbus discharge circuit from turning on during PR_SWAP
* as this is not a disconnect.
*/
tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_USB,
port->pps_data.active, 0);
tcpm_set_charge(port, false);
tcpm_set_state(port, hard_reset_state(port), timer_val_msecs);
break;
case PR_SWAP_SNK_SRC_SOURCE_ON:
tcpm_enable_auto_vbus_discharge(port, true);
tcpm_set_cc(port, tcpm_rp_cc(port));
tcpm_set_vbus(port, true);
/*
* allow time VBUS ramp-up, must be < tNewSrc
* Also, this window overlaps with CC debounce as well.
* So, Wait for the max of two which is PD_T_NEWSRC
*/
tcpm_set_state(port, PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP,
PD_T_NEWSRC);
break;
case PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP:
/*
* USB PD standard, 6.2.1.4:
* "Subsequent Messages initiated by the Policy Engine,
* such as the PS_RDY Message sent to indicate that Vbus
* is ready, will have the Port Power Role field set to
* Source."
*/
tcpm_set_pwr_role(port, TYPEC_SOURCE);
tcpm_pd_send_control(port, PD_CTRL_PS_RDY);
tcpm_set_state(port, SRC_STARTUP, PD_T_SWAP_SRC_START);
break;
#endif
case GET_STATUS_SEND:
tcpm_pd_send_control(port, PD_CTRL_GET_STATUS);
tcpm_set_state(port, GET_STATUS_SEND_TIMEOUT,
PD_T_SENDER_RESPONSE);
break;
case GET_STATUS_SEND_TIMEOUT:
tcpm_set_state(port, ready_state(port), 0);
break;
case GET_PPS_STATUS_SEND:
tcpm_pd_send_control(port, PD_CTRL_GET_PPS_STATUS);
tcpm_set_state(port, GET_PPS_STATUS_SEND_TIMEOUT,
PD_T_SENDER_RESPONSE);
break;
case GET_PPS_STATUS_SEND_TIMEOUT:
tcpm_set_state(port, ready_state(port), 0);
break;
case GET_SINK_CAP:
tcpm_pd_send_control(port, PD_CTRL_GET_SINK_CAP);
tcpm_set_state(port, GET_SINK_CAP_TIMEOUT, PD_T_SENDER_RESPONSE);
break;
case GET_SINK_CAP_TIMEOUT:
tcpm_set_state(port, ready_state(port), 0);
break;
case ERROR_RECOVERY:
tcpm_set_state(port, PORT_RESET, 0);
break;
case PORT_RESET:
tcpm_reset_port(port);
tcpm_set_cc(port, TYPEC_CC_OPEN);
tcpm_set_state(port, PORT_RESET_WAIT_OFF,
PD_T_ERROR_RECOVERY);
break;
case PORT_RESET_WAIT_OFF:
tcpm_set_state(port,
tcpm_default_state(port),
port->vbus_present ? PD_T_PS_SOURCE_OFF : 0);
break;
default:
printf("Unexpected port state %d\n", port->state);
break;
}
}
static void tcpm_state_machine(struct tcpm_port *port)
{
enum tcpm_state prev_state;
mutex_lock(&port->lock);
port->state_machine_running = true;
if (port->queued_message && tcpm_send_queued_message(port))
goto done;
/* If we were queued due to a delayed state change, update it now */
if (port->delayed_state) {
debug("state change %s -> %s [delayed %ld ms]\n",
tcpm_states[port->state],
tcpm_states[port->delayed_state], port->delay_ms);
port->prev_state = port->state;
port->state = port->delayed_state;
port->delayed_state = INVALID_STATE;
}
/*
* Continue running as long as we have (non-delayed) state changes
* to make.
*/
do {
prev_state = port->state;
run_state_machine(port);
if (port->queued_message)
tcpm_send_queued_message(port);
} while (port->state != prev_state && !port->delayed_state);
done:
port->state_machine_running = false;
mutex_unlock(&port->lock);
}
static void _tcpm_cc_change(struct tcpm_port *port, enum typec_cc_status cc1,
enum typec_cc_status cc2)
{
enum typec_cc_status old_cc1, old_cc2;
enum tcpm_state new_state;
old_cc1 = port->cc1;
old_cc2 = port->cc2;
port->cc1 = cc1;
port->cc2 = cc2;
debug("CC1: %u -> %u, CC2: %u -> %u [state %s, polarity %d, %s]\n",
old_cc1, cc1, old_cc2, cc2, tcpm_states[port->state],
port->polarity,
tcpm_port_is_disconnected(port) ? "disconnected" : "connected");
switch (port->state) {
case TOGGLING:
if (tcpm_port_is_debug(port) || tcpm_port_is_audio(port) ||
tcpm_port_is_source(port))
tcpm_set_state(port, SRC_ATTACH_WAIT, 0);
else if (tcpm_port_is_sink(port))
tcpm_set_state(port, SNK_ATTACH_WAIT, 0);
break;
case SRC_UNATTACHED:
case ACC_UNATTACHED:
if (tcpm_port_is_debug(port) || tcpm_port_is_audio(port) ||
tcpm_port_is_source(port))
tcpm_set_state(port, SRC_ATTACH_WAIT, 0);
break;
case SRC_ATTACH_WAIT:
if (tcpm_port_is_disconnected(port) ||
tcpm_port_is_audio_detached(port))
tcpm_set_state(port, SRC_UNATTACHED, 0);
else if (cc1 != old_cc1 || cc2 != old_cc2)
tcpm_set_state(port, SRC_ATTACH_WAIT, 0);
break;
case SRC_ATTACHED:
case SRC_SEND_CAPABILITIES:
case SRC_READY:
if (tcpm_port_is_disconnected(port) ||
!tcpm_port_is_source(port))
tcpm_set_state(port, SRC_UNATTACHED, 0);
break;
case SNK_UNATTACHED:
if (tcpm_port_is_sink(port))
tcpm_set_state(port, SNK_ATTACH_WAIT, 0);
break;
case SNK_ATTACH_WAIT:
if ((port->cc1 == TYPEC_CC_OPEN &&
port->cc2 != TYPEC_CC_OPEN) ||
(port->cc1 != TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN))
new_state = SNK_DEBOUNCED;
else if (tcpm_port_is_disconnected(port))
new_state = SNK_UNATTACHED;
else
break;
if (new_state != port->delayed_state)
tcpm_set_state(port, SNK_ATTACH_WAIT, 0);
break;
case SNK_DEBOUNCED:
if (tcpm_port_is_disconnected(port))
new_state = SNK_UNATTACHED;
else if (port->vbus_present)
new_state = tcpm_try_src(port) ? SRC_TRY : SNK_ATTACHED;
else
new_state = SNK_UNATTACHED;
if (new_state != port->delayed_state)
tcpm_set_state(port, SNK_DEBOUNCED, 0);
break;
case SNK_READY:
if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, unattached_state(port), 0);
else if (!port->pd_capable &&
(cc1 != old_cc1 || cc2 != old_cc2))
tcpm_set_current_limit(port,
tcpm_get_current_limit(port),
5000);
break;
case AUDIO_ACC_ATTACHED:
if (cc1 == TYPEC_CC_OPEN || cc2 == TYPEC_CC_OPEN)
tcpm_set_state(port, AUDIO_ACC_DEBOUNCE, 0);
break;
case AUDIO_ACC_DEBOUNCE:
if (tcpm_port_is_audio(port))
tcpm_set_state(port, AUDIO_ACC_ATTACHED, 0);
break;
case DEBUG_ACC_ATTACHED:
if (cc1 == TYPEC_CC_OPEN || cc2 == TYPEC_CC_OPEN)
tcpm_set_state(port, ACC_UNATTACHED, 0);
break;
case SNK_TRY:
/* Do nothing, waiting for timeout */
break;
case SNK_DISCOVERY:
/* CC line is unstable, wait for debounce */
if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, SNK_DISCOVERY_DEBOUNCE, 0);
break;
case SNK_DISCOVERY_DEBOUNCE:
break;
case SRC_TRYWAIT:
/* Hand over to state machine if needed */
if (!port->vbus_present && tcpm_port_is_source(port))
tcpm_set_state(port, SRC_TRYWAIT_DEBOUNCE, 0);
break;
case SRC_TRYWAIT_DEBOUNCE:
if (port->vbus_present || !tcpm_port_is_source(port))
tcpm_set_state(port, SRC_TRYWAIT, 0);
break;
case SNK_TRY_WAIT_DEBOUNCE:
if (!tcpm_port_is_sink(port)) {
port->max_wait = 0;
tcpm_set_state(port, SRC_TRYWAIT, 0);
}
break;
case SRC_TRY_WAIT:
if (tcpm_port_is_source(port))
tcpm_set_state(port, SRC_TRY_DEBOUNCE, 0);
break;
case SRC_TRY_DEBOUNCE:
tcpm_set_state(port, SRC_TRY_WAIT, 0);
break;
case SNK_TRYWAIT_DEBOUNCE:
if (tcpm_port_is_sink(port))
tcpm_set_state(port, SNK_TRYWAIT_VBUS, 0);
break;
case SNK_TRYWAIT_VBUS:
if (!tcpm_port_is_sink(port))
tcpm_set_state(port, SNK_TRYWAIT_DEBOUNCE, 0);
break;
case SNK_TRYWAIT:
/* Do nothing, waiting for tCCDebounce */
break;
case PR_SWAP_SNK_SRC_SINK_OFF:
case PR_SWAP_SRC_SNK_TRANSITION_OFF:
case PR_SWAP_SRC_SNK_SOURCE_OFF:
case PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED:
case PR_SWAP_SNK_SRC_SOURCE_ON:
/*
* CC state change is expected in PR_SWAP
* Ignore it.
*/
break;
case PORT_RESET:
case PORT_RESET_WAIT_OFF:
/*
* State set back to default mode once the timer completes.
* Ignore CC changes here.
*/
break;
default:
/*
* While acting as sink and auto vbus discharge is enabled, Allow disconnect
* to be driven by vbus disconnect.
*/
if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, unattached_state(port), 0);
break;
}
}
static void _tcpm_pd_vbus_on(struct tcpm_port *port)
{
debug("%s: VBUS on\n", __func__);
port->vbus_present = true;
/*
* When vbus_present is true i.e. Voltage at VBUS is greater than VSAFE5V implicitly
* states that vbus is not at VSAFE0V, hence clear the vbus_vsafe0v flag here.
*/
port->vbus_vsafe0v = false;
switch (port->state) {
case SNK_TRANSITION_SINK_VBUS:
port->explicit_contract = true;
tcpm_set_state(port, SNK_READY, 0);
break;
case SNK_DISCOVERY:
tcpm_set_state(port, SNK_DISCOVERY, 0);
break;
case SNK_DEBOUNCED:
tcpm_set_state(port, SNK_ATTACHED, 0);
break;
case SNK_HARD_RESET_WAIT_VBUS:
tcpm_set_state(port, SNK_HARD_RESET_SINK_ON, 0);
break;
case SRC_ATTACHED:
tcpm_set_state(port, SRC_STARTUP, 0);
break;
case SRC_HARD_RESET_VBUS_ON:
tcpm_set_state(port, SRC_STARTUP, 0);
break;
case SNK_TRY:
/* Do nothing, waiting for timeout */
break;
case SRC_TRYWAIT:
/* Do nothing, Waiting for Rd to be detected */
break;
case SRC_TRYWAIT_DEBOUNCE:
tcpm_set_state(port, SRC_TRYWAIT, 0);
break;
case SNK_TRY_WAIT_DEBOUNCE:
/* Do nothing, waiting for PD_DEBOUNCE to do be done */
break;
case SNK_TRYWAIT:
/* Do nothing, waiting for tCCDebounce */
break;
case SNK_TRYWAIT_VBUS:
if (tcpm_port_is_sink(port))
tcpm_set_state(port, SNK_ATTACHED, 0);
break;
case SNK_TRYWAIT_DEBOUNCE:
/* Do nothing, waiting for Rp */
break;
case SRC_TRY_WAIT:
case SRC_TRY_DEBOUNCE:
/* Do nothing, waiting for sink detection */
break;
case PORT_RESET:
case PORT_RESET_WAIT_OFF:
/*
* State set back to default mode once the timer completes.
* Ignore vbus changes here.
*/
break;
default:
break;
}
}
static void _tcpm_pd_vbus_off(struct tcpm_port *port)
{
debug("%s: VBUS off\n", __func__);
port->vbus_present = false;
port->vbus_never_low = false;
switch (port->state) {
case SNK_HARD_RESET_SINK_OFF:
tcpm_set_state(port, SNK_HARD_RESET_WAIT_VBUS, 0);
break;
case HARD_RESET_SEND:
break;
case SNK_TRY:
/* Do nothing, waiting for timeout */
break;
case SRC_TRYWAIT:
/* Hand over to state machine if needed */
if (tcpm_port_is_source(port))
tcpm_set_state(port, SRC_TRYWAIT_DEBOUNCE, 0);
break;
case SNK_TRY_WAIT_DEBOUNCE:
/* Do nothing, waiting for PD_DEBOUNCE to do be done */
break;
case SNK_TRYWAIT:
case SNK_TRYWAIT_VBUS:
case SNK_TRYWAIT_DEBOUNCE:
break;
case SNK_ATTACH_WAIT:
port->debouncing = false;
tcpm_set_state(port, SNK_UNATTACHED, 0);
break;
case SNK_NEGOTIATE_CAPABILITIES:
break;
case PR_SWAP_SRC_SNK_TRANSITION_OFF:
tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF, 0);
break;
case PR_SWAP_SNK_SRC_SINK_OFF:
/* Do nothing, expected */
break;
case PR_SWAP_SNK_SRC_SOURCE_ON:
/*
* Do nothing when vbus off notification is received.
* TCPM can wait for PD_T_NEWSRC in PR_SWAP_SNK_SRC_SOURCE_ON
* for the vbus source to ramp up.
*/
break;
case PORT_RESET_WAIT_OFF:
tcpm_set_state(port, tcpm_default_state(port), 0);
break;
case SRC_TRY_WAIT:
case SRC_TRY_DEBOUNCE:
/* Do nothing, waiting for sink detection */
break;
case PORT_RESET:
/*
* State set back to default mode once the timer completes.
* Ignore vbus changes here.
*/
break;
default:
if (port->pwr_role == TYPEC_SINK && port->attached)
tcpm_set_state(port, SNK_UNATTACHED, 0);
break;
}
}
static void _tcpm_pd_hard_reset(struct tcpm_port *port)
{
debug("Received hard reset\n");
port->poll_event_cnt = 0;
/* If a hard reset message is received during the port reset process,
* we should ignore it, that is, do not set port->state to HARD_RESET_START.
*/
if (port->state == PORT_RESET || port->state == PORT_RESET_WAIT_OFF)
return ;
/*
* If we keep receiving hard reset requests, executing the hard reset
* must have failed. Revert to error recovery if that happens.
*/
tcpm_set_state(port,
port->hard_reset_count < PD_N_HARD_RESET_COUNT ?
HARD_RESET_START : ERROR_RECOVERY,
0);
}
#if 0
static void tcpm_pd_event_handler(struct tcpm_port *port)
{
u32 events;
while (port->pd_events) {
events = port->pd_events;
port->pd_events = 0;
if (events & TCPM_RESET_EVENT)
_tcpm_pd_hard_reset(port);
if (events & TCPM_VBUS_EVENT) {
bool vbus;
vbus = port->tcpc->get_vbus(port->tcpc);
if (vbus) {
_tcpm_pd_vbus_on(port);
} else {
_tcpm_pd_vbus_off(port);
/*
* When TCPC does not support detecting vsafe0v voltage level,
* treat vbus absent as vsafe0v. Else invoke is_vbus_vsafe0v
* to see if vbus has discharge to VSAFE0V.
*/
if (!port->tcpc->is_vbus_vsafe0v ||
port->tcpc->is_vbus_vsafe0v(port->tcpc))
_tcpm_pd_vbus_vsafe0v(port);
}
}
if (events & TCPM_CC_EVENT) {
enum typec_cc_status cc1, cc2;
if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0)
_tcpm_cc_change(port, cc1, cc2);
}
if (events & TCPM_FRS_EVENT) {
if (port->state == SNK_READY) {
int ret;
port->upcoming_state = FR_SWAP_SEND;
ret = tcpm_ams_start(port, FAST_ROLE_SWAP);
if (ret == -EAGAIN)
port->upcoming_state = INVALID_STATE;
} else {
tcpm_log(port, "Discarding FRS_SIGNAL! Not in sink ready");
}
}
if (events & TCPM_SOURCING_VBUS) {
tcpm_log(port, "sourcing vbus");
/*
* In fast role swap case TCPC autonomously sources vbus. Set vbus_source
* true as TCPM wouldn't have called tcpm_set_vbus.
*
* When vbus is sourced on the command on TCPM i.e. TCPM called
* tcpm_set_vbus to source vbus, vbus_source would already be true.
*/
port->vbus_source = true;
_tcpm_pd_vbus_on(port);
}
}
}
#endif
void tcpm_cc_change(struct tcpm_port *port)
{
enum typec_cc_status cc1, cc2;
port->poll_event_cnt = 0;
if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0)
_tcpm_cc_change(port, cc1, cc2);
}
EXPORT_SYMBOL_GPL(tcpm_cc_change);
void tcpm_vbus_change(struct tcpm_port *port)
{
bool vbus;
port->poll_event_cnt = 0;
vbus = port->tcpc->get_vbus(port->tcpc);
if (vbus)
_tcpm_pd_vbus_on(port);
else
_tcpm_pd_vbus_off(port);
}
EXPORT_SYMBOL_GPL(tcpm_vbus_change);
void tcpm_pd_hard_reset(struct tcpm_port *port)
{
port->poll_event_cnt = 0;
_tcpm_pd_hard_reset(port);
}
EXPORT_SYMBOL_GPL(tcpm_pd_hard_reset);
static void tcpm_init(struct tcpm_port *port)
{
enum typec_cc_status cc1, cc2;
port->tcpc->init(port->tcpc);
tcpm_reset_port(port);
/*
* XXX
* Should possibly wait for VBUS to settle if it was enabled locally
* since tcpm_reset_port() will disable VBUS.
*/
port->vbus_present = port->tcpc->get_vbus(port->tcpc);
if (port->vbus_present)
port->vbus_never_low = true;
/*
* 1. When vbus_present is true, voltage on VBUS is already at VSAFE5V.
* So implicitly vbus_vsafe0v = false.
*
* 2. When vbus_present is false and TCPC does NOT support querying
* vsafe0v status, then, it's best to assume vbus is at VSAFE0V i.e.
* vbus_vsafe0v is true.
*
* 3. When vbus_present is false and TCPC does support querying vsafe0v,
* then, query tcpc for vsafe0v status.
*/
if (port->vbus_present)
port->vbus_vsafe0v = false;
else if (!port->tcpc->is_vbus_vsafe0v)
port->vbus_vsafe0v = true;
else
port->vbus_vsafe0v = port->tcpc->is_vbus_vsafe0v(port->tcpc);
tcpm_set_state(port, tcpm_default_state(port), 0);
if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0)
_tcpm_cc_change(port, cc1, cc2);
}
void tcpm_tcpc_reset(struct tcpm_port *port)
{
mutex_lock(&port->lock);
/* XXX: Maintain PD connection if possible? */
tcpm_init(port);
mutex_unlock(&port->lock);
}
EXPORT_SYMBOL_GPL(tcpm_tcpc_reset);
static int tcpm_fw_get_caps(struct tcpm_port *port)
{
const char *cap_str;
ofnode node = port->tcpc->connector_node;
int ret;
u32 mw, frs_current;
#if 0
/* USB data support is optional */
cap_str = ofnode_read_string(node, "data-role");
if (cap_str) {
ret = typec_find_port_data_role(cap_str);
if (ret < 0)
return ret;
port->typec_caps.data = ret;
}
#endif
cap_str = ofnode_read_string(node, "power-role");
if (!cap_str) {
return -EINVAL;
} else {
if (!strcmp("dual", cap_str))
port->typec_caps.type = TYPEC_PORT_DRP;
else if (!strcmp("source", cap_str))
port->typec_caps.type = TYPEC_PORT_SRC;
else if (!strcmp("sink", cap_str))
port->typec_caps.type = TYPEC_PORT_SNK;
else
return EINVAL;
}
port->port_type = port->typec_caps.type;
port->slow_charger_loop = ofnode_read_bool(node, "slow-charger-loop");
if (port->port_type == TYPEC_PORT_SNK)
goto sink;
/* Get source pdos */
ret = ofnode_read_size(node, "source-pdos") / sizeof(u32);
if (ret <= 0)
return -EINVAL;
port->nr_src_pdo = min(ret, PDO_MAX_OBJECTS);
ret = ofnode_read_u32_array(node, "source-pdos",
port->src_pdo, port->nr_src_pdo);
if (ret || tcpm_validate_caps(port, port->src_pdo,
port->nr_src_pdo))
return -EINVAL;
if (port->port_type == TYPEC_PORT_SRC)
return 0;
/* Get the preferred power role for DRP */
cap_str = ofnode_read_string(node, "try-power-role");
if (!cap_str) {
return -EINVAL;
} else {
if (!strcmp("sink", cap_str))
port->typec_caps.prefer_role = TYPEC_SINK;
else if (!strcmp("source", cap_str))
port->typec_caps.prefer_role = TYPEC_SOURCE;
else
return -EINVAL;
}
if (port->typec_caps.prefer_role < 0)
return -EINVAL;
sink:
/* Get sink pdos */
ret = ofnode_read_size(node, "sink-pdos") / sizeof(u32);
if (ret <= 0)
return -EINVAL;
port->nr_snk_pdo = min(ret, PDO_MAX_OBJECTS);
ret = ofnode_read_u32_array(node, "sink-pdos",
port->snk_pdo, port->nr_snk_pdo);
if (ret || tcpm_validate_caps(port, port->snk_pdo,
port->nr_snk_pdo))
return -EINVAL;
if (ofnode_read_u32_array(node, "op-sink-microwatt", &mw, 1))
return -EINVAL;
port->operating_snk_mw = mw / 1000;
port->self_powered = ofnode_read_bool(node, "self-powered");
/* FRS can only be supported by DRP ports */
if (port->port_type == TYPEC_PORT_DRP) {
ret = ofnode_read_u32_array(node, "new-source-frs-typec-current",
&frs_current, 1);
if (ret >= 0 && frs_current <= FRS_5V_3A)
port->new_source_frs_current = frs_current;
}
/* sink-vdos is optional */
ret = ofnode_read_size(node, "sink-vdos") / sizeof(u32);
if (ret < 0)
ret = 0;
port->nr_snk_vdo = min(ret, VDO_MAX_OBJECTS);
if (port->nr_snk_vdo) {
ret = ofnode_read_u32_array(node, "sink-vdos",
port->snk_vdo, port->nr_snk_vdo);
if (ret)
return ret;
}
/* If sink-vdos is found, sink-vdos-v1 is expected for backward compatibility. */
if (port->nr_snk_vdo) {
ret = ofnode_read_size(node, "sink-vdos-v1") / sizeof(u32);
if (ret < 0)
return ret;
else if (ret == 0)
return -ENODATA;
port->nr_snk_vdo_v1 = min(ret, VDO_MAX_OBJECTS);
ret = ofnode_read_u32_array(node, "sink-vdos-v1",
port->snk_vdo_v1,
port->nr_snk_vdo_v1);
if (ret)
return ret;
}
return 0;
}
struct tcpm_port *tcpm_port_init(struct udevice *dev, struct tcpc_dev *tcpc)
{
struct tcpm_port *port;
int err;
if (!dev || !tcpc ||
!tcpc->get_vbus || !tcpc->set_cc || !tcpc->get_cc ||
!tcpc->set_polarity || !tcpc->set_vconn || !tcpc->set_vbus ||
!tcpc->set_pd_rx || !tcpc->set_roles || !tcpc->pd_transmit)
return ERR_PTR(-EINVAL);
port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL);
if (!port)
return ERR_PTR(-ENOMEM);
port->dev = dev;
port->tcpc = tcpc;
err = tcpm_fw_get_caps(port);
if (err < 0) {
printf("%s: please check the dts config of %s node(%d)\n",
__func__, dev_read_name(dev), err);
return ERR_PTR(err);
}
port->try_role = port->typec_caps.prefer_role;
port->typec_caps.revision = 0x0120; /* Type-C spec release 1.2 */
port->typec_caps.pd_revision = 0x0300; /* USB-PD spec release 3.0 */
port->typec_caps.svdm_version = SVDM_VER_2_0;
port->typec_caps.driver_data = port;
port->typec_caps.orientation_aware = 1;
port->port_type = port->typec_caps.type;
tcpm_init(port);
printf("%s: init finished\n", dev_read_name(dev));
return port;
}
EXPORT_SYMBOL_GPL(tcpm_port_init);
void tcpm_poll_event(struct tcpm_port *port)
{
if (!port->tcpc->get_vbus(port->tcpc))
return ;
while (port->poll_event_cnt < TCPM_POLL_EVENT_TIME_OUT) {
if (!port->wait_dr_swap_Message &&
((port->state == SNK_READY) ||
(port->state == SRC_READY) ||
(port->state == DEBUG_ACC_ATTACHED) ||
(port->state == AUDIO_ACC_ATTACHED)))
break;
port->tcpc->poll_event(port->tcpc);
port->poll_event_cnt++;
udelay(500);
}
/*
* At this time, call the callback function of the respective pd chip
* to enter the low-power mode. In order to reduce the time spent on
* the PD chip driver as much as possible, the tcpm framework does not
* fully process the communication initiated by the device,so it should
* be noted that we can disable the internal oscillator, etc., but do
* not turn off the power of the transceiver module, otherwise the
* self-powered Type-C device will initiate a Message(eg: self-powered
* Type-C hub initiates a SINK capability request(PD_CTRL_GET_SINK_CAP))
* and the pd chip cannot reply to GoodCRC, causing the self-powered Type-C
* device to switch vbus to vSafe5v, or even turn off vbus.
*/
if (port->tcpc->enter_low_power_mode) {
if (port->tcpc->enter_low_power_mode(port->tcpc,
port->attached,
port->pd_capable))
printf("failed to enter low power\n");
else
printf("PD chip enter low power mode\n");
}
}
EXPORT_SYMBOL_GPL(tcpm_poll_event);
int tcpm_get_voltage(struct tcpm_port *port)
{
return port->supply_voltage * 1000;
}
EXPORT_SYMBOL_GPL(tcpm_get_voltage);
int tcpm_get_current(struct tcpm_port *port)
{
return port->current_limit * 1000;
}
EXPORT_SYMBOL_GPL(tcpm_get_voltage);
int tcpm_get_online(struct tcpm_port *port)
{
if (port->state == SNK_READY)
return 1;
else
return 0;
}
EXPORT_SYMBOL_GPL(tcpm_get_online);
void tcpm_uninit_port(struct tcpm_port *port)
{
tcpm_reset_port(port);
}
EXPORT_SYMBOL_GPL(tcpm_unregister_port);