liiir1985 7f62dcda9f | ||
---|---|---|
.. | ||
README.md | ||
box_priors.txt | ||
dataset.txt | ||
dog_bike_car_300x300.jpg | ||
result_truth.jpg | ||
ssd_mobilenet_v2.pb | ||
ssd_post_process.py | ||
step1.py | ||
step2.py |
README.md
How to use hybrid-quantization function
Model Source
The model used in this example come from:
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md ssd_mobilenet_v2_coco
Script Usage
Usage:
1. python step1.py
2. modify ssd_mobilenet_v2.quantization.cfg according to the prompt of step1.py
3. python step2.py
Description:
- The default target platform in script is 'rk3566', please modify the 'target_platform' parameter of 'rknn.config' according to the actual platform.
- If connecting board is required, please add the 'target' parameter in 'rknn.init_runtime'.
Expected Results
This example will outputs the results of the accuracy analysis and save the result of object detection to the 'result.jpg', as follows:
layer_name simulator_error
entire single
--------------------------------------------------------------------------------------------------------------------------------------
[Input] FeatureExtractor/MobilenetV2/MobilenetV2/input:0 1.000000 1.000000
[exDataConvert] FeatureExtractor/MobilenetV2/MobilenetV2/input:0_int8 0.999964 0.999964
[Conv] Conv__343:0
[Clip] FeatureExtractor/MobilenetV2/Conv/Relu6:0 0.999976 0.999976
...
[Conv] BoxPredictor_0/BoxEncodingPredictor/BiasAdd:0 0.997577 0.999687
[Transpose] BoxPredictor_0/BoxEncodingPredictor/BiasAdd__341:0 0.997577 0.999960
[Reshape] concat_swap_concat_reshape_i0_out 0.997577 0.999960
[Concat] concat_swap_concat_reshape_o0_out 0.997513 0.999939
[Reshape] concat:0_int8 0.997513 0.999943
[exDataConvert] concat:0 0.997513 0.999943
- Note: Different platforms, different versions of tools and drivers may have slightly different results.