liiir1985 7f62dcda9f | ||
---|---|---|
.. | ||
README.md | ||
dataset.txt | ||
dog_224x224.jpg | ||
test.py |
README.md
How to use accuracy-analysis function
Model Source
The model used in this example come from:
https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx
Script Usage
Usage:
python test.py
Description:
- The default target platform in script is 'rk3566', please modify the 'target_platform' parameter of 'rknn.config' according to the actual platform.
- If connecting board is required, please add the 'target' parameter in 'rknn.accuracy_analysis'.
Expected Results
This example will outputs the results of the accuracy analysis and store all the results in the snapshot directory, as follows:
# simulator_error: calculate the simulator errors.
# entire: errors between 'golden' and 'simulator'.
# single: single layer errors. (compare to 'entire', the input of each layer is come from 'golden')!
# ('nan' means that tensor are 'all zeros', or 'all equal', or 'large values', etc)
layer_name simulator_error
entire single
-----------------------------------------------------------------------------------
[Input] data 1.000000 1.000000
[exDataConvert] data_int8 0.999973 0.999973
[BatchNormalization] resnetv24_batchnorm0_fwd 0.999946 0.999946
...
[Relu] resnetv24_relu1_fwd 0.983521 0.999891
[Conv] resnetv24_pool1_fwd 0.995452 0.999986
[Conv] resnetv24_dense0_fwd_conv 0.994497 0.999933
[Reshape] resnetv24_dense0_fwd_int8 0.994497 0.999945
[exDataConvert] resnetv24_dense0_fwd 0.994497 0.999945
- Note: Different platforms, different versions of tools and drivers may have slightly different results.