android13/hardware/rockchip/thermal/ThermalImpl.cpp

639 lines
21 KiB
C++

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iterator>
#include <set>
#include <sstream>
#include <thread>
#include <vector>
#include <errno.h>
#include <ctype.h>
#include <dirent.h>
#include <inttypes.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <cstring>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <hidl/HidlTransportSupport.h>
#include "ThermalImpl.h"
#include "thermal_map_table_type.h"
#include "thermal_map_table.h"
#define TH_LOG_TAG "thermal_hal"
#define TH_DLOG(_priority_, _fmt_, args...) /*LOG_PRI(_priority_, TH_LOG_TAG, _fmt_, ##args)*/
#define TH_LOG(_priority_, _fmt_, args...) LOG_PRI(_priority_, TH_LOG_TAG, _fmt_, ##args)
namespace android {
namespace hardware {
namespace thermal {
namespace V2_0 {
namespace implementation {
using ::android::hardware::thermal::V1_0::ThermalStatus;
using ::android::hardware::thermal::V1_0::ThermalStatusCode;
using ::android::hardware::thermal::V2_0::implementation::kRockchipTempThreshold;
using ::android::hardware::thermal::V2_0::implementation::tz_data;
using ::android::hardware::thermal::V2_0::implementation::cdata;
ThermalImpl::ThermalImpl(const NotificationCallback &cb)
: thermal_watcher_(new ThermalWatcher(
std::bind(&ThermalImpl::thermalWatcherCallbackFunc, this, std::placeholders::_1))),
cb_(cb) {
thermal_zone_num = 0;
cooling_device_num = 0;
thermal_watcher_->initThermalWatcher();
// Need start watching after status map initialized
is_initialized_ = thermal_watcher_->startThermalWatcher();
if (!is_initialized_) {
LOG(FATAL) << "ThermalHAL could not start watching thread properly.";
}
}
ThrottlingSeverity ThermalImpl::getSeverityFromThresholds(float value, TemperatureType_2_0 type) {
ThrottlingSeverity ret_hot = ThrottlingSeverity::NONE;
int typetoint = static_cast<int>(type);
if (typetoint < 0)
return ret_hot;
for (size_t i = static_cast<size_t>(ThrottlingSeverity::SHUTDOWN);
i > static_cast<size_t>(ThrottlingSeverity::NONE); --i) {
if (!std::isnan(kRockchipTempThreshold[typetoint].hotThrottlingThresholds[i]) && kRockchipTempThreshold[typetoint].hotThrottlingThresholds[i] <= value &&
ret_hot == ThrottlingSeverity::NONE) {
ret_hot = static_cast<ThrottlingSeverity>(i);
}
}
return ret_hot;
}
bool ThermalImpl::read_temperature(int type, Temperature_1_0 *ret_temp) {
FILE *file;
float temp;
bool ret = false;
char temp_path[TZPATH_LENGTH];
if (type < 0 || type > TT_SKIN) {
return ret;
}
snprintf(temp_path, TZPATH_LENGTH, TZPATH_PREFIX"%d/temp", tz_data[type].tz_idx);
file = fopen(temp_path, "r");
if (file == NULL) {
ALOGW("%s: failed to open type %d path %s", __func__, type, temp_path);
return ret;
} else {
if (fscanf(file, "%f", &temp) > 0){
ret_temp->name = tz_data[type].label;
ret_temp->type = static_cast<TemperatureType_1_0>(type);
ret_temp->currentValue = temp * 0.001;
ret_temp->throttlingThreshold = kRockchipTempThreshold[type].hotThrottlingThresholds[static_cast<size_t>(ThrottlingSeverity::SEVERE)];
ret_temp->shutdownThreshold = kRockchipTempThreshold[type].hotThrottlingThresholds[static_cast<size_t>(ThrottlingSeverity::SHUTDOWN)];
ret_temp->vrThrottlingThreshold = kRockchipTempThreshold[type].vrThrottlingThreshold;
ret = true;
}
else
ALOGW("%s: failed to fscanf %s", __func__, temp_path);
}
fclose(file);
return ret;
}
bool ThermalImpl::read_temperature(int type, Temperature_2_0 *ret_temp) {
FILE *file;
float temp;
bool ret = false;
char temp_path[TZPATH_LENGTH];
if (type < 0 || type >= TT_MAX) {
return ret;
}
snprintf(temp_path, TZPATH_LENGTH, TZPATH_PREFIX"%d/temp", tz_data[type].tz_idx);
file = fopen(temp_path, "r");
if (file == NULL) {
ALOGW("%s: failed to open type %d path %s", __func__, type, temp_path);
return ret;
} else {
if (fscanf(file, "%f", &temp) > 0){
ret_temp->name = tz_data[type].label;
ret_temp->type = static_cast<TemperatureType_2_0>(type);
ret_temp->value = temp * 0.001;
ret_temp->throttlingStatus = getSeverityFromThresholds(ret_temp->value, ret_temp->type);
ret = true;
}
else
ALOGW("%s: failed to fscanf %s", __func__, temp_path);
}
fclose(file);
return ret;
}
bool ThermalImpl::fillCpuUsages(hidl_vec<CpuUsage> *cpu_usages) {
int vals, ret;
ssize_t read;
uint64_t user, nice, system, idle, active, total;
char *line = NULL;
size_t len = 0;
int size = 0;
FILE *file = NULL;
unsigned int max_core_num, cpu_array;
unsigned int cpu_num = 0;
FILE *core_num_file = NULL;
std::vector<CpuUsage> ret_cpu_usages;
int i;
/*======get device max core num=======*/
core_num_file = fopen(CORENUM_PATH, "r");
if (core_num_file == NULL) {
ALOGW("thermal_hal: %s: failed to open:CORENUM_PATH %s", __func__, strerror(errno));
return false;
}
if (fscanf(core_num_file, "%*d-%d", &max_core_num) != 1) {
ALOGW("thermal_hal: %s: unable to parse CORENUM_PATH", __func__);
ret = fclose(core_num_file);
if (ret) {
ALOGW("%s: fclose fail: %d", __func__, ret);
}
return false;
}
ret = fclose(core_num_file);
if (ret) {
ALOGW("%s: fclose fail: %d", __func__, ret);
}
cpu_array = sizeof(CPU_ALL_LABEL) / sizeof(CPU_ALL_LABEL[0]);
if (((max_core_num + 1) > cpu_array) || ((max_core_num + 1) <= 0)) {
ALOGW("thermal_hal: %s: max_core_num = %d, cpu_array = %d", __func__, max_core_num, cpu_array);
return false;
}
max_core_num += 1;
ALOGW("%s: max_core_num=%d", __func__, max_core_num);
/*======get device max core num=======*/
file = fopen(CPU_USAGE_FILE, "r");
if (file == NULL) {
ALOGW("thermal_hal: %s: failed to open: CPU_USAGE_FILE: %s", __func__, strerror(errno));
return false;
}
while ((read = getline(&line, &len, file)) != -1) {
CpuUsage cpu_usage;
// Skip non "cpu[0-9]" lines.
if (strnlen(line, read) < 4 || strncmp(line, "cpu", 3) != 0 || !isdigit(line[3])) {
free(line);
line = NULL;
len = 0;
continue;
}
vals = sscanf(line, "cpu%d %" SCNu64 " %" SCNu64 " %" SCNu64 " %" SCNu64, &cpu_num, &user,
&nice, &system, &idle);
free(line);
line = NULL;
len = 0;
if (vals != 5) {
ALOGW("thermal_hal: %s: failed to read CPU information from file: %s", __func__, strerror(errno));
ret = fclose(file);
if (ret) {
ALOGW("%s: fclose fail: %d", __func__, ret);
}
return false;
}
active = user + nice + system;
total = active + idle;
if (cpu_num < max_core_num) {
cpu_usage.name = CPU_ALL_LABEL[cpu_num];
cpu_usage.active = active;
cpu_usage.total = total;
cpu_usage.isOnline = 1;
ret_cpu_usages.emplace_back(std::move(cpu_usage));
} else {
ALOGW("thermal_hal: %s: cpu_num %d > max_core_num %d", __func__, cpu_num, max_core_num);
ret = fclose(file);
if (ret) {
ALOGW("%s: fclose fail: %d", __func__, ret);
}
return false;
}
size++;
}
/*if there are hotplug off CPUs, set cpu_usage.total = 0*/
for (i = size; i < max_core_num; i++) {
CpuUsage cpu_usage;
cpu_usage.name = CPU_ALL_LABEL[i];
cpu_usage.active = 0;
cpu_usage.total = 0;
cpu_usage.isOnline = 0;
ret_cpu_usages.emplace_back(std::move(cpu_usage));
}
ALOGW("%s end loop, size %d, cpu_num = %d, max_core_num = %d", __func__, size, cpu_num, max_core_num);
ret = fclose(file);
if (ret) {
ALOGW("%s: fclose fail: %d", __func__, ret);
}
*cpu_usages = ret_cpu_usages;
return true;
}
bool ThermalImpl::fill_temperatures_1_0(hidl_vec<Temperature_1_0> *temperatures) {
bool ret = false;
std::vector<Temperature_1_0> ret_temps;
int current_index = 0;
for (int i = 0; i <= TT_SKIN; i++) {
Temperature_1_0 ret_temp;
if (!is_tz_path_valided(i))
init_tz_path();
if (tz_data[i].tz_idx == -1) {
continue;
}
if (read_temperature(i, &ret_temp)) {
LOG(INFO) << "fill_temperatures_1_0 "
<< " name: " << ret_temp.name
<< " throttlingStatus: " << ret_temp.throttlingThreshold
<< " value: " << ret_temp.currentValue;
ret_temps.emplace_back(std::move(ret_temp));
ret = true;
} else {
ALOGW("%s: read temp fail type:%d", __func__, i);
return false;
}
++current_index;
}
*temperatures = ret_temps;
return current_index > 0;
}
bool ThermalImpl::fill_temperatures(bool filterType, hidl_vec<Temperature_2_0> *temperatures, TemperatureType_2_0 type) {
bool ret = false;
std::vector<Temperature_2_0> ret_temps;
int typetoint = static_cast<int>(type);
if (!is_tz_path_valided(typetoint))
init_tz_path();
for (int i = 0; i < TT_MAX; i++) {
Temperature_2_0 ret_temp;
if ((filterType && i != typetoint) || (tz_data[i].tz_idx == -1)) {
continue;
}
if (read_temperature(i, &ret_temp)) {
LOG(INFO) << "fill_temperatures "
<< "filterType" << filterType
<< " name: " << ret_temp.name
<< " type: " << android::hardware::thermal::V2_0::toString(ret_temp.type)
<< " throttlingStatus: " << android::hardware::thermal::V2_0::toString(ret_temp.throttlingStatus)
<< " value: " << ret_temp.value
<< " ret_temps size " << ret_temps.size();
ret_temps.emplace_back(std::move(ret_temp));
ret = true;
} else {
ALOGW("%s: read temp fail type:%d", __func__, i);
return false;
}
}
*temperatures = ret_temps;
return ret;
}
bool ThermalImpl::fill_thresholds(bool filterType, hidl_vec<TemperatureThreshold> *Threshold, TemperatureType_2_0 type) {
FILE *file;
bool ret = false;
std::vector<TemperatureThreshold> ret_thresholds;
int typetoint = static_cast<int>(type);
char temp_path[TZPATH_LENGTH];
for (int i = 0; i < TT_MAX; i++) {
TemperatureThreshold ret_threshold;
if (filterType && i != typetoint) {
continue;
}
snprintf(temp_path, TZPATH_LENGTH, TZPATH_PREFIX"%d/type", tz_data[i].tz_idx);
file = fopen(temp_path, "r");
if (file) {
ret_threshold = {kRockchipTempThreshold[i]};
LOG(INFO) << "fill_thresholds "
<< "filterType" << filterType
<< " name: " << ret_threshold.name
<< " type: " << android::hardware::thermal::V2_0::toString(ret_threshold.type)
<< " vrThrottlingThreshold: " << ret_threshold.vrThrottlingThreshold
<< " ret_thresholds size " << ret_thresholds.size();
ret_thresholds.emplace_back(std::move(ret_threshold));
ret = true;
fclose(file);
}
else {
ALOGW("%s: %s not support", __func__, kRockchipTempThreshold[i].name.c_str());
}
}
*Threshold = ret_thresholds;
return ret;
}
bool ThermalImpl::fill_cooling_devices(bool filterType, std::vector<CoolingDevice_2_0> *CoolingDevice, CoolingType type) {
std::vector<CoolingDevice_2_0> ret_coolings;
bool ret = false;
if (!is_cooling_path_valided())
init_cl_path();
for (int i = 0; i < MAX_COOLING; i++) {
if (filterType && type != cdata[i].cl_2_0.type) {
continue;
}
if (cdata[i].cl_idx != -1) {
CoolingDevice_2_0 coolingdevice;
coolingdevice.name = cdata[i].cl_2_0.name;
coolingdevice.type = cdata[i].cl_2_0.type;
coolingdevice.value = cdata[i].cl_2_0.value;
LOG(INFO) << "fill_cooling_devices "
<< " filterType: " << filterType
<< " name: " << coolingdevice.name
<< " type: " << android::hardware::thermal::V2_0::toString(coolingdevice.type)
<< " value: " << coolingdevice.value
<< " ret_coolings size " << ret_coolings.size();
ret_coolings.emplace_back(std::move(coolingdevice));
ret = true;
}
}
*CoolingDevice = ret_coolings;
return ret;
}
bool ThermalImpl::init_cl_path() {
char temp_path[CDPATH_LENGTH];
char temp_value_path[CDPATH_LENGTH];
char buf[CDNAME_SZ];
int fd = -1;
int fd_value = -1;
int read_len = 0;
int i = 0;
bool ret = true;
/*initial cdata*/
for (int j = 0; j < MAX_COOLING; ++j) {
cdata[j].cl_2_0.value = 0;
cdata[j].cl_idx = -1;
}
cooling_device_num = 0;
while (1) {
snprintf(temp_path, CDPATH_LENGTH, CDPATH_PREFIX"%d/type", i);
fd = open(temp_path, O_RDONLY);
if (fd == -1) {
ALOGW("%s:find out cooling path", __func__);
cooling_device_num = i;
break;
} else {
CoolingDevice_2_0 coolingdevice;
read_len = read(fd, buf, CDNAME_SZ);
for (int j = 0; j < MAX_COOLING; ++j) {
size_t cl_name_len = std::strlen(cdata[j].cl_2_0.name.c_str());
if ((cl_name_len > 0) && std::strncmp(buf, cdata[j].cl_2_0.name.c_str(), cl_name_len) == 0) {
cdata[j].cl_idx = i;
snprintf(temp_value_path, CDPATH_LENGTH, CDPATH_PREFIX"%d/cur_state", i);
fd_value = open(temp_value_path, O_RDONLY);
if (fd_value == -1) {
ALOGW("%s:get value fail", __func__);
ret = false;
break;
} else {
read_len = read(fd_value, buf, CDNAME_SZ);
cdata[j].cl_2_0.value = std::atoi(buf);
LOG(INFO) << "init_cl_path: " << temp_value_path
<< " cl_idx: " << cdata[j].cl_idx
<< " name: " << cdata[j].cl_2_0.name
<< " value: " << cdata[j].cl_2_0.value;
}
close(fd_value);
}
}
}
i++;
close(fd);
}
return ret;
}
bool ThermalImpl::is_cooling_path_valided() {
char temp_path[CDPATH_LENGTH];
char buf[CDNAME_SZ];
int fd = -1;
int read_len = 0;
bool ret = true;
/*check if cooling device number are changed*/
snprintf(temp_path, CDPATH_LENGTH, CDPATH_PREFIX"%d/type", (cooling_device_num - 1));
fd = open(temp_path, O_RDONLY);
if (fd == -1) {
LOG(INFO) << "cl_num are changed" << cooling_device_num;
return false;
} else {
close(fd);
}
snprintf(temp_path, CDPATH_LENGTH, CDPATH_PREFIX"%d/type", cooling_device_num);
fd = open(temp_path, O_RDONLY);
if (fd != -1) {
close(fd);
LOG(INFO) << "cl_num are increased" << cooling_device_num;
return false;
}
for (int i = 0; i < MAX_COOLING; i++) {
if (cdata[i].cl_idx != -1) {
snprintf(temp_path, CDPATH_LENGTH, CDPATH_PREFIX"%d/type", cdata[i].cl_idx);
fd = open(temp_path, O_RDONLY);
if (fd == -1) {
ALOGW("%s:cl path error %d %s" , __func__, i, temp_path);
ret = false;
break;
} else {
read_len = read(fd, buf, CDNAME_SZ);
if (std::strncmp(buf, cdata[i].cl_2_0.name.c_str(), std::strlen(cdata[i].cl_2_0.name.c_str())) != 0) {
ret = false;
close(fd);
LOG(INFO) << " cl name mismatch "<< i << cdata[i].cl_2_0.name;
break;
}
close(fd);
}
}
}
return ret;
}
bool ThermalImpl::is_tz_path_valided(int type) {
char temp_path[TZPATH_LENGTH];
char buf[TZNAME_SZ];
int fd = -1;
int read_len = 0;
bool ret = true;
if (type < 0 || type >= TT_MAX) {
return false;
}
/*check if thermal zone number are changed*/
snprintf(temp_path, TZPATH_LENGTH, TZPATH_PREFIX"%d/type", (thermal_zone_num - 1));
fd = open(temp_path, O_RDONLY);
if (fd == -1) {
LOG(INFO) << "thermal_zone_num are changed" << thermal_zone_num;
return false;
} else {
close(fd);
}
snprintf(temp_path, TZPATH_LENGTH, TZPATH_PREFIX"%d/type", thermal_zone_num);
fd = open(temp_path, O_RDONLY);
if (fd != -1) {
close(fd);
LOG(INFO) << "thermal_zone_num are increased" << thermal_zone_num;
return false;
}
if (tz_data[type].tz_idx != -1) {
snprintf(temp_path, TZPATH_LENGTH, TZPATH_PREFIX"%d/type", tz_data[type].tz_idx);
fd = open(temp_path, O_RDONLY);
if (fd == -1) {
ALOGW("%s:tz path error %d %s" , __func__, type, temp_path);
ret = false;
} else {
read_len = read(fd, buf, TZNAME_SZ);
/*/sys/class/thermal/thermal_zone{$tz_idx}/type should equal tzName*/
if (std::strncmp(buf, tz_data[type].tzName, strlen(tz_data[type].tzName)) != 0) {
ret = false;
LOG(INFO) << " tz name mismatch "<< type << tz_data[type].tzName;
}
close(fd);
}
}
return ret;
}
void ThermalImpl::init_tz_path() {
char temp_path[TZPATH_LENGTH];
char buf[TZNAME_SZ];
int fd = -1;
int read_len = 0;
int i = 0;
/*initial tz_data*/
for (int j = 0; j < TT_MAX; ++j) {
tz_data[j].tz_idx = -1;
}
thermal_zone_num = 0;
while(1) {
snprintf(temp_path, TZPATH_LENGTH, TZPATH_PREFIX"%d/type", i);
fd = open(temp_path, O_RDONLY);
if (fd == -1) {
ALOGW("%s:find out tz path", __func__);
thermal_zone_num = i;
break;
} else {
read_len = read(fd, buf, TZNAME_SZ);
for (int j = 0; j < TT_MAX; ++j) {
if (std::strncmp(buf, tz_data[j].tzName, strlen(tz_data[j].tzName)) == 0) {
tz_data[j].tz_idx = i;
ALOGW("tz_data[%d].tz_idx:%d",j,i);
}
}
i++;
close(fd);
}
}
}
// This is called in the different thread context and will update sensor_status
// uevent_sensors is the set of sensors which trigger uevent from thermal core driver.
bool ThermalImpl::thermalWatcherCallbackFunc(const std::set<std::string> &uevent_sensors) {
std::vector<Temperature_2_0> temps;
bool thermal_triggered = false;
Temperature_2_0 temp;
if (uevent_sensors.size() != 0) {
// writer lock
std::unique_lock<std::shared_mutex> _lock(sensor_status_map_mutex_);
for (const auto &name : uevent_sensors) {
for (int i = 0; i < TT_MAX; i++) {
if (strncmp(name.c_str(), tz_data[i].tzName, strlen(tz_data[i].tzName)) == 0) {
if (!is_tz_path_valided(i))
init_tz_path();
if (read_temperature(i,&temp))
temps.push_back(temp);
}
}
}
thermal_triggered = true;
}
if (!temps.empty() && cb_) {
cb_(temps);
}
return thermal_triggered;
}
} // namespace implementation
} // namespace V2_0
} // namespace thermal
} // namespace hardware
} // namespace android