260 lines
9.8 KiB
C++
260 lines
9.8 KiB
C++
/*
|
|
* Copyright (C) 2019 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "Burst.h"
|
|
|
|
#include <android-base/logging.h>
|
|
#include <nnapi/IBurst.h>
|
|
#include <nnapi/Result.h>
|
|
#include <nnapi/TypeUtils.h>
|
|
#include <nnapi/Types.h>
|
|
#include <nnapi/Validation.h>
|
|
#include <nnapi/hal/1.0/Conversions.h>
|
|
#include <nnapi/hal/1.0/HandleError.h>
|
|
#include <nnapi/hal/1.0/ProtectCallback.h>
|
|
#include <nnapi/hal/1.2/BurstUtils.h>
|
|
#include <nnapi/hal/1.2/Conversions.h>
|
|
#include <nnapi/hal/TransferValue.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "Tracing.h"
|
|
|
|
namespace android::hardware::neuralnetworks::adapter {
|
|
namespace {
|
|
|
|
constexpr V1_2::Timing kTiming = {std::numeric_limits<uint64_t>::max(),
|
|
std::numeric_limits<uint64_t>::max()};
|
|
|
|
nn::GeneralResult<std::vector<nn::SharedMemory>> getMemoriesCallback(
|
|
V1_0::ErrorStatus status, const hidl_vec<hidl_memory>& memories) {
|
|
HANDLE_STATUS_HIDL(status) << "getting burst memories failed with " << toString(status);
|
|
std::vector<nn::SharedMemory> canonicalMemories;
|
|
canonicalMemories.reserve(memories.size());
|
|
for (const auto& memory : memories) {
|
|
canonicalMemories.push_back(NN_TRY(nn::convert(memory)));
|
|
}
|
|
return canonicalMemories;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
Burst::MemoryCache::MemoryCache(nn::SharedBurst burstExecutor,
|
|
sp<V1_2::IBurstCallback> burstCallback)
|
|
: kBurstExecutor(std::move(burstExecutor)), kBurstCallback(std::move(burstCallback)) {
|
|
CHECK(kBurstExecutor != nullptr);
|
|
CHECK(kBurstCallback != nullptr);
|
|
}
|
|
|
|
nn::GeneralResult<std::vector<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>>>
|
|
Burst::MemoryCache::getCacheEntries(const std::vector<int32_t>& slots) {
|
|
std::lock_guard guard(mMutex);
|
|
NN_TRY(ensureCacheEntriesArePresentLocked(slots));
|
|
|
|
std::vector<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>> results;
|
|
results.reserve(slots.size());
|
|
for (int32_t slot : slots) {
|
|
results.push_back(NN_TRY(getCacheEntryLocked(slot)));
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
nn::GeneralResult<void> Burst::MemoryCache::ensureCacheEntriesArePresentLocked(
|
|
const std::vector<int32_t>& slots) {
|
|
const auto slotIsKnown = [this](int32_t slot)
|
|
REQUIRES(mMutex) { return mCache.count(slot) > 0; };
|
|
|
|
// find unique unknown slots
|
|
std::vector<int32_t> unknownSlots = slots;
|
|
std::sort(unknownSlots.begin(), unknownSlots.end());
|
|
auto unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlots.end());
|
|
unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
|
|
unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
|
|
|
|
// quick-exit if all slots are known
|
|
if (unknownSlots.empty()) {
|
|
return {};
|
|
}
|
|
|
|
auto cb = neuralnetworks::utils::CallbackValue(getMemoriesCallback);
|
|
|
|
const auto ret = kBurstCallback->getMemories(unknownSlots, cb);
|
|
HANDLE_TRANSPORT_FAILURE(ret);
|
|
|
|
auto returnedMemories = NN_TRY(cb.take());
|
|
|
|
if (returnedMemories.size() != unknownSlots.size()) {
|
|
return NN_ERROR() << "Burst::MemoryCache::ensureCacheEntriesArePresentLocked: Error "
|
|
"retrieving memories -- count mismatch between requested memories ("
|
|
<< unknownSlots.size() << ") and returned memories ("
|
|
<< returnedMemories.size() << ")";
|
|
}
|
|
|
|
// add memories to unknown slots
|
|
for (size_t i = 0; i < unknownSlots.size(); ++i) {
|
|
addCacheEntryLocked(unknownSlots[i], std::move(returnedMemories[i]));
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
nn::GeneralResult<std::pair<nn::SharedMemory, nn::IBurst::OptionalCacheHold>>
|
|
Burst::MemoryCache::getCacheEntryLocked(int32_t slot) {
|
|
if (const auto iter = mCache.find(slot); iter != mCache.end()) {
|
|
return iter->second;
|
|
}
|
|
return NN_ERROR() << "Burst::MemoryCache::getCacheEntryLocked failed because slot " << slot
|
|
<< " is not present in the cache";
|
|
}
|
|
|
|
void Burst::MemoryCache::addCacheEntryLocked(int32_t slot, nn::SharedMemory memory) {
|
|
auto hold = kBurstExecutor->cacheMemory(memory);
|
|
mCache.emplace(slot, std::make_pair(std::move(memory), std::move(hold)));
|
|
}
|
|
|
|
void Burst::MemoryCache::removeCacheEntry(int32_t slot) {
|
|
std::lock_guard guard(mMutex);
|
|
mCache.erase(slot);
|
|
}
|
|
|
|
// Burst methods
|
|
|
|
nn::GeneralResult<sp<Burst>> Burst::create(
|
|
const sp<V1_2::IBurstCallback>& callback,
|
|
const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
|
|
const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel, nn::SharedBurst burstExecutor,
|
|
std::chrono::microseconds pollingTimeWindow) {
|
|
// check inputs
|
|
if (callback == nullptr || burstExecutor == nullptr) {
|
|
return NN_ERROR() << "Burst::create passed a nullptr";
|
|
}
|
|
|
|
// create FMQ objects
|
|
auto requestChannelReceiver =
|
|
NN_TRY(V1_2::utils::RequestChannelReceiver::create(requestChannel, pollingTimeWindow));
|
|
auto resultChannelSender = NN_TRY(V1_2::utils::ResultChannelSender::create(resultChannel));
|
|
|
|
// check FMQ objects
|
|
CHECK(requestChannelReceiver != nullptr);
|
|
CHECK(resultChannelSender != nullptr);
|
|
|
|
// make and return context
|
|
return sp<Burst>::make(PrivateConstructorTag{}, callback, std::move(requestChannelReceiver),
|
|
std::move(resultChannelSender), std::move(burstExecutor));
|
|
}
|
|
|
|
Burst::Burst(PrivateConstructorTag /*tag*/, const sp<V1_2::IBurstCallback>& callback,
|
|
std::unique_ptr<V1_2::utils::RequestChannelReceiver> requestChannel,
|
|
std::unique_ptr<V1_2::utils::ResultChannelSender> resultChannel,
|
|
nn::SharedBurst burstExecutor)
|
|
: mCallback(callback),
|
|
mRequestChannelReceiver(std::move(requestChannel)),
|
|
mResultChannelSender(std::move(resultChannel)),
|
|
mBurstExecutor(std::move(burstExecutor)),
|
|
mMemoryCache(mBurstExecutor, mCallback) {
|
|
// TODO: highly document the threading behavior of this class
|
|
mWorker = std::thread([this] { task(); });
|
|
}
|
|
|
|
Burst::~Burst() {
|
|
// set teardown flag
|
|
mTeardown = true;
|
|
mRequestChannelReceiver->invalidate();
|
|
|
|
// wait for task thread to end
|
|
mWorker.join();
|
|
}
|
|
|
|
Return<void> Burst::freeMemory(int32_t slot) {
|
|
mMemoryCache.removeCacheEntry(slot);
|
|
return Void();
|
|
}
|
|
|
|
void Burst::task() {
|
|
// loop until the burst object is being destroyed
|
|
while (!mTeardown) {
|
|
// receive request
|
|
auto arguments = mRequestChannelReceiver->getBlocking();
|
|
|
|
// if the request packet was not properly received, return a generic error and skip the
|
|
// execution
|
|
//
|
|
// if the burst is being torn down, skip the execution so the "task" function can end
|
|
if (!arguments.has_value()) {
|
|
if (!mTeardown) {
|
|
mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kTiming);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// unpack the arguments; types are Request, std::vector<int32_t>, and V1_2::MeasureTiming,
|
|
// respectively
|
|
const auto [requestWithoutPools, slotsOfPools, measure] = std::move(arguments).value();
|
|
|
|
auto result = execute(requestWithoutPools, slotsOfPools, measure);
|
|
|
|
// return result
|
|
if (result.has_value()) {
|
|
const auto& [outputShapes, timing] = result.value();
|
|
mResultChannelSender->send(V1_0::ErrorStatus::NONE, outputShapes, timing);
|
|
} else {
|
|
const auto& [message, code, outputShapes] = result.error();
|
|
LOG(ERROR) << "IBurst::execute failed with " << code << ": " << message;
|
|
mResultChannelSender->send(V1_2::utils::convert(code).value(),
|
|
V1_2::utils::convert(outputShapes).value(), kTiming);
|
|
}
|
|
}
|
|
}
|
|
|
|
nn::ExecutionResult<std::pair<hidl_vec<V1_2::OutputShape>, V1_2::Timing>> Burst::execute(
|
|
const V1_0::Request& requestWithoutPools, const std::vector<int32_t>& slotsOfPools,
|
|
V1_2::MeasureTiming measure) {
|
|
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
|
|
"Burst getting memory, executing, and returning results");
|
|
|
|
// ensure executor with cache has required memory
|
|
const auto cacheEntries = NN_TRY(mMemoryCache.getCacheEntries(slotsOfPools));
|
|
|
|
// convert request, populating its pools
|
|
// This code performs an unvalidated convert because the request object without its pools is
|
|
// invalid because it is incomplete. Instead, the validation is performed after the memory pools
|
|
// have been added to the request.
|
|
auto canonicalRequest = NN_TRY(nn::unvalidatedConvert(requestWithoutPools));
|
|
CHECK(canonicalRequest.pools.empty());
|
|
std::transform(cacheEntries.begin(), cacheEntries.end(),
|
|
std::back_inserter(canonicalRequest.pools),
|
|
[](const auto& cacheEntry) { return cacheEntry.first; });
|
|
NN_TRY(validate(canonicalRequest));
|
|
|
|
nn::MeasureTiming canonicalMeasure = NN_TRY(nn::convert(measure));
|
|
|
|
const auto [outputShapes, timing] =
|
|
NN_TRY(mBurstExecutor->execute(canonicalRequest, canonicalMeasure, {}, {}, {}, {}));
|
|
|
|
return std::make_pair(NN_TRY(V1_2::utils::convert(outputShapes)),
|
|
NN_TRY(V1_2::utils::convert(timing)));
|
|
}
|
|
|
|
} // namespace android::hardware::neuralnetworks::adapter
|