android13/u-boot/drivers/video/drm/dw_hdmi.c

2725 lines
75 KiB
C

/*
* (C) Copyright 2008-2017 Fuzhou Rockchip Electronics Co., Ltd
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <syscon.h>
#include <asm/gpio.h>
#include <asm/arch-rockchip/clock.h>
#include <asm/arch/vendor.h>
#include <edid.h>
#include <dm/device.h>
#include <dm/of_access.h>
#include <dm/ofnode.h>
#include <dm/read.h>
#include <linux/hdmi.h>
#include <linux/media-bus-format.h>
#include <linux/dw_hdmi.h>
#include <asm/io.h>
#include "rockchip_display.h"
#include "rockchip_crtc.h"
#include "rockchip_connector.h"
#include "dw_hdmi.h"
#include "rockchip_phy.h"
#define HDCP_PRIVATE_KEY_SIZE 280
#define HDCP_KEY_SHA_SIZE 20
#define HDMI_HDCP1X_ID 5
#define HDMI_EDID_BLOCK_LEN 128
/*
* Unless otherwise noted, entries in this table are 100% optimization.
* Values can be obtained from hdmi_compute_n() but that function is
* slow so we pre-compute values we expect to see.
*
* All 32k and 48k values are expected to be the same (due to the way
* the math works) for any rate that's an exact kHz.
*/
static const struct dw_hdmi_audio_tmds_n common_tmds_n_table[] = {
{ .tmds = 25175000, .n_32k = 4096, .n_44k1 = 12854, .n_48k = 6144, },
{ .tmds = 25200000, .n_32k = 4096, .n_44k1 = 5656, .n_48k = 6144, },
{ .tmds = 27000000, .n_32k = 4096, .n_44k1 = 5488, .n_48k = 6144, },
{ .tmds = 28320000, .n_32k = 4096, .n_44k1 = 5586, .n_48k = 6144, },
{ .tmds = 30240000, .n_32k = 4096, .n_44k1 = 5642, .n_48k = 6144, },
{ .tmds = 31500000, .n_32k = 4096, .n_44k1 = 5600, .n_48k = 6144, },
{ .tmds = 32000000, .n_32k = 4096, .n_44k1 = 5733, .n_48k = 6144, },
{ .tmds = 33750000, .n_32k = 4096, .n_44k1 = 6272, .n_48k = 6144, },
{ .tmds = 36000000, .n_32k = 4096, .n_44k1 = 5684, .n_48k = 6144, },
{ .tmds = 40000000, .n_32k = 4096, .n_44k1 = 5733, .n_48k = 6144, },
{ .tmds = 49500000, .n_32k = 4096, .n_44k1 = 5488, .n_48k = 6144, },
{ .tmds = 50000000, .n_32k = 4096, .n_44k1 = 5292, .n_48k = 6144, },
{ .tmds = 54000000, .n_32k = 4096, .n_44k1 = 5684, .n_48k = 6144, },
{ .tmds = 65000000, .n_32k = 4096, .n_44k1 = 7056, .n_48k = 6144, },
{ .tmds = 68250000, .n_32k = 4096, .n_44k1 = 5376, .n_48k = 6144, },
{ .tmds = 71000000, .n_32k = 4096, .n_44k1 = 7056, .n_48k = 6144, },
{ .tmds = 72000000, .n_32k = 4096, .n_44k1 = 5635, .n_48k = 6144, },
{ .tmds = 73250000, .n_32k = 4096, .n_44k1 = 14112, .n_48k = 6144, },
{ .tmds = 74250000, .n_32k = 4096, .n_44k1 = 6272, .n_48k = 6144, },
{ .tmds = 75000000, .n_32k = 4096, .n_44k1 = 5880, .n_48k = 6144, },
{ .tmds = 78750000, .n_32k = 4096, .n_44k1 = 5600, .n_48k = 6144, },
{ .tmds = 78800000, .n_32k = 4096, .n_44k1 = 5292, .n_48k = 6144, },
{ .tmds = 79500000, .n_32k = 4096, .n_44k1 = 4704, .n_48k = 6144, },
{ .tmds = 83500000, .n_32k = 4096, .n_44k1 = 7056, .n_48k = 6144, },
{ .tmds = 85500000, .n_32k = 4096, .n_44k1 = 5488, .n_48k = 6144, },
{ .tmds = 88750000, .n_32k = 4096, .n_44k1 = 14112, .n_48k = 6144, },
{ .tmds = 97750000, .n_32k = 4096, .n_44k1 = 14112, .n_48k = 6144, },
{ .tmds = 101000000, .n_32k = 4096, .n_44k1 = 7056, .n_48k = 6144, },
{ .tmds = 106500000, .n_32k = 4096, .n_44k1 = 4704, .n_48k = 6144, },
{ .tmds = 108000000, .n_32k = 4096, .n_44k1 = 5684, .n_48k = 6144, },
{ .tmds = 115500000, .n_32k = 4096, .n_44k1 = 5712, .n_48k = 6144, },
{ .tmds = 119000000, .n_32k = 4096, .n_44k1 = 5544, .n_48k = 6144, },
{ .tmds = 135000000, .n_32k = 4096, .n_44k1 = 5488, .n_48k = 6144, },
{ .tmds = 146250000, .n_32k = 4096, .n_44k1 = 6272, .n_48k = 6144, },
{ .tmds = 148500000, .n_32k = 4096, .n_44k1 = 5488, .n_48k = 6144, },
{ .tmds = 154000000, .n_32k = 4096, .n_44k1 = 5544, .n_48k = 6144, },
{ .tmds = 162000000, .n_32k = 4096, .n_44k1 = 5684, .n_48k = 6144, },
/* For 297 MHz+ HDMI spec have some other rule for setting N */
{ .tmds = 297000000, .n_32k = 3073, .n_44k1 = 4704, .n_48k = 5120, },
{ .tmds = 594000000, .n_32k = 3073, .n_44k1 = 9408, .n_48k = 10240, },
/* End of table */
{ .tmds = 0, .n_32k = 0, .n_44k1 = 0, .n_48k = 0, },
};
static const u16 csc_coeff_default[3][4] = {
{ 0x2000, 0x0000, 0x0000, 0x0000 },
{ 0x0000, 0x2000, 0x0000, 0x0000 },
{ 0x0000, 0x0000, 0x2000, 0x0000 }
};
static const u16 csc_coeff_rgb_out_eitu601[3][4] = {
{ 0x2000, 0x6926, 0x74fd, 0x010e },
{ 0x2000, 0x2cdd, 0x0000, 0x7e9a },
{ 0x2000, 0x0000, 0x38b4, 0x7e3b }
};
static const u16 csc_coeff_rgb_out_eitu709[3][4] = {
{ 0x2000, 0x7106, 0x7a02, 0x00a7 },
{ 0x2000, 0x3264, 0x0000, 0x7e6d },
{ 0x2000, 0x0000, 0x3b61, 0x7e25 }
};
static const u16 csc_coeff_rgb_in_eitu601[3][4] = {
{ 0x2591, 0x1322, 0x074b, 0x0000 },
{ 0x6535, 0x2000, 0x7acc, 0x0200 },
{ 0x6acd, 0x7534, 0x2000, 0x0200 }
};
static const u16 csc_coeff_rgb_in_eitu709[3][4] = {
{ 0x2dc5, 0x0d9b, 0x049e, 0x0000 },
{ 0x62f0, 0x2000, 0x7d11, 0x0200 },
{ 0x6756, 0x78ab, 0x2000, 0x0200 }
};
static const u16 csc_coeff_full_to_limited[3][4] = {
{ 0x36f7, 0x0000, 0x0000, 0x0040 },
{ 0x0000, 0x36f7, 0x0000, 0x0040 },
{ 0x0000, 0x0000, 0x36f7, 0x0040 }
};
struct hdmi_vmode {
bool mdataenablepolarity;
unsigned int mpixelclock;
unsigned int mpixelrepetitioninput;
unsigned int mpixelrepetitionoutput;
unsigned int mtmdsclock;
};
struct hdmi_data_info {
unsigned int enc_in_bus_format;
unsigned int enc_out_bus_format;
unsigned int enc_in_encoding;
unsigned int enc_out_encoding;
unsigned int quant_range;
unsigned int pix_repet_factor;
struct hdmi_vmode video_mode;
};
struct dw_hdmi_phy_data {
enum dw_hdmi_phy_type type;
const char *name;
unsigned int gen;
bool has_svsret;
int (*configure)(struct dw_hdmi *hdmi,
const struct dw_hdmi_plat_data *pdata,
unsigned long mpixelclock);
};
struct hdcp_keys {
u8 KSV[8];
u8 devicekey[HDCP_PRIVATE_KEY_SIZE];
u8 sha1[HDCP_KEY_SHA_SIZE];
u8 seeds[2];
};
struct dw_hdmi_i2c {
u8 slave_reg;
bool is_regaddr;
bool is_segment;
unsigned int scl_high_ns;
unsigned int scl_low_ns;
};
struct dw_hdmi {
int id;
enum dw_hdmi_devtype dev_type;
unsigned int version;
struct hdmi_data_info hdmi_data;
struct hdmi_edid_data edid_data;
const struct dw_hdmi_plat_data *plat_data;
struct ddc_adapter adap;
int vic;
int io_width;
unsigned long bus_format;
bool cable_plugin;
bool sink_is_hdmi;
bool sink_has_audio;
void *regs;
void *grf;
void *gpio_base;
struct dw_hdmi_i2c *i2c;
struct {
const struct dw_hdmi_phy_ops *ops;
const char *name;
void *data;
bool enabled;
} phy;
struct drm_display_mode previous_mode;
unsigned int sample_rate;
unsigned int audio_cts;
unsigned int audio_n;
bool audio_enable;
bool scramble_low_rates;
void (*write)(struct dw_hdmi *hdmi, u8 val, int offset);
u8 (*read)(struct dw_hdmi *hdmi, int offset);
bool hdcp1x_enable;
bool output_bus_format_rgb;
struct gpio_desc hpd_gpiod;
};
static void dw_hdmi_writel(struct dw_hdmi *hdmi, u8 val, int offset)
{
writel(val, hdmi->regs + (offset << 2));
}
static u8 dw_hdmi_readl(struct dw_hdmi *hdmi, int offset)
{
return readl(hdmi->regs + (offset << 2));
}
static void dw_hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset)
{
writeb(val, hdmi->regs + offset);
}
static u8 dw_hdmi_readb(struct dw_hdmi *hdmi, int offset)
{
return readb(hdmi->regs + offset);
}
static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset)
{
hdmi->write(hdmi, val, offset);
}
static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset)
{
return hdmi->read(hdmi, offset);
}
static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg)
{
u8 val = hdmi_readb(hdmi, reg) & ~mask;
val |= data & mask;
hdmi_writeb(hdmi, val, reg);
}
static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg,
u8 shift, u8 mask)
{
hdmi_modb(hdmi, data << shift, mask, reg);
}
static bool hdmi_bus_fmt_is_rgb(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_RGB888_1X24:
case MEDIA_BUS_FMT_RGB101010_1X30:
case MEDIA_BUS_FMT_RGB121212_1X36:
case MEDIA_BUS_FMT_RGB161616_1X48:
return true;
default:
return false;
}
}
static bool hdmi_bus_fmt_is_yuv444(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_YUV8_1X24:
case MEDIA_BUS_FMT_YUV10_1X30:
case MEDIA_BUS_FMT_YUV12_1X36:
case MEDIA_BUS_FMT_YUV16_1X48:
return true;
default:
return false;
}
}
static bool hdmi_bus_fmt_is_yuv422(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_UYVY8_1X16:
case MEDIA_BUS_FMT_UYVY10_1X20:
case MEDIA_BUS_FMT_UYVY12_1X24:
return true;
default:
return false;
}
}
static bool hdmi_bus_fmt_is_yuv420(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
return true;
default:
return false;
}
}
static int hdmi_bus_fmt_color_depth(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_RGB888_1X24:
case MEDIA_BUS_FMT_YUV8_1X24:
case MEDIA_BUS_FMT_UYVY8_1X16:
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
return 8;
case MEDIA_BUS_FMT_RGB101010_1X30:
case MEDIA_BUS_FMT_YUV10_1X30:
case MEDIA_BUS_FMT_UYVY10_1X20:
case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
return 10;
case MEDIA_BUS_FMT_RGB121212_1X36:
case MEDIA_BUS_FMT_YUV12_1X36:
case MEDIA_BUS_FMT_UYVY12_1X24:
case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
return 12;
case MEDIA_BUS_FMT_RGB161616_1X48:
case MEDIA_BUS_FMT_YUV16_1X48:
case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
return 16;
default:
return 0;
}
}
static int is_color_space_conversion(struct dw_hdmi *hdmi)
{
struct drm_display_mode *mode =
hdmi->edid_data.preferred_mode;
bool is_cea_default;
is_cea_default = (drm_match_cea_mode(mode) > 1) &&
(hdmi->hdmi_data.quant_range ==
HDMI_QUANTIZATION_RANGE_DEFAULT);
/*
* When output is rgb limited range or default range with
* cea mode, csc should be enabled.
*/
if (hdmi->hdmi_data.enc_in_bus_format !=
hdmi->hdmi_data.enc_out_bus_format ||
((hdmi->hdmi_data.quant_range == HDMI_QUANTIZATION_RANGE_LIMITED ||
is_cea_default) &&
hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format)))
return 1;
return 0;
}
static int is_color_space_decimation(struct dw_hdmi *hdmi)
{
if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
return 0;
if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format) ||
hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_in_bus_format))
return 1;
return 0;
}
static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi,
unsigned char bit)
{
hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET,
HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0);
}
static inline void hdmi_phy_test_enable(struct dw_hdmi *hdmi,
unsigned char bit)
{
hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTEN_OFFSET,
HDMI_PHY_TST0_TSTEN_MASK, HDMI_PHY_TST0);
}
static inline void hdmi_phy_test_clock(struct dw_hdmi *hdmi,
unsigned char bit)
{
hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLK_OFFSET,
HDMI_PHY_TST0_TSTCLK_MASK, HDMI_PHY_TST0);
}
static inline void hdmi_phy_test_din(struct dw_hdmi *hdmi,
unsigned char bit)
{
hdmi_writeb(hdmi, bit, HDMI_PHY_TST1);
}
static inline void hdmi_phy_test_dout(struct dw_hdmi *hdmi,
unsigned char bit)
{
hdmi_writeb(hdmi, bit, HDMI_PHY_TST2);
}
static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi,
unsigned char *buf, unsigned int length)
{
struct dw_hdmi_i2c *i2c = hdmi->i2c;
int interrupt = 0, i = 20;
bool read_edid = false;
if (!i2c->is_regaddr) {
printf("set read register address to 0\n");
i2c->slave_reg = 0x00;
i2c->is_regaddr = true;
}
/* edid reads are in 128 bytes. scdc reads are in 1 byte */
if (length == HDMI_EDID_BLOCK_LEN)
read_edid = true;
while (length > 0) {
hdmi_writeb(hdmi, i2c->slave_reg, HDMI_I2CM_ADDRESS);
if (read_edid) {
i2c->slave_reg += 8;
length -= 8;
} else {
i2c->slave_reg++;
length--;
}
if (i2c->is_segment) {
if (read_edid)
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ8_EXT,
HDMI_I2CM_OPERATION);
else
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ_EXT,
HDMI_I2CM_OPERATION);
} else {
if (read_edid)
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ8,
HDMI_I2CM_OPERATION);
else
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ,
HDMI_I2CM_OPERATION);
}
while (i--) {
udelay(1000);
interrupt = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0);
if (interrupt)
hdmi_writeb(hdmi, interrupt,
HDMI_IH_I2CM_STAT0);
if (interrupt & (m_SCDC_READREQ | m_I2CM_DONE |
m_I2CM_ERROR))
break;
}
if (!interrupt) {
printf("[%s] i2c read reg[0x%02x] no interrupt\n",
__func__, i2c->slave_reg);
hdmi_writeb(hdmi, 0, HDMI_I2CM_SOFTRSTZ);
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_BUS_CLEAR,
HDMI_I2CM_OPERATION);
udelay(1000);
return -EAGAIN;
}
/* Check for error condition on the bus */
if (interrupt & HDMI_IH_I2CM_STAT0_ERROR) {
printf("[%s] read reg[0x%02x] data error:0x%02x\n",
__func__, i2c->slave_reg, interrupt);
hdmi_writeb(hdmi, 0, HDMI_I2CM_SOFTRSTZ);
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_BUS_CLEAR,
HDMI_I2CM_OPERATION);
udelay(1000);
return -EIO;
}
i = 20;
if (read_edid)
for (i = 0; i < 8; i++)
*buf++ = hdmi_readb(hdmi, HDMI_I2CM_READ_BUFF0 + i);
else
*buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI);
}
i2c->is_segment = false;
return 0;
}
static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi,
unsigned char *buf, unsigned int length)
{
struct dw_hdmi_i2c *i2c = hdmi->i2c;
int i = 20;
u8 interrupt = 0;
if (!i2c->is_regaddr) {
/* Use the first write byte as register address */
i2c->slave_reg = buf[0];
length--;
buf++;
i2c->is_regaddr = true;
}
while (length--) {
hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO);
hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE,
HDMI_I2CM_OPERATION);
while (i--) {
udelay(1000);
interrupt = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0);
if (interrupt)
hdmi_writeb(hdmi,
interrupt, HDMI_IH_I2CM_STAT0);
if (interrupt & (m_SCDC_READREQ |
m_I2CM_DONE | m_I2CM_ERROR))
break;
}
if (!interrupt) {
printf("[%s] i2c write reg[0x%02x] no interrupt\n",
__func__, i2c->slave_reg);
hdmi_writeb(hdmi, 0, HDMI_I2CM_SOFTRSTZ);
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_BUS_CLEAR,
HDMI_I2CM_OPERATION);
udelay(1000);
return -EAGAIN;
}
if ((interrupt & m_I2CM_ERROR) || (i == -1)) {
printf("[%s] write data error\n", __func__);
hdmi_writeb(hdmi, 0, HDMI_I2CM_SOFTRSTZ);
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_BUS_CLEAR,
HDMI_I2CM_OPERATION);
udelay(1000);
return -EIO;
} else if (interrupt & m_I2CM_DONE) {
printf("[%s] write offset %02x success\n",
__func__, i2c->slave_reg);
return -EAGAIN;
}
i = 20;
}
return 0;
}
static int dw_hdmi_i2c_xfer(struct ddc_adapter *adap,
struct i2c_msg *msgs, int num)
{
struct dw_hdmi *hdmi = container_of(adap, struct dw_hdmi, adap);
struct dw_hdmi_i2c *i2c = hdmi->i2c;
u8 addr = msgs[0].addr;
int i, ret = 0;
printf("xfer: num: %d, addr: %#x\n", num, addr);
for (i = 0; i < num; i++) {
if (msgs[i].len == 0) {
printf("unsupported transfer %d/%d, no data\n",
i + 1, num);
return -EOPNOTSUPP;
}
}
hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0);
/* Set slave device address taken from the first I2C message */
if (addr == DDC_SEGMENT_ADDR && msgs[0].len == 1)
addr = DDC_ADDR;
hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE);
/* Set slave device register address on transfer */
i2c->is_regaddr = false;
/* Set segment pointer for I2C extended read mode operation */
i2c->is_segment = false;
for (i = 0; i < num; i++) {
debug("xfer: num: %d/%d, len: %d, flags: %#x\n",
i + 1, num, msgs[i].len, msgs[i].flags);
if (msgs[i].addr == DDC_SEGMENT_ADDR && msgs[i].len == 1) {
i2c->is_segment = true;
hdmi_writeb(hdmi, DDC_SEGMENT_ADDR, HDMI_I2CM_SEGADDR);
hdmi_writeb(hdmi, *msgs[i].buf, HDMI_I2CM_SEGPTR);
} else {
if (msgs[i].flags & I2C_M_RD)
ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf,
msgs[i].len);
else
ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf,
msgs[i].len);
}
if (ret < 0)
break;
}
if (!ret)
ret = num;
/* Mute DONE and ERROR interrupts */
hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
HDMI_IH_MUTE_I2CM_STAT0);
return ret;
}
static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec)
{
u32 val;
while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) {
if (msec-- == 0)
return false;
udelay(1000);
}
hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0);
return true;
}
static void dw_hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data,
unsigned char addr)
{
hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0);
hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR);
hdmi_writeb(hdmi, (unsigned char)(data >> 8),
HDMI_PHY_I2CM_DATAO_1_ADDR);
hdmi_writeb(hdmi, (unsigned char)(data >> 0),
HDMI_PHY_I2CM_DATAO_0_ADDR);
hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE,
HDMI_PHY_I2CM_OPERATION_ADDR);
hdmi_phy_wait_i2c_done(hdmi, 1000);
}
static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable)
{
hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_PDZ_OFFSET,
HDMI_PHY_CONF0_PDZ_MASK);
}
static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_ENTMDS_OFFSET,
HDMI_PHY_CONF0_ENTMDS_MASK);
}
static void dw_hdmi_phy_enable_svsret(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_SVSRET_OFFSET,
HDMI_PHY_CONF0_SVSRET_MASK);
}
static void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET,
HDMI_PHY_CONF0_GEN2_PDDQ_MASK);
}
static void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET,
HDMI_PHY_CONF0_GEN2_TXPWRON_MASK);
}
static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_SELDATAENPOL_OFFSET,
HDMI_PHY_CONF0_SELDATAENPOL_MASK);
}
static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_SELDIPIF_OFFSET,
HDMI_PHY_CONF0_SELDIPIF_MASK);
}
static void dw_hdmi_phy_power_off(struct dw_hdmi *hdmi)
{
const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
unsigned int i;
u16 val;
if (phy->gen == 1) {
dw_hdmi_phy_enable_tmds(hdmi, 0);
dw_hdmi_phy_enable_powerdown(hdmi, true);
return;
}
dw_hdmi_phy_gen2_txpwron(hdmi, 0);
/*
* Wait for TX_PHY_LOCK to be deasserted to indicate that the PHY went
* to low power mode.
*/
for (i = 0; i < 5; ++i) {
val = hdmi_readb(hdmi, HDMI_PHY_STAT0);
if (!(val & HDMI_PHY_TX_PHY_LOCK))
break;
udelay(2000);
}
if (val & HDMI_PHY_TX_PHY_LOCK)
printf("PHY failed to power down\n");
else
printf("PHY powered down in %u iterations\n", i);
dw_hdmi_phy_gen2_pddq(hdmi, 1);
}
static int dw_hdmi_phy_power_on(struct dw_hdmi *hdmi)
{
const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
unsigned int i;
u8 val;
if (phy->gen == 1) {
dw_hdmi_phy_enable_powerdown(hdmi, false);
/* Toggle TMDS enable. */
dw_hdmi_phy_enable_tmds(hdmi, 0);
dw_hdmi_phy_enable_tmds(hdmi, 1);
return 0;
}
dw_hdmi_phy_gen2_txpwron(hdmi, 1);
dw_hdmi_phy_gen2_pddq(hdmi, 0);
/* Wait for PHY PLL lock */
for (i = 0; i < 5; ++i) {
val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK;
if (val)
break;
udelay(2000);
}
if (!val) {
printf("PHY PLL failed to lock\n");
return -ETIMEDOUT;
}
printf("PHY PLL locked %u iterations\n", i);
return 0;
}
/*
* PHY configuration function for the DWC HDMI 3D TX PHY. Based on the available
* information the DWC MHL PHY has the same register layout and is thus also
* supported by this function.
*/
static
int hdmi_phy_configure_dwc_hdmi_3d_tx(struct dw_hdmi *hdmi,
const struct dw_hdmi_plat_data *pdata,
unsigned long mpixelclock)
{
const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg;
const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr;
const struct dw_hdmi_phy_config *phy_config = pdata->phy_config;
unsigned int tmdsclock = hdmi->hdmi_data.video_mode.mtmdsclock;
unsigned int depth =
hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format);
if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format) &&
pdata->mpll_cfg_420)
mpll_config = pdata->mpll_cfg_420;
/* PLL/MPLL Cfg - always match on final entry */
for (; mpll_config->mpixelclock != ~0UL; mpll_config++)
if (mpixelclock <= mpll_config->mpixelclock)
break;
for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++)
if (tmdsclock <= curr_ctrl->mpixelclock)
break;
for (; phy_config->mpixelclock != ~0UL; phy_config++)
if (tmdsclock <= phy_config->mpixelclock)
break;
if (mpll_config->mpixelclock == ~0UL ||
curr_ctrl->mpixelclock == ~0UL ||
phy_config->mpixelclock == ~0UL)
return -EINVAL;
if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
depth = fls(depth - 8);
else
depth = 0;
if (depth)
depth--;
dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[depth].cpce,
HDMI_3D_TX_PHY_CPCE_CTRL);
dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[depth].gmp,
HDMI_3D_TX_PHY_GMPCTRL);
dw_hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[depth],
HDMI_3D_TX_PHY_CURRCTRL);
dw_hdmi_phy_i2c_write(hdmi, 0, HDMI_3D_TX_PHY_PLLPHBYCTRL);
dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_MSM_CTRL_CKO_SEL_FB_CLK,
HDMI_3D_TX_PHY_MSM_CTRL);
dw_hdmi_phy_i2c_write(hdmi, phy_config->term, HDMI_3D_TX_PHY_TXTERM);
dw_hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr,
HDMI_3D_TX_PHY_CKSYMTXCTRL);
dw_hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr,
HDMI_3D_TX_PHY_VLEVCTRL);
return 0;
}
static const struct dw_hdmi_phy_data dw_hdmi_phys[] = {
{
.type = DW_HDMI_PHY_DWC_HDMI_TX_PHY,
.name = "DWC HDMI TX PHY",
.gen = 1,
}, {
.type = DW_HDMI_PHY_DWC_MHL_PHY_HEAC,
.name = "DWC MHL PHY + HEAC PHY",
.gen = 2,
.has_svsret = true,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_DWC_MHL_PHY,
.name = "DWC MHL PHY",
.gen = 2,
.has_svsret = true,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY_HEAC,
.name = "DWC HDMI 3D TX PHY + HEAC PHY",
.gen = 2,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY,
.name = "DWC HDMI 3D TX PHY",
.gen = 2,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_DWC_HDMI20_TX_PHY,
.name = "DWC HDMI 2.0 TX PHY",
.gen = 2,
.has_svsret = true,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_VENDOR_PHY,
.name = "Vendor PHY",
}
};
static int rockchip_dw_hdmi_scrambling_enable(struct dw_hdmi *hdmi,
int enable)
{
u8 stat;
drm_scdc_readb(&hdmi->adap, SCDC_TMDS_CONFIG, &stat);
if (stat < 0) {
debug("Failed to read tmds config\n");
return false;
}
if (enable == 1) {
/* Write on Rx the bit Scrambling_Enable, register 0x20 */
stat |= SCDC_SCRAMBLING_ENABLE;
drm_scdc_writeb(&hdmi->adap, SCDC_TMDS_CONFIG, stat);
/* TMDS software reset request */
hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ,
HDMI_MC_SWRSTZ);
/* Enable/Disable Scrambling */
hdmi_writeb(hdmi, 1, HDMI_FC_SCRAMBLER_CTRL);
} else {
/* Enable/Disable Scrambling */
hdmi_writeb(hdmi, 0, HDMI_FC_SCRAMBLER_CTRL);
/* TMDS software reset request */
hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ,
HDMI_MC_SWRSTZ);
/* Write on Rx the bit Scrambling_Enable, register 0x20 */
stat &= ~SCDC_SCRAMBLING_ENABLE;
drm_scdc_writeb(&hdmi->adap, SCDC_TMDS_CONFIG, stat);
}
return 0;
}
static void rockchip_dw_hdmi_scdc_set_tmds_rate(struct dw_hdmi *hdmi)
{
u8 stat;
drm_scdc_readb(&hdmi->adap, SCDC_TMDS_CONFIG, &stat);
if (hdmi->hdmi_data.video_mode.mtmdsclock > 340000000)
stat |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40;
else
stat &= ~SCDC_TMDS_BIT_CLOCK_RATIO_BY_40;
drm_scdc_writeb(&hdmi->adap, SCDC_TMDS_CONFIG, stat);
}
static int hdmi_phy_configure(struct dw_hdmi *hdmi)
{
const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
const struct dw_hdmi_plat_data *pdata = hdmi->plat_data;
unsigned long mpixelclock = hdmi->hdmi_data.video_mode.mpixelclock;
unsigned long mtmdsclock = hdmi->hdmi_data.video_mode.mtmdsclock;
int ret;
dw_hdmi_phy_power_off(hdmi);
/* Control for TMDS Bit Period/TMDS Clock-Period Ratio */
if (hdmi->edid_data.display_info.hdmi.scdc.supported)
rockchip_dw_hdmi_scdc_set_tmds_rate(hdmi);
/* Leave low power consumption mode by asserting SVSRET. */
if (phy->has_svsret)
dw_hdmi_phy_enable_svsret(hdmi, 1);
/* PHY reset. The reset signal is active high on Gen2 PHYs. */
hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ);
hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ);
hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST);
hdmi_phy_test_clear(hdmi, 1);
hdmi_writeb(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2,
HDMI_PHY_I2CM_SLAVE_ADDR);
hdmi_phy_test_clear(hdmi, 0);
/* Write to the PHY as configured by the platform */
if (pdata->configure_phy)
ret = pdata->configure_phy(hdmi, pdata, mpixelclock);
else
ret = phy->configure(hdmi, pdata, mpixelclock);
if (ret) {
printf("PHY configuration failed (clock %lu)\n",
mpixelclock);
return ret;
}
/* Wait for resuming transmission of TMDS clock and data */
if (mtmdsclock > 340000000)
mdelay(100);
return dw_hdmi_phy_power_on(hdmi);
}
static int dw_hdmi_phy_init(struct rockchip_connector *conn, struct dw_hdmi *hdmi,
void *data)
{
int i, ret;
/* HDMI Phy spec says to do the phy initialization sequence twice */
for (i = 0; i < 2; i++) {
dw_hdmi_phy_sel_data_en_pol(hdmi, 1);
dw_hdmi_phy_sel_interface_control(hdmi, 0);
ret = hdmi_phy_configure(hdmi);
if (ret)
return ret;
}
return 0;
}
static void dw_hdmi_phy_disable(struct rockchip_connector *conn, struct dw_hdmi *hdmi,
void *data)
{
dw_hdmi_phy_power_off(hdmi);
}
static enum drm_connector_status
dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi, void *data)
{
return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ?
connector_status_connected : connector_status_disconnected;
}
static const struct dw_hdmi_phy_ops dw_hdmi_synopsys_phy_ops = {
.init = dw_hdmi_phy_init,
.disable = dw_hdmi_phy_disable,
.read_hpd = dw_hdmi_phy_read_hpd,
};
static int dw_hdmi_detect_phy(struct dw_hdmi *hdmi)
{
unsigned int i;
u8 phy_type;
phy_type = hdmi_readb(hdmi, HDMI_CONFIG2_ID);
/*
* RK3228 and RK3328 phy_type is DW_HDMI_PHY_DWC_HDMI20_TX_PHY,
* but it has a vedor phy.
*/
if (phy_type == DW_HDMI_PHY_VENDOR_PHY ||
hdmi->dev_type == RK3528_HDMI ||
hdmi->dev_type == RK3328_HDMI ||
hdmi->dev_type == RK3228_HDMI) {
/* Vendor PHYs require support from the glue layer. */
if (!hdmi->plat_data->phy_ops || !hdmi->plat_data->phy_name) {
printf(
"Vendor HDMI PHY not supported by glue layer\n");
return -ENODEV;
}
hdmi->phy.ops = hdmi->plat_data->phy_ops;
hdmi->phy.data = hdmi->plat_data->phy_data;
hdmi->phy.name = hdmi->plat_data->phy_name;
return 0;
}
/* Synopsys PHYs are handled internally. */
for (i = 0; i < ARRAY_SIZE(dw_hdmi_phys); ++i) {
if (dw_hdmi_phys[i].type == phy_type) {
hdmi->phy.ops = &dw_hdmi_synopsys_phy_ops;
hdmi->phy.name = dw_hdmi_phys[i].name;
hdmi->phy.data = (void *)&dw_hdmi_phys[i];
if (!dw_hdmi_phys[i].configure &&
!hdmi->plat_data->configure_phy) {
printf("%s requires platform support\n",
hdmi->phy.name);
return -ENODEV;
}
return 0;
}
}
printf("Unsupported HDMI PHY type (%02x)\n", phy_type);
return -ENODEV;
}
static unsigned int
hdmi_get_tmdsclock(struct dw_hdmi *hdmi, unsigned long mpixelclock)
{
unsigned int tmdsclock = mpixelclock;
unsigned int depth =
hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format);
if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) {
switch (depth) {
case 16:
tmdsclock = mpixelclock * 2;
break;
case 12:
tmdsclock = mpixelclock * 3 / 2;
break;
case 10:
tmdsclock = mpixelclock * 5 / 4;
break;
default:
break;
}
}
return tmdsclock;
}
static void hdmi_av_composer(struct dw_hdmi *hdmi,
const struct drm_display_mode *mode)
{
u8 bytes = 0, inv_val = 0;
struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode;
struct drm_hdmi_info *hdmi_info = &hdmi->edid_data.display_info.hdmi;
int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len;
unsigned int hdisplay, vdisplay;
vmode->mpixelclock = mode->crtc_clock * 1000;
if ((mode->flags & DRM_MODE_FLAG_3D_MASK) ==
DRM_MODE_FLAG_3D_FRAME_PACKING)
vmode->mpixelclock *= 2;
vmode->mtmdsclock = hdmi_get_tmdsclock(hdmi, vmode->mpixelclock);
if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format))
vmode->mtmdsclock /= 2;
printf("final pixclk = %d tmdsclk = %d\n",
vmode->mpixelclock, vmode->mtmdsclock);
/* Set up HDMI_FC_INVIDCONF
* Some display equipments require that the interval
* between Video Data and Data island must be at least 58 pixels,
* and fc_invidconf.HDCP_keepout set (1'b1) can meet the requirement.
*/
inv_val = HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE;
inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ?
HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW;
inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ?
HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW;
inv_val |= (vmode->mdataenablepolarity ?
HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW);
if (hdmi->vic == 39)
inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH;
else
inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW;
inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
HDMI_FC_INVIDCONF_IN_I_P_INTERLACED :
HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE;
inv_val |= hdmi->sink_is_hdmi ?
HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE :
HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE;
hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF);
hdisplay = mode->hdisplay;
hblank = mode->htotal - mode->hdisplay;
h_de_hs = mode->hsync_start - mode->hdisplay;
hsync_len = mode->hsync_end - mode->hsync_start;
/*
* When we're setting a YCbCr420 mode, we need
* to adjust the horizontal timing to suit.
*/
if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) {
hdisplay /= 2;
hblank /= 2;
h_de_hs /= 2;
hsync_len /= 2;
}
vdisplay = mode->vdisplay;
vblank = mode->vtotal - mode->vdisplay;
v_de_vs = mode->vsync_start - mode->vdisplay;
vsync_len = mode->vsync_end - mode->vsync_start;
/*
* When we're setting an interlaced mode, we need
* to adjust the vertical timing to suit.
*/
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
vdisplay /= 2;
vblank /= 2;
v_de_vs /= 2;
vsync_len /= 2;
} else if ((mode->flags & DRM_MODE_FLAG_3D_MASK) ==
DRM_MODE_FLAG_3D_FRAME_PACKING) {
vdisplay += mode->vtotal;
}
/* Scrambling Control */
if (hdmi_info->scdc.supported) {
if (vmode->mtmdsclock > 340000000 ||
(hdmi_info->scdc.scrambling.low_rates &&
hdmi->scramble_low_rates)) {
drm_scdc_readb(&hdmi->adap, SCDC_SINK_VERSION, &bytes);
drm_scdc_writeb(&hdmi->adap, SCDC_SOURCE_VERSION,
bytes);
rockchip_dw_hdmi_scrambling_enable(hdmi, 1);
} else {
rockchip_dw_hdmi_scrambling_enable(hdmi, 0);
}
}
/* Set up horizontal active pixel width */
hdmi_writeb(hdmi, hdisplay >> 8, HDMI_FC_INHACTV1);
hdmi_writeb(hdmi, hdisplay, HDMI_FC_INHACTV0);
/* Set up vertical active lines */
hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1);
hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0);
/* Set up horizontal blanking pixel region width */
hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1);
hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0);
/* Set up vertical blanking pixel region width */
hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK);
/* Set up HSYNC active edge delay width (in pixel clks) */
hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1);
hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0);
/* Set up VSYNC active edge delay (in lines) */
hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY);
/* Set up HSYNC active pulse width (in pixel clks) */
hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1);
hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0);
/* Set up VSYNC active edge delay (in lines) */
hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH);
}
static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi)
{
const u16 (*csc_coeff)[3][4] = &csc_coeff_default;
unsigned i;
u32 csc_scale = 1;
int enc_out_rgb, enc_in_rgb;
enc_out_rgb = hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format);
enc_in_rgb = hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format);
if (is_color_space_conversion(hdmi)) {
if (enc_out_rgb && enc_in_rgb) {
csc_coeff = &csc_coeff_full_to_limited;
csc_scale = 0;
} else if (enc_out_rgb) {
if (hdmi->hdmi_data.enc_out_encoding ==
V4L2_YCBCR_ENC_601)
csc_coeff = &csc_coeff_rgb_out_eitu601;
else
csc_coeff = &csc_coeff_rgb_out_eitu709;
} else if (enc_in_rgb) {
if (hdmi->hdmi_data.enc_out_encoding ==
V4L2_YCBCR_ENC_601)
csc_coeff = &csc_coeff_rgb_in_eitu601;
else
csc_coeff = &csc_coeff_rgb_in_eitu709;
csc_scale = 0;
}
}
/* The CSC registers are sequential, alternating MSB then LSB */
for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) {
u16 coeff_a = (*csc_coeff)[0][i];
u16 coeff_b = (*csc_coeff)[1][i];
u16 coeff_c = (*csc_coeff)[2][i];
hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2);
hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2);
hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2);
hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2);
hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2);
hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2);
}
hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK,
HDMI_CSC_SCALE);
}
static int is_color_space_interpolation(struct dw_hdmi *hdmi)
{
if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_in_bus_format))
return 0;
if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
return 1;
return 0;
}
static void hdmi_video_csc(struct dw_hdmi *hdmi)
{
int color_depth = 0;
int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE;
int decimation = 0;
/* YCC422 interpolation to 444 mode */
if (is_color_space_interpolation(hdmi))
interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1;
else if (is_color_space_decimation(hdmi))
decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3;
switch (hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format)) {
case 8:
color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP;
break;
case 10:
color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP;
break;
case 12:
color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP;
break;
case 16:
color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP;
break;
default:
return;
}
/* Configure the CSC registers */
hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG);
hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK,
HDMI_CSC_SCALE);
dw_hdmi_update_csc_coeffs(hdmi);
}
static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi)
{
u8 clkdis;
/* control period minimum duration */
hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR);
hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR);
hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC);
/* Set to fill TMDS data channels */
hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM);
hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM);
hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM);
/* Enable pixel clock and tmds data path */
clkdis = 0x7F;
clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE;
hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);
clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);
/* Enable csc path */
if (is_color_space_conversion(hdmi)) {
clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE;
hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);
}
/* Enable pixel repetition path */
if (hdmi->hdmi_data.video_mode.mpixelrepetitioninput) {
clkdis &= ~HDMI_MC_CLKDIS_PREPCLK_DISABLE;
hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);
}
/* Enable color space conversion if needed */
if (is_color_space_conversion(hdmi))
hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH,
HDMI_MC_FLOWCTRL);
else
hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS,
HDMI_MC_FLOWCTRL);
}
static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi)
{
unsigned int count;
unsigned int i;
u8 val;
/*
* Under some circumstances the Frame Composer arithmetic unit can miss
* an FC register write due to being busy processing the previous one.
* The issue can be worked around by issuing a TMDS software reset and
* then write one of the FC registers several times.
*
* The number of iterations matters and depends on the HDMI TX revision
* (and possibly on the platform). So far only i.MX6Q (v1.30a) and
* i.MX6DL (v1.31a) have been identified as needing the workaround, with
* 4 and 1 iterations respectively.
*/
switch (hdmi->version) {
case 0x130a:
count = 4;
break;
case 0x131a:
case 0x200a:
case 0x201a:
case 0x211a:
count = 1;
break;
default:
return;
}
/* TMDS software reset */
hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ);
val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF);
for (i = 0; i < count; i++)
hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF);
}
static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi)
{
hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK,
HDMI_IH_MUTE_FC_STAT2);
}
static void hdmi_video_packetize(struct dw_hdmi *hdmi)
{
unsigned int color_depth = 0;
unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit;
unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP;
struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data;
u8 val, vp_conf;
if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format) ||
hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) {
switch (hdmi_bus_fmt_color_depth(
hdmi->hdmi_data.enc_out_bus_format)) {
case 8:
color_depth = 0;
output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
break;
case 10:
color_depth = 5;
break;
case 12:
color_depth = 6;
break;
case 16:
color_depth = 7;
break;
default:
output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
}
} else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) {
switch (hdmi_bus_fmt_color_depth(
hdmi->hdmi_data.enc_out_bus_format)) {
case 0:
case 8:
remap_size = HDMI_VP_REMAP_YCC422_16bit;
break;
case 10:
remap_size = HDMI_VP_REMAP_YCC422_20bit;
break;
case 12:
remap_size = HDMI_VP_REMAP_YCC422_24bit;
break;
default:
return;
}
output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422;
} else {
return;
}
/* set the packetizer registers */
val = (color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) &
HDMI_VP_PR_CD_COLOR_DEPTH_MASK;
hdmi_writeb(hdmi, val, HDMI_VP_PR_CD);
hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE,
HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF);
/* Data from pixel repeater block */
if (hdmi_data->pix_repet_factor > 0) {
vp_conf = HDMI_VP_CONF_PR_EN_ENABLE |
HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER;
} else { /* data from packetizer block */
vp_conf = HDMI_VP_CONF_PR_EN_DISABLE |
HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER;
}
hdmi_modb(hdmi, vp_conf,
HDMI_VP_CONF_PR_EN_MASK |
HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF);
hdmi_modb(hdmi, 0, HDMI_VP_STUFF_IDEFAULT_PHASE_MASK,
HDMI_VP_STUFF);
hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP);
if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) {
vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
HDMI_VP_CONF_PP_EN_ENABLE |
HDMI_VP_CONF_YCC422_EN_DISABLE;
} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) {
vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
HDMI_VP_CONF_PP_EN_DISABLE |
HDMI_VP_CONF_YCC422_EN_ENABLE;
} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) {
vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE |
HDMI_VP_CONF_PP_EN_DISABLE |
HDMI_VP_CONF_YCC422_EN_DISABLE;
} else {
return;
}
hdmi_modb(hdmi, vp_conf,
HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK |
HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF);
hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE |
HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE,
HDMI_VP_STUFF_PP_STUFFING_MASK |
HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF);
hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK,
HDMI_VP_CONF);
}
static void hdmi_video_sample(struct dw_hdmi *hdmi)
{
int color_format = 0;
u8 val;
switch (hdmi->hdmi_data.enc_in_bus_format) {
case MEDIA_BUS_FMT_RGB888_1X24:
color_format = 0x01;
break;
case MEDIA_BUS_FMT_RGB101010_1X30:
color_format = 0x03;
break;
case MEDIA_BUS_FMT_RGB121212_1X36:
color_format = 0x05;
break;
case MEDIA_BUS_FMT_RGB161616_1X48:
color_format = 0x07;
break;
case MEDIA_BUS_FMT_YUV8_1X24:
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
color_format = 0x09;
break;
case MEDIA_BUS_FMT_YUV10_1X30:
case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
color_format = 0x0B;
break;
case MEDIA_BUS_FMT_YUV12_1X36:
case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
color_format = 0x0D;
break;
case MEDIA_BUS_FMT_YUV16_1X48:
case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
color_format = 0x0F;
break;
case MEDIA_BUS_FMT_UYVY8_1X16:
color_format = 0x16;
break;
case MEDIA_BUS_FMT_UYVY10_1X20:
color_format = 0x14;
break;
case MEDIA_BUS_FMT_UYVY12_1X24:
color_format = 0x12;
break;
default:
return;
}
val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE |
((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) &
HDMI_TX_INVID0_VIDEO_MAPPING_MASK);
hdmi_writeb(hdmi, val, HDMI_TX_INVID0);
/* Enable TX stuffing: When DE is inactive, fix the output data to 0 */
val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE |
HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE |
HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE;
hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING);
hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0);
hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1);
hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0);
hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1);
hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0);
hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1);
}
static void dw_hdmi_disable(struct rockchip_connector *conn, struct dw_hdmi *hdmi,
struct display_state *state)
{
if (hdmi->phy.enabled) {
hdmi->phy.ops->disable(conn, hdmi, state);
hdmi->phy.enabled = false;
}
}
static void hdmi_config_AVI(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
{
struct hdmi_avi_infoframe frame;
u8 val;
bool is_hdmi2 = false;
enum hdmi_quantization_range rgb_quant_range =
hdmi->hdmi_data.quant_range;
if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format) ||
hdmi->edid_data.display_info.hdmi.scdc.supported)
is_hdmi2 = true;
/* Initialise info frame from DRM mode */
drm_hdmi_avi_infoframe_from_display_mode(&frame, mode, is_hdmi2);
/*
* Ignore monitor selectable quantization, use quantization set
* by the user
*/
drm_hdmi_avi_infoframe_quant_range(&frame, mode, rgb_quant_range,
true);
if (hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
frame.colorspace = HDMI_COLORSPACE_YUV444;
else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
frame.colorspace = HDMI_COLORSPACE_YUV422;
else if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format))
frame.colorspace = HDMI_COLORSPACE_YUV420;
else
frame.colorspace = HDMI_COLORSPACE_RGB;
/* Set up colorimetry */
switch (hdmi->hdmi_data.enc_out_encoding) {
case V4L2_YCBCR_ENC_601:
if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV601)
frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
else
frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
frame.extended_colorimetry =
HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
break;
case V4L2_YCBCR_ENC_709:
if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV709)
frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
else
frame.colorimetry = HDMI_COLORIMETRY_ITU_709;
frame.extended_colorimetry =
HDMI_EXTENDED_COLORIMETRY_XV_YCC_709;
break;
default: /* Carries no data */
frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
frame.extended_colorimetry =
HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
break;
}
frame.scan_mode = HDMI_SCAN_MODE_NONE;
/*
* The Designware IP uses a different byte format from standard
* AVI info frames, though generally the bits are in the correct
* bytes.
*/
/*
* AVI data byte 1 differences: Colorspace in bits 0,1,7 rather than
* 5,6,7, active aspect present in bit 6 rather than 4.
*/
val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 0x3);
if (frame.active_aspect & 15)
val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT;
if (frame.top_bar || frame.bottom_bar)
val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR;
if (frame.left_bar || frame.right_bar)
val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR;
hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0);
/* AVI data byte 2 differences: none */
val = ((frame.colorimetry & 0x3) << 6) |
((frame.picture_aspect & 0x3) << 4) |
(frame.active_aspect & 0xf);
hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1);
/* AVI data byte 3 differences: none */
val = ((frame.extended_colorimetry & 0x7) << 4) |
((frame.quantization_range & 0x3) << 2) |
(frame.nups & 0x3);
if (frame.itc)
val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID;
hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2);
/* AVI data byte 4 differences: none */
val = frame.video_code & 0x7f;
hdmi_writeb(hdmi, val, HDMI_FC_AVIVID);
/* AVI Data Byte 5- set up input and output pixel repetition */
val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) <<
HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) &
HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) |
((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput <<
HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) &
HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK);
hdmi_writeb(hdmi, val, HDMI_FC_PRCONF);
/*
* AVI data byte 5 differences: content type in 0,1 rather than 4,5,
* ycc range in bits 2,3 rather than 6,7
*/
val = ((frame.ycc_quantization_range & 0x3) << 2) |
(frame.content_type & 0x3);
hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3);
/* AVI Data Bytes 6-13 */
hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0);
hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1);
hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0);
hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1);
hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0);
hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1);
hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0);
hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1);
}
static void hdmi_config_vendor_specific_infoframe(struct dw_hdmi *hdmi,
struct drm_display_mode *mode)
{
struct hdmi_vendor_infoframe frame;
u8 buffer[10];
ssize_t err;
/* Disable HDMI vendor specific infoframe send */
hdmi_mask_writeb(hdmi, 0, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
HDMI_FC_DATAUTO0_VSD_MASK);
err = drm_hdmi_vendor_infoframe_from_display_mode(&frame, mode);
if (err < 0)
/*
* Going into that statement does not means vendor infoframe
* fails. It just informed us that vendor infoframe is not
* needed for the selected mode. Only 4k or stereoscopic 3D
* mode requires vendor infoframe. So just simply return.
*/
return;
err = hdmi_vendor_infoframe_pack(&frame, buffer, sizeof(buffer));
if (err < 0) {
printf("Failed to pack vendor infoframe: %zd\n", err);
return;
}
/* Set the length of HDMI vendor specific InfoFrame payload */
hdmi_writeb(hdmi, buffer[2], HDMI_FC_VSDSIZE);
/* Set 24bit IEEE Registration Identifier */
hdmi_writeb(hdmi, buffer[4], HDMI_FC_VSDIEEEID0);
hdmi_writeb(hdmi, buffer[5], HDMI_FC_VSDIEEEID1);
hdmi_writeb(hdmi, buffer[6], HDMI_FC_VSDIEEEID2);
/* Set HDMI_Video_Format and HDMI_VIC/3D_Structure */
hdmi_writeb(hdmi, buffer[7], HDMI_FC_VSDPAYLOAD0);
hdmi_writeb(hdmi, buffer[8], HDMI_FC_VSDPAYLOAD1);
if (frame.s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
hdmi_writeb(hdmi, buffer[9], HDMI_FC_VSDPAYLOAD2);
/* Packet frame interpolation */
hdmi_writeb(hdmi, 1, HDMI_FC_DATAUTO1);
/* Auto packets per frame and line spacing */
hdmi_writeb(hdmi, 0x11, HDMI_FC_DATAUTO2);
/* Configures the Frame Composer On RDRB mode */
hdmi_mask_writeb(hdmi, 1, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
HDMI_FC_DATAUTO0_VSD_MASK);
}
static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts,
unsigned int n)
{
/* Must be set/cleared first */
hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
/* nshift factor = 0 */
hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3);
hdmi_writeb(hdmi, ((cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK) |
HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2);
hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1);
hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3);
hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2);
hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1);
}
static int hdmi_match_tmds_n_table(struct dw_hdmi *hdmi,
unsigned long pixel_clk,
unsigned long freq)
{
const struct dw_hdmi_plat_data *plat_data = hdmi->plat_data;
const struct dw_hdmi_audio_tmds_n *tmds_n = NULL;
int i;
if (plat_data->tmds_n_table) {
for (i = 0; plat_data->tmds_n_table[i].tmds != 0; i++) {
if (pixel_clk == plat_data->tmds_n_table[i].tmds) {
tmds_n = &plat_data->tmds_n_table[i];
break;
}
}
}
if (!tmds_n) {
for (i = 0; common_tmds_n_table[i].tmds != 0; i++) {
if (pixel_clk == common_tmds_n_table[i].tmds) {
tmds_n = &common_tmds_n_table[i];
break;
}
}
}
if (!tmds_n)
return -ENOENT;
switch (freq) {
case 32000:
return tmds_n->n_32k;
case 44100:
case 88200:
case 176400:
return (freq / 44100) * tmds_n->n_44k1;
case 48000:
case 96000:
case 192000:
return (freq / 48000) * tmds_n->n_48k;
default:
return -ENOENT;
}
}
static u64 hdmi_audio_math_diff(unsigned int freq, unsigned int n,
unsigned int pixel_clk)
{
u64 final, diff;
u64 cts;
final = (u64)pixel_clk * n;
cts = final;
do_div(cts, 128 * freq);
diff = final - (u64)cts * (128 * freq);
return diff;
}
static unsigned int hdmi_compute_n(struct dw_hdmi *hdmi,
unsigned long pixel_clk,
unsigned long freq)
{
unsigned int min_n = DIV_ROUND_UP((128 * freq), 1500);
unsigned int max_n = (128 * freq) / 300;
unsigned int ideal_n = (128 * freq) / 1000;
unsigned int best_n_distance = ideal_n;
unsigned int best_n = 0;
u64 best_diff = U64_MAX;
int n;
/* If the ideal N could satisfy the audio math, then just take it */
if (hdmi_audio_math_diff(freq, ideal_n, pixel_clk) == 0)
return ideal_n;
for (n = min_n; n <= max_n; n++) {
u64 diff = hdmi_audio_math_diff(freq, n, pixel_clk);
if (diff < best_diff || (diff == best_diff &&
abs(n - ideal_n) < best_n_distance)) {
best_n = n;
best_diff = diff;
best_n_distance = abs(best_n - ideal_n);
}
/*
* The best N already satisfy the audio math, and also be
* the closest value to ideal N, so just cut the loop.
*/
if ((best_diff == 0) && (abs(n - ideal_n) > best_n_distance))
break;
}
return best_n;
}
static unsigned int hdmi_find_n(struct dw_hdmi *hdmi, unsigned long pixel_clk,
unsigned long sample_rate)
{
int n;
n = hdmi_match_tmds_n_table(hdmi, pixel_clk, sample_rate);
if (n > 0)
return n;
printf("Rate %lu missing; compute N dynamically\n",
pixel_clk);
return hdmi_compute_n(hdmi, pixel_clk, sample_rate);
}
static
void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi, unsigned long pixel_clk,
unsigned int sample_rate)
{
unsigned long ftdms = pixel_clk;
unsigned int n, cts;
u64 tmp;
n = hdmi_find_n(hdmi, pixel_clk, sample_rate);
/*
* Compute the CTS value from the N value. Note that CTS and N
* can be up to 20 bits in total, so we need 64-bit math. Also
* note that our TDMS clock is not fully accurate; it is accurate
* to kHz. This can introduce an unnecessary remainder in the
* calculation below, so we don't try to warn about that.
*/
tmp = (u64)ftdms * n;
do_div(tmp, 128 * sample_rate);
cts = tmp;
printf("%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n", __func__,
sample_rate, ftdms / 1000000, (ftdms / 1000) % 1000, n, cts);
hdmi->audio_n = n;
hdmi->audio_cts = cts;
hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0);
}
static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi)
{
hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mtmdsclock,
hdmi->sample_rate);
}
static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi)
{
hdmi_modb(hdmi, 0, HDMI_MC_CLKDIS_AUDCLK_DISABLE, HDMI_MC_CLKDIS);
}
void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate)
{
hdmi->sample_rate = rate;
hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mtmdsclock,
hdmi->sample_rate);
}
#ifndef CONFIG_SPL_BUILD
static int dw_hdmi_hdcp_load_key(struct dw_hdmi *hdmi)
{
int i, j, ret, val;
struct hdcp_keys *hdcp_keys;
val = sizeof(*hdcp_keys);
hdcp_keys = malloc(val);
if (!hdcp_keys)
return -ENOMEM;
memset(hdcp_keys, 0, val);
ret = vendor_storage_read(HDMI_HDCP1X_ID, hdcp_keys, val);
if (ret < val) {
printf("HDCP: read size %d\n", ret);
free(hdcp_keys);
return -EINVAL;
}
if (hdcp_keys->KSV[0] == 0x00 &&
hdcp_keys->KSV[1] == 0x00 &&
hdcp_keys->KSV[2] == 0x00 &&
hdcp_keys->KSV[3] == 0x00 &&
hdcp_keys->KSV[4] == 0x00) {
printf("HDCP: Invalid hdcp key\n");
free(hdcp_keys);
return -EINVAL;
}
/* Disable decryption logic */
hdmi_writeb(hdmi, 0, HDMI_HDCPREG_RMCTL);
/* Poll untile DPK write is allowed */
do {
val = hdmi_readb(hdmi, HDMI_HDCPREG_RMSTS);
} while ((val & DPK_WR_OK_STS) == 0);
hdmi_writeb(hdmi, 0, HDMI_HDCPREG_DPK6);
hdmi_writeb(hdmi, 0, HDMI_HDCPREG_DPK5);
/* The useful data in ksv should be 5 byte */
for (i = 4; i >= 0; i--)
hdmi_writeb(hdmi, hdcp_keys->KSV[i], HDMI_HDCPREG_DPK0 + i);
/* Poll untile DPK write is allowed */
do {
val = hdmi_readb(hdmi, HDMI_HDCPREG_RMSTS);
} while ((val & DPK_WR_OK_STS) == 0);
/* Enable decryption logic */
hdmi_writeb(hdmi, 1, HDMI_HDCPREG_RMCTL);
hdmi_writeb(hdmi, hdcp_keys->seeds[0], HDMI_HDCPREG_SEED1);
hdmi_writeb(hdmi, hdcp_keys->seeds[1], HDMI_HDCPREG_SEED0);
/* Write encrypt device private key */
for (i = 0; i < DW_HDMI_HDCP_DPK_LEN - 6; i += 7) {
for (j = 6; j >= 0; j--)
hdmi_writeb(hdmi, hdcp_keys->devicekey[i + j],
HDMI_HDCPREG_DPK0 + j);
do {
val = hdmi_readb(hdmi, HDMI_HDCPREG_RMSTS);
} while ((val & DPK_WR_OK_STS) == 0);
}
free(hdcp_keys);
return 0;
}
#endif
static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi,
const struct drm_display_mode *mode)
{
u8 vsync_pol, hsync_pol, data_pol, hdmi_dvi;
if (!hdmi->hdcp1x_enable)
return;
/* Configure the video polarity */
vsync_pol = mode->flags & DRM_MODE_FLAG_PVSYNC ?
HDMI_A_VIDPOLCFG_VSYNCPOL_ACTIVE_HIGH :
HDMI_A_VIDPOLCFG_VSYNCPOL_ACTIVE_LOW;
hsync_pol = mode->flags & DRM_MODE_FLAG_PHSYNC ?
HDMI_A_VIDPOLCFG_HSYNCPOL_ACTIVE_HIGH :
HDMI_A_VIDPOLCFG_HSYNCPOL_ACTIVE_LOW;
data_pol = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH;
hdmi_modb(hdmi, vsync_pol | hsync_pol | data_pol,
HDMI_A_VIDPOLCFG_VSYNCPOL_MASK |
HDMI_A_VIDPOLCFG_HSYNCPOL_MASK |
HDMI_A_VIDPOLCFG_DATAENPOL_MASK,
HDMI_A_VIDPOLCFG);
/* Config the display mode */
hdmi_dvi = hdmi->sink_is_hdmi ? HDMI_A_HDCPCFG0_HDMIDVI_HDMI :
HDMI_A_HDCPCFG0_HDMIDVI_DVI;
hdmi_modb(hdmi, hdmi_dvi, HDMI_A_HDCPCFG0_HDMIDVI_MASK,
HDMI_A_HDCPCFG0);
#ifndef CONFIG_SPL_BUILD
if (!(hdmi_readb(hdmi, HDMI_HDCPREG_RMSTS) & 0x3f))
dw_hdmi_hdcp_load_key(hdmi);
#endif
hdmi_modb(hdmi, HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE,
HDMI_FC_INVIDCONF_HDCP_KEEPOUT_MASK,
HDMI_FC_INVIDCONF);
if (hdmi_readb(hdmi, HDMI_CONFIG1_ID) & HDMI_A_HDCP22_MASK) {
hdmi_modb(hdmi, HDMI_HDCP2_OVR_ENABLE |
HDMI_HDCP2_FORCE_DISABLE,
HDMI_HDCP2_OVR_EN_MASK |
HDMI_HDCP2_FORCE_MASK,
HDMI_HDCP2REG_CTRL);
hdmi_writeb(hdmi, 0xff, HDMI_HDCP2REG_MASK);
hdmi_writeb(hdmi, 0xff, HDMI_HDCP2REG_MUTE);
}
hdmi_writeb(hdmi, 0x40, HDMI_A_OESSWCFG);
hdmi_modb(hdmi, HDMI_A_HDCPCFG0_BYPENCRYPTION_DISABLE |
HDMI_A_HDCPCFG0_EN11FEATURE_DISABLE |
HDMI_A_HDCPCFG0_SYNCRICHECK_ENABLE,
HDMI_A_HDCPCFG0_BYPENCRYPTION_MASK |
HDMI_A_HDCPCFG0_EN11FEATURE_MASK |
HDMI_A_HDCPCFG0_SYNCRICHECK_MASK, HDMI_A_HDCPCFG0);
hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_ENABLE |
HDMI_A_HDCPCFG1_PH2UPSHFTENC_ENABLE,
HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK |
HDMI_A_HDCPCFG1_PH2UPSHFTENC_MASK, HDMI_A_HDCPCFG1);
/* Reset HDCP Engine */
if (hdmi_readb(hdmi, HDMI_MC_CLKDIS) & HDMI_MC_CLKDIS_HDCPCLK_MASK) {
hdmi_modb(hdmi, HDMI_A_HDCPCFG1_SWRESET_ASSERT,
HDMI_A_HDCPCFG1_SWRESET_MASK, HDMI_A_HDCPCFG1);
}
hdmi_writeb(hdmi, 0x00, HDMI_A_APIINTMSK);
hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_ENABLE,
HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0);
hdmi_modb(hdmi, HDMI_MC_CLKDIS_HDCPCLK_ENABLE,
HDMI_MC_CLKDIS_HDCPCLK_MASK, HDMI_MC_CLKDIS);
printf("%s success\n", __func__);
}
static int dw_hdmi_setup(struct dw_hdmi *hdmi,
struct rockchip_connector *conn,
struct drm_display_mode *mode,
struct display_state *state)
{
int ret;
void *data = hdmi->plat_data->phy_data;
hdmi_disable_overflow_interrupts(hdmi);
if (!hdmi->vic)
printf("Non-CEA mode used in HDMI\n");
else
printf("CEA mode used vic=%d\n", hdmi->vic);
if (hdmi->plat_data->get_enc_out_encoding)
hdmi->hdmi_data.enc_out_encoding =
hdmi->plat_data->get_enc_out_encoding(data);
else if (hdmi->vic == 6 || hdmi->vic == 7 ||
hdmi->vic == 21 || hdmi->vic == 22 ||
hdmi->vic == 2 || hdmi->vic == 3 ||
hdmi->vic == 17 || hdmi->vic == 18)
hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_601;
else
hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_709;
if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 1;
hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 1;
} else {
hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0;
hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0;
}
/* TOFIX: Get input encoding from plat data or fallback to none */
if (hdmi->plat_data->get_enc_in_encoding)
hdmi->hdmi_data.enc_in_encoding =
hdmi->plat_data->get_enc_in_encoding(data);
else if (hdmi->plat_data->input_bus_encoding)
hdmi->hdmi_data.enc_in_encoding =
hdmi->plat_data->input_bus_encoding;
else
hdmi->hdmi_data.enc_in_encoding = V4L2_YCBCR_ENC_DEFAULT;
if (hdmi->plat_data->get_quant_range)
hdmi->hdmi_data.quant_range =
hdmi->plat_data->get_quant_range(data);
else
hdmi->hdmi_data.quant_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
/*
* According to the dw-hdmi specification 6.4.2
* vp_pr_cd[3:0]:
* 0000b: No pixel repetition (pixel sent only once)
* 0001b: Pixel sent two times (pixel repeated once)
*/
hdmi->hdmi_data.pix_repet_factor =
(mode->flags & DRM_MODE_FLAG_DBLCLK) ? 1 : 0;
hdmi->hdmi_data.video_mode.mdataenablepolarity = true;
/* HDMI Initialization Step B.1 */
hdmi_av_composer(hdmi, mode);
/* HDMI Initialization Step B.2 */
ret = hdmi->phy.ops->init(conn, hdmi, state);
if (ret)
return ret;
hdmi->phy.enabled = true;
/* HDMI Initializateion Step B.3 */
dw_hdmi_enable_video_path(hdmi);
/* HDMI Initialization Step E - Configure audio */
if (hdmi->sink_has_audio) {
printf("sink has audio support\n");
hdmi_clk_regenerator_update_pixel_clock(hdmi);
hdmi_enable_audio_clk(hdmi);
}
/* not for DVI mode */
if (hdmi->sink_is_hdmi) {
/* HDMI Initialization Step F - Configure AVI InfoFrame */
hdmi_config_AVI(hdmi, mode);
hdmi_config_vendor_specific_infoframe(hdmi, mode);
hdmi_modb(hdmi, HDMI_A_HDCPCFG0_HDMIDVI_HDMI,
HDMI_A_HDCPCFG0_HDMIDVI_MASK,
HDMI_A_HDCPCFG0);
} else {
hdmi_modb(hdmi, HDMI_A_HDCPCFG0_HDMIDVI_DVI,
HDMI_A_HDCPCFG0_HDMIDVI_MASK,
HDMI_A_HDCPCFG0);
printf("%s DVI mode\n", __func__);
}
hdmi_video_packetize(hdmi);
hdmi_video_csc(hdmi);
hdmi_video_sample(hdmi);
hdmi_tx_hdcp_config(hdmi, mode);
dw_hdmi_clear_overflow(hdmi);
return 0;
}
int dw_hdmi_detect_hotplug(struct dw_hdmi *hdmi,
struct display_state *state)
{
return hdmi->phy.ops->read_hpd(hdmi, state);
}
static int dw_hdmi_set_reg_wr(struct dw_hdmi *hdmi)
{
switch (hdmi->io_width) {
case 4:
hdmi->write = dw_hdmi_writel;
hdmi->read = dw_hdmi_readl;
break;
case 1:
hdmi->write = dw_hdmi_writeb;
hdmi->read = dw_hdmi_readb;
break;
default:
printf("reg-io-width must be 1 or 4\n");
return -EINVAL;
}
return 0;
}
static void initialize_hdmi_mutes(struct dw_hdmi *hdmi)
{
/*mute unnecessary interrupt, only enable hpd */
hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0);
hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1);
hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0);
hdmi_writeb(hdmi, 0xfe, HDMI_IH_MUTE_PHY_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0);
hdmi_writeb(hdmi, 0xf1, HDMI_PHY_MASK0);
/*Force output black*/
dw_hdmi_writel(hdmi, 0x00, HDMI_FC_DBGTMDS2);
dw_hdmi_writel(hdmi, 0x00, HDMI_FC_DBGTMDS1);
dw_hdmi_writel(hdmi, 0x00, HDMI_FC_DBGTMDS0);
}
static void dw_hdmi_dev_init(struct dw_hdmi *hdmi)
{
hdmi->version = (hdmi_readb(hdmi, HDMI_DESIGN_ID) << 8)
| (hdmi_readb(hdmi, HDMI_REVISION_ID) << 0);
initialize_hdmi_mutes(hdmi);
}
static void dw_hdmi_i2c_set_divs(struct dw_hdmi *hdmi)
{
unsigned long low_ns, high_ns;
unsigned long div_low, div_high;
/* Standard-mode */
if (hdmi->i2c->scl_high_ns < 4000)
high_ns = 4708;
else
high_ns = hdmi->i2c->scl_high_ns;
if (hdmi->i2c->scl_low_ns < 4700)
low_ns = 4916;
else
low_ns = hdmi->i2c->scl_low_ns;
div_low = (24000 * low_ns) / 1000000;
if ((24000 * low_ns) % 1000000)
div_low++;
div_high = (24000 * high_ns) / 1000000;
if ((24000 * high_ns) % 1000000)
div_high++;
/* Maximum divider supported by hw is 0xffff */
if (div_low > 0xffff)
div_low = 0xffff;
if (div_high > 0xffff)
div_high = 0xffff;
hdmi_writeb(hdmi, div_high & 0xff, HDMI_I2CM_SS_SCL_HCNT_0_ADDR);
hdmi_writeb(hdmi, (div_high >> 8) & 0xff,
HDMI_I2CM_SS_SCL_HCNT_1_ADDR);
hdmi_writeb(hdmi, div_low & 0xff, HDMI_I2CM_SS_SCL_LCNT_0_ADDR);
hdmi_writeb(hdmi, (div_low >> 8) & 0xff,
HDMI_I2CM_SS_SCL_LCNT_1_ADDR);
}
static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi)
{
/* Software reset */
hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ);
/* Set Standard Mode speed */
hdmi_modb(hdmi, HDMI_I2CM_DIV_STD_MODE,
HDMI_I2CM_DIV_FAST_STD_MODE, HDMI_I2CM_DIV);
/* Set done, not acknowledged and arbitration interrupt polarities */
hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT);
hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL,
HDMI_I2CM_CTLINT);
/* Clear DONE and ERROR interrupts */
hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
HDMI_IH_I2CM_STAT0);
/* Mute DONE and ERROR interrupts */
hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
HDMI_IH_MUTE_I2CM_STAT0);
/* set SDA high level holding time */
hdmi_writeb(hdmi, 0x48, HDMI_I2CM_SDA_HOLD);
dw_hdmi_i2c_set_divs(hdmi);
}
void dw_hdmi_audio_enable(struct dw_hdmi *hdmi)
{
hdmi->audio_enable = true;
hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
}
void dw_hdmi_audio_disable(struct dw_hdmi *hdmi)
{
hdmi->audio_enable = false;
hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0);
}
int rockchip_dw_hdmi_init(struct rockchip_connector *conn, struct display_state *state)
{
struct connector_state *conn_state = &state->conn_state;
const struct dw_hdmi_plat_data *pdata =
#ifdef CONFIG_SPL_BUILD
(const struct dw_hdmi_plat_data *)conn->data;
#else
(const struct dw_hdmi_plat_data *)dev_get_driver_data(conn->dev);
ofnode hdmi_node = conn->dev->node;
struct device_node *ddc_node;
int ret;
#endif
struct crtc_state *crtc_state = &state->crtc_state;
struct dw_hdmi *hdmi;
struct drm_display_mode *mode_buf;
u32 val;
hdmi = malloc(sizeof(struct dw_hdmi));
if (!hdmi)
return -ENOMEM;
memset(hdmi, 0, sizeof(struct dw_hdmi));
mode_buf = malloc(MODE_LEN * sizeof(struct drm_display_mode));
if (!mode_buf)
return -ENOMEM;
#ifdef CONFIG_SPL_BUILD
hdmi->id = 0;
hdmi->regs = (void *)RK3528_HDMI_BASE;
hdmi->io_width = 4;
hdmi->scramble_low_rates = false;
hdmi->hdcp1x_enable = false;
hdmi->output_bus_format_rgb = false;
conn_state->type = DRM_MODE_CONNECTOR_HDMIA;
#else
hdmi->id = of_alias_get_id(ofnode_to_np(hdmi_node), "hdmi");
if (hdmi->id < 0)
hdmi->id = 0;
conn_state->disp_info = rockchip_get_disp_info(conn_state->type, hdmi->id);
#endif
memset(mode_buf, 0, MODE_LEN * sizeof(struct drm_display_mode));
hdmi->dev_type = pdata->dev_type;
hdmi->plat_data = pdata;
#ifndef CONFIG_SPL_BUILD
hdmi->regs = dev_read_addr_ptr(conn->dev);
hdmi->io_width = ofnode_read_s32_default(hdmi_node, "reg-io-width", -1);
if (ofnode_read_bool(hdmi_node, "scramble-low-rates"))
hdmi->scramble_low_rates = true;
if (ofnode_read_bool(hdmi_node, "hdcp1x-enable"))
hdmi->hdcp1x_enable = true;
else
hdmi->hdcp1x_enable = false;
if (ofnode_read_bool(hdmi_node, "force_output_bus_format_RGB") ||
ofnode_read_bool(hdmi_node, "unsupported-yuv-input"))
hdmi->output_bus_format_rgb = true;
else
hdmi->output_bus_format_rgb = false;
ret = dev_read_size(conn->dev, "rockchip,phy-table");
if (ret > 0 && hdmi->plat_data->phy_config) {
u32 phy_config[ret / 4];
int i;
dev_read_u32_array(conn->dev, "rockchip,phy-table", phy_config, ret / 4);
for (i = 0; i < ret / 16; i++) {
if (phy_config[i * 4] != 0)
hdmi->plat_data->phy_config[i].mpixelclock = (u64)phy_config[i * 4];
else
hdmi->plat_data->phy_config[i].mpixelclock = ~0UL;
hdmi->plat_data->phy_config[i].sym_ctr = (u16)phy_config[i * 4 + 1];
hdmi->plat_data->phy_config[i].term = (u16)phy_config[i * 4 + 2];
hdmi->plat_data->phy_config[i].vlev_ctr = (u16)phy_config[i * 4 + 3];
}
}
ddc_node = of_parse_phandle(ofnode_to_np(hdmi_node), "ddc-i2c-bus", 0);
if (ddc_node) {
uclass_get_device_by_ofnode(UCLASS_I2C, np_to_ofnode(ddc_node),
&hdmi->adap.i2c_bus);
if (hdmi->adap.i2c_bus)
hdmi->adap.ops = i2c_get_ops(hdmi->adap.i2c_bus);
}
#endif
hdmi->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
if (hdmi->grf <= 0) {
printf("%s: Get syscon grf failed (ret=%p)\n",
__func__, hdmi->grf);
return -ENXIO;
}
#ifdef CONFIG_SPL_BUILD
hdmi->gpio_base = (void *)RK3528_GPIO_BASE;
#else
ret = gpio_request_by_name(conn->dev, "hpd-gpios", 0,
&hdmi->hpd_gpiod, GPIOD_IS_IN);
if (ret && ret != -ENOENT) {
printf("%s: Cannot get HPD GPIO: %d\n", __func__, ret);
return ret;
}
hdmi->gpio_base = (void *)dev_read_addr_index(conn->dev, 1);
#endif
if (!hdmi->gpio_base)
return -ENODEV;
dw_hdmi_set_reg_wr(hdmi);
if (pdata->grf_vop_sel_reg) {
if (crtc_state->crtc_id)
val = ((1 << pdata->vop_sel_bit) |
(1 << (16 + pdata->vop_sel_bit)));
else
val = ((0 << pdata->vop_sel_bit) |
(1 << (16 + pdata->vop_sel_bit)));
writel(val, hdmi->grf + pdata->grf_vop_sel_reg);
}
hdmi->i2c = malloc(sizeof(struct dw_hdmi_i2c));
if (!hdmi->i2c)
return -ENOMEM;
hdmi->adap.ddc_xfer = dw_hdmi_i2c_xfer;
/*
* Read high and low time from device tree. If not available use
* the default timing scl clock rate is about 99.6KHz.
*/
#ifdef CONFIG_SPL_BUILD
hdmi->i2c->scl_high_ns = 9625;
hdmi->i2c->scl_low_ns = 10000;
#else
hdmi->i2c->scl_high_ns =
ofnode_read_s32_default(hdmi_node,
"ddc-i2c-scl-high-time-ns", 4708);
hdmi->i2c->scl_low_ns =
ofnode_read_s32_default(hdmi_node,
"ddc-i2c-scl-low-time-ns", 4916);
#endif
dw_hdmi_i2c_init(hdmi);
conn_state->output_if |= VOP_OUTPUT_IF_HDMI0;
conn_state->output_mode = ROCKCHIP_OUT_MODE_AAAA;
hdmi->edid_data.mode_buf = mode_buf;
hdmi->sample_rate = 48000;
conn->data = hdmi;
dw_hdmi_set_iomux(hdmi->grf, hdmi->gpio_base,
&hdmi->hpd_gpiod, hdmi->dev_type);
dw_hdmi_detect_phy(hdmi);
dw_hdmi_dev_init(hdmi);
return 0;
}
void rockchip_dw_hdmi_deinit(struct rockchip_connector *conn, struct display_state *state)
{
struct dw_hdmi *hdmi = conn->data;
if (hdmi->i2c)
free(hdmi->i2c);
if (hdmi->edid_data.mode_buf)
free(hdmi->edid_data.mode_buf);
if (hdmi)
free(hdmi);
}
int rockchip_dw_hdmi_prepare(struct rockchip_connector *conn, struct display_state *state)
{
return 0;
}
int rockchip_dw_hdmi_enable(struct rockchip_connector *conn, struct display_state *state)
{
struct connector_state *conn_state = &state->conn_state;
struct drm_display_mode *mode = &conn_state->mode;
struct dw_hdmi *hdmi = conn->data;
if (!hdmi)
return -EFAULT;
/* Store the display mode for plugin/DKMS poweron events */
memcpy(&hdmi->previous_mode, mode, sizeof(hdmi->previous_mode));
dw_hdmi_setup(hdmi, conn, mode, state);
return 0;
}
int rockchip_dw_hdmi_disable(struct rockchip_connector *conn, struct display_state *state)
{
struct dw_hdmi *hdmi = conn->data;
dw_hdmi_disable(conn, hdmi, state);
return 0;
}
int rockchip_dw_hdmi_get_timing(struct rockchip_connector *conn, struct display_state *state)
{
int ret, i, vic;
struct connector_state *conn_state = &state->conn_state;
struct drm_display_mode *mode = &conn_state->mode;
struct dw_hdmi *hdmi = conn->data;
struct edid *edid = (struct edid *)conn_state->edid;
unsigned int bus_format;
unsigned long enc_out_encoding;
struct overscan *overscan = &conn_state->overscan;
const u8 def_modes_vic[6] = {4, 16, 2, 17, 31, 19};
if (!hdmi)
return -EFAULT;
ret = drm_do_get_edid(&hdmi->adap, conn_state->edid);
if (!ret) {
hdmi->sink_is_hdmi =
drm_detect_hdmi_monitor(edid);
hdmi->sink_has_audio = drm_detect_monitor_audio(edid);
ret = drm_add_edid_modes(&hdmi->edid_data, conn_state->edid);
}
if (ret < 0) {
hdmi->sink_is_hdmi = true;
hdmi->sink_has_audio = true;
do_cea_modes(&hdmi->edid_data, def_modes_vic,
sizeof(def_modes_vic));
hdmi->edid_data.mode_buf[0].type |= DRM_MODE_TYPE_PREFERRED;
hdmi->edid_data.preferred_mode = &hdmi->edid_data.mode_buf[0];
printf("failed to get edid\n");
}
#ifdef CONFIG_SPL_BUILD
conn_state->disp_info = rockchip_get_disp_info(conn_state->type, hdmi->id);
#endif
drm_rk_filter_whitelist(&hdmi->edid_data);
if (hdmi->phy.ops->mode_valid)
hdmi->phy.ops->mode_valid(conn, hdmi, state);
drm_mode_max_resolution_filter(&hdmi->edid_data,
&state->crtc_state.max_output);
if (!drm_mode_prune_invalid(&hdmi->edid_data)) {
printf("can't find valid hdmi mode\n");
return -EINVAL;
}
for (i = 0; i < hdmi->edid_data.modes; i++) {
hdmi->edid_data.mode_buf[i].vrefresh =
drm_mode_vrefresh(&hdmi->edid_data.mode_buf[i]);
vic = drm_match_cea_mode(&hdmi->edid_data.mode_buf[i]);
if (hdmi->edid_data.mode_buf[i].picture_aspect_ratio == HDMI_PICTURE_ASPECT_NONE) {
if (vic >= 93 && vic <= 95)
hdmi->edid_data.mode_buf[i].picture_aspect_ratio =
HDMI_PICTURE_ASPECT_16_9;
else if (vic == 98)
hdmi->edid_data.mode_buf[i].picture_aspect_ratio =
HDMI_PICTURE_ASPECT_256_135;
}
}
drm_mode_sort(&hdmi->edid_data);
drm_rk_selete_output(&hdmi->edid_data, conn_state, &bus_format,
overscan, hdmi->dev_type, hdmi->output_bus_format_rgb);
*mode = *hdmi->edid_data.preferred_mode;
hdmi->vic = drm_match_cea_mode(mode);
if (state->force_output)
bus_format = state->force_bus_format;
conn_state->bus_format = bus_format;
hdmi->hdmi_data.enc_in_bus_format = bus_format;
hdmi->hdmi_data.enc_out_bus_format = bus_format;
switch (bus_format) {
case MEDIA_BUS_FMT_UYVY10_1X20:
conn_state->bus_format = MEDIA_BUS_FMT_YUV10_1X30;
hdmi->hdmi_data.enc_in_bus_format =
MEDIA_BUS_FMT_YUV10_1X30;
break;
case MEDIA_BUS_FMT_UYVY8_1X16:
conn_state->bus_format = MEDIA_BUS_FMT_YUV8_1X24;
hdmi->hdmi_data.enc_in_bus_format =
MEDIA_BUS_FMT_YUV8_1X24;
break;
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
conn_state->output_mode = ROCKCHIP_OUT_MODE_YUV420;
break;
}
if (hdmi->vic == 6 || hdmi->vic == 7 || hdmi->vic == 21 ||
hdmi->vic == 22 || hdmi->vic == 2 || hdmi->vic == 3 ||
hdmi->vic == 17 || hdmi->vic == 18)
enc_out_encoding = V4L2_YCBCR_ENC_601;
else
enc_out_encoding = V4L2_YCBCR_ENC_709;
if (enc_out_encoding == V4L2_YCBCR_ENC_BT2020)
conn_state->color_space = V4L2_COLORSPACE_BT2020;
else if (bus_format == MEDIA_BUS_FMT_RGB888_1X24 ||
bus_format == MEDIA_BUS_FMT_RGB101010_1X30)
conn_state->color_space = V4L2_COLORSPACE_DEFAULT;
else if (enc_out_encoding == V4L2_YCBCR_ENC_709)
conn_state->color_space = V4L2_COLORSPACE_REC709;
else
conn_state->color_space = V4L2_COLORSPACE_SMPTE170M;
return 0;
}
int rockchip_dw_hdmi_detect(struct rockchip_connector *conn, struct display_state *state)
{
int ret;
struct dw_hdmi *hdmi = conn->data;
if (!hdmi)
return -EFAULT;
ret = dw_hdmi_detect_hotplug(hdmi, state);
return ret;
}
int rockchip_dw_hdmi_get_edid(struct rockchip_connector *conn, struct display_state *state)
{
int ret;
struct connector_state *conn_state = &state->conn_state;
struct dw_hdmi *hdmi = conn->data;
ret = drm_do_get_edid(&hdmi->adap, conn_state->edid);
return ret;
}
int inno_dw_hdmi_phy_init(struct rockchip_connector *conn, struct dw_hdmi *hdmi, void *data)
{
struct display_state *state = (struct display_state *)data;
struct connector_state *conn_state = &state->conn_state;
u32 color_depth, bus_width;
color_depth =
hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format);
if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format))
bus_width = color_depth / 2;
else if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
bus_width = color_depth;
else
bus_width = 8;
rockchip_phy_set_bus_width(conn->phy, bus_width);
rockchip_phy_set_pll(conn->phy,
conn_state->mode.crtc_clock * 1000);
if (hdmi->edid_data.display_info.hdmi.scdc.supported)
rockchip_dw_hdmi_scdc_set_tmds_rate(hdmi);
rockchip_phy_power_on(conn->phy);
return 0;
}
void inno_dw_hdmi_phy_disable(struct rockchip_connector *conn, struct dw_hdmi *hdmi, void *data)
{
}
enum drm_connector_status
inno_dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi, void *data)
{
enum drm_connector_status status;
struct display_state *state = (struct display_state *)data;
status = dw_hdmi_phy_read_hpd(hdmi, state);
if (hdmi->dev_type == RK3328_HDMI) {
if (status == connector_status_connected)
inno_dw_hdmi_set_domain(hdmi->grf, 1);
else
inno_dw_hdmi_set_domain(hdmi->grf, 0);
}
return status;
}
void inno_dw_hdmi_mode_valid(struct rockchip_connector *conn, struct dw_hdmi *hdmi, void *data)
{
struct hdmi_edid_data *edid_data = &hdmi->edid_data;
unsigned long rate;
int i, ret;
struct drm_display_mode *mode_buf = edid_data->mode_buf;
for (i = 0; i < edid_data->modes; i++) {
if (edid_data->mode_buf[i].invalid)
continue;
if (edid_data->mode_buf[i].flags & DRM_MODE_FLAG_DBLCLK)
rate = mode_buf[i].clock * 1000 * 2;
else
rate = mode_buf[i].clock * 1000;
/* Check whether mode is out of phy cfg range. */
ret = rockchip_phy_round_rate(conn->phy, rate);
if (ret < 0)
edid_data->mode_buf[i].invalid = true;
}
}