257 lines
12 KiB
C++
257 lines
12 KiB
C++
/*
|
|
* Copyright (C) 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "Operations"
|
|
|
|
#include "Comparisons.h"
|
|
|
|
#include <functional>
|
|
#include <vector>
|
|
|
|
#include "IndexedShapeWrapper.h"
|
|
#include "OperationResolver.h"
|
|
#include "OperationsExecutionUtils.h"
|
|
|
|
namespace android {
|
|
namespace nn {
|
|
namespace comparisons {
|
|
namespace {
|
|
|
|
template <typename DataType, typename ComparisonType>
|
|
bool compute(const std::function<bool(ComparisonType, ComparisonType)>& func, const DataType* aData,
|
|
const Shape& aShape, const DataType* bData, const Shape& bShape, bool8* outputData,
|
|
const Shape& outputShape) {
|
|
IndexedShapeWrapper aShapeIndexed(aShape);
|
|
IndexedShapeWrapper bShapeIndexed(bShape);
|
|
IndexedShapeWrapper outputShapeIndexed(outputShape);
|
|
std::vector<uint32_t> curIndex(outputShape.dimensions.size(), 0);
|
|
bool lastIndex = false;
|
|
do {
|
|
uint32_t outputFlatIndex;
|
|
NN_RET_CHECK(outputShapeIndexed.indexToFlatIndex(curIndex, &outputFlatIndex));
|
|
uint32_t aFlatIndex;
|
|
NN_RET_CHECK(aShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &aFlatIndex));
|
|
uint32_t bFlatIndex;
|
|
NN_RET_CHECK(bShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &bFlatIndex));
|
|
|
|
if (aShape.type == OperandType::TENSOR_QUANT8_ASYMM ||
|
|
aShape.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
|
|
const float realA = (aData[aFlatIndex] - aShape.offset) * aShape.scale;
|
|
const float realB = (bData[bFlatIndex] - bShape.offset) * bShape.scale;
|
|
outputData[outputFlatIndex] = func(realA, realB);
|
|
} else {
|
|
outputData[outputFlatIndex] = func(aData[aFlatIndex], bData[bFlatIndex]);
|
|
}
|
|
|
|
NN_RET_CHECK(outputShapeIndexed.nextIndexInplace(&curIndex, &lastIndex));
|
|
} while (!lastIndex);
|
|
return true;
|
|
}
|
|
|
|
template <typename DataType, typename ComparisonType>
|
|
bool executeLessTyped(IOperationExecutionContext* context) {
|
|
return compute<DataType, ComparisonType>(
|
|
std::less<ComparisonType>(), context->getInputBuffer<DataType>(kInputTensor1),
|
|
context->getInputShape(kInputTensor1), context->getInputBuffer<DataType>(kInputTensor2),
|
|
context->getInputShape(kInputTensor2), context->getOutputBuffer<bool8>(kOutputTensor),
|
|
context->getOutputShape(kOutputTensor));
|
|
}
|
|
|
|
template <typename DataType, typename ComparisonType>
|
|
bool executeLessEqualTyped(IOperationExecutionContext* context) {
|
|
return compute<DataType, ComparisonType>(
|
|
std::less_equal<ComparisonType>(), context->getInputBuffer<DataType>(kInputTensor1),
|
|
context->getInputShape(kInputTensor1), context->getInputBuffer<DataType>(kInputTensor2),
|
|
context->getInputShape(kInputTensor2), context->getOutputBuffer<bool8>(kOutputTensor),
|
|
context->getOutputShape(kOutputTensor));
|
|
}
|
|
|
|
template <typename DataType, typename ComparisonType>
|
|
bool executeEqualTyped(IOperationExecutionContext* context) {
|
|
return compute<DataType, ComparisonType>(
|
|
std::equal_to<ComparisonType>(), context->getInputBuffer<DataType>(kInputTensor1),
|
|
context->getInputShape(kInputTensor1), context->getInputBuffer<DataType>(kInputTensor2),
|
|
context->getInputShape(kInputTensor2), context->getOutputBuffer<bool8>(kOutputTensor),
|
|
context->getOutputShape(kOutputTensor));
|
|
}
|
|
|
|
template <typename DataType, typename ComparisonType>
|
|
bool executeNotEqualTyped(IOperationExecutionContext* context) {
|
|
return compute<DataType, ComparisonType>(
|
|
std::not_equal_to<ComparisonType>(), context->getInputBuffer<DataType>(kInputTensor1),
|
|
context->getInputShape(kInputTensor1), context->getInputBuffer<DataType>(kInputTensor2),
|
|
context->getInputShape(kInputTensor2), context->getOutputBuffer<bool8>(kOutputTensor),
|
|
context->getOutputShape(kOutputTensor));
|
|
}
|
|
|
|
template <typename DataType, typename ComparisonType>
|
|
bool executeGreaterEqualTyped(IOperationExecutionContext* context) {
|
|
return compute<DataType, ComparisonType>(
|
|
std::greater_equal<ComparisonType>(), context->getInputBuffer<DataType>(kInputTensor1),
|
|
context->getInputShape(kInputTensor1), context->getInputBuffer<DataType>(kInputTensor2),
|
|
context->getInputShape(kInputTensor2), context->getOutputBuffer<bool8>(kOutputTensor),
|
|
context->getOutputShape(kOutputTensor));
|
|
}
|
|
|
|
template <typename DataType, typename ComparisonType>
|
|
bool executeGreaterTyped(IOperationExecutionContext* context) {
|
|
return compute<DataType, ComparisonType>(
|
|
std::greater<ComparisonType>(), context->getInputBuffer<DataType>(kInputTensor1),
|
|
context->getInputShape(kInputTensor1), context->getInputBuffer<DataType>(kInputTensor2),
|
|
context->getInputShape(kInputTensor2), context->getOutputBuffer<bool8>(kOutputTensor),
|
|
context->getOutputShape(kOutputTensor));
|
|
}
|
|
|
|
} // namespace
|
|
|
|
bool prepare(IOperationExecutionContext* context) {
|
|
Shape input1 = context->getInputShape(kInputTensor1);
|
|
Shape input2 = context->getInputShape(kInputTensor2);
|
|
Shape output = context->getOutputShape(kOutputTensor);
|
|
NN_RET_CHECK(calculateBroadcastedShape(input1, input2, &output));
|
|
return context->setOutputShape(kOutputTensor, output);
|
|
}
|
|
|
|
bool executeLess(IOperationExecutionContext* context) {
|
|
switch (context->getInputType(kInputTensor1)) {
|
|
case OperandType::TENSOR_FLOAT16:
|
|
return executeLessTyped<_Float16, _Float16>(context);
|
|
case OperandType::TENSOR_FLOAT32:
|
|
return executeLessTyped<float, float>(context);
|
|
case OperandType::TENSOR_INT32:
|
|
return executeLessTyped<int32_t, int32_t>(context);
|
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
|
return executeLessTyped<uint8_t, float>(context);
|
|
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
|
return executeLessTyped<int8_t, float>(context);
|
|
case OperandType::TENSOR_BOOL8:
|
|
return executeLessTyped<bool8, bool8>(context);
|
|
default:
|
|
NN_RET_CHECK_FAIL() << "Unsupported tensor type for comparison";
|
|
}
|
|
}
|
|
|
|
bool executeLessEqual(IOperationExecutionContext* context) {
|
|
switch (context->getInputType(kInputTensor1)) {
|
|
case OperandType::TENSOR_FLOAT16:
|
|
return executeLessEqualTyped<_Float16, _Float16>(context);
|
|
case OperandType::TENSOR_FLOAT32:
|
|
return executeLessEqualTyped<float, float>(context);
|
|
case OperandType::TENSOR_INT32:
|
|
return executeLessEqualTyped<int32_t, int32_t>(context);
|
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
|
return executeLessEqualTyped<uint8_t, float>(context);
|
|
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
|
return executeLessEqualTyped<int8_t, float>(context);
|
|
case OperandType::TENSOR_BOOL8:
|
|
return executeLessEqualTyped<bool8, bool8>(context);
|
|
default:
|
|
NN_RET_CHECK_FAIL() << "Unsupported tensor type for comparison";
|
|
}
|
|
}
|
|
|
|
bool executeEqual(IOperationExecutionContext* context) {
|
|
switch (context->getInputType(kInputTensor1)) {
|
|
case OperandType::TENSOR_FLOAT16:
|
|
return executeEqualTyped<_Float16, _Float16>(context);
|
|
case OperandType::TENSOR_FLOAT32:
|
|
return executeEqualTyped<float, float>(context);
|
|
case OperandType::TENSOR_INT32:
|
|
return executeEqualTyped<int32_t, int32_t>(context);
|
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
|
return executeEqualTyped<uint8_t, float>(context);
|
|
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
|
return executeEqualTyped<int8_t, float>(context);
|
|
case OperandType::TENSOR_BOOL8:
|
|
return executeEqualTyped<bool8, bool8>(context);
|
|
default:
|
|
NN_RET_CHECK_FAIL() << "Unsupported tensor type for comparison";
|
|
}
|
|
}
|
|
|
|
bool executeNotEqual(IOperationExecutionContext* context) {
|
|
switch (context->getInputType(kInputTensor1)) {
|
|
case OperandType::TENSOR_FLOAT16:
|
|
return executeNotEqualTyped<_Float16, _Float16>(context);
|
|
case OperandType::TENSOR_FLOAT32:
|
|
return executeNotEqualTyped<float, float>(context);
|
|
case OperandType::TENSOR_INT32:
|
|
return executeNotEqualTyped<int32_t, int32_t>(context);
|
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
|
return executeNotEqualTyped<uint8_t, float>(context);
|
|
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
|
return executeNotEqualTyped<int8_t, float>(context);
|
|
case OperandType::TENSOR_BOOL8:
|
|
return executeNotEqualTyped<bool8, bool8>(context);
|
|
default:
|
|
NN_RET_CHECK_FAIL() << "Unsupported tensor type for comparison";
|
|
}
|
|
}
|
|
|
|
bool executeGreaterEqual(IOperationExecutionContext* context) {
|
|
switch (context->getInputType(kInputTensor1)) {
|
|
case OperandType::TENSOR_FLOAT16:
|
|
return executeGreaterEqualTyped<_Float16, _Float16>(context);
|
|
case OperandType::TENSOR_FLOAT32:
|
|
return executeGreaterEqualTyped<float, float>(context);
|
|
case OperandType::TENSOR_INT32:
|
|
return executeGreaterEqualTyped<int32_t, int32_t>(context);
|
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
|
return executeGreaterEqualTyped<uint8_t, float>(context);
|
|
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
|
return executeGreaterEqualTyped<int8_t, float>(context);
|
|
case OperandType::TENSOR_BOOL8:
|
|
return executeGreaterEqualTyped<bool8, bool8>(context);
|
|
default:
|
|
NN_RET_CHECK_FAIL() << "Unsupported tensor type for comparison";
|
|
}
|
|
}
|
|
|
|
bool executeGreater(IOperationExecutionContext* context) {
|
|
switch (context->getInputType(kInputTensor1)) {
|
|
case OperandType::TENSOR_FLOAT16:
|
|
return executeGreaterTyped<_Float16, _Float16>(context);
|
|
case OperandType::TENSOR_FLOAT32:
|
|
return executeGreaterTyped<float, float>(context);
|
|
case OperandType::TENSOR_INT32:
|
|
return executeGreaterTyped<int32_t, int32_t>(context);
|
|
case OperandType::TENSOR_QUANT8_ASYMM:
|
|
return executeGreaterTyped<uint8_t, float>(context);
|
|
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
|
return executeGreaterTyped<int8_t, float>(context);
|
|
case OperandType::TENSOR_BOOL8:
|
|
return executeGreaterTyped<bool8, bool8>(context);
|
|
default:
|
|
NN_RET_CHECK_FAIL() << "Unsupported tensor type for comparison";
|
|
}
|
|
}
|
|
|
|
} // namespace comparisons
|
|
|
|
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(LESS, comparisons::prepare, comparisons::executeLess);
|
|
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(LESS_EQUAL, comparisons::prepare,
|
|
comparisons::executeLessEqual);
|
|
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(EQUAL, comparisons::prepare, comparisons::executeEqual);
|
|
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(NOT_EQUAL, comparisons::prepare,
|
|
comparisons::executeNotEqual);
|
|
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(GREATER_EQUAL, comparisons::prepare,
|
|
comparisons::executeGreaterEqual);
|
|
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(GREATER, comparisons::prepare,
|
|
comparisons::executeGreater);
|
|
|
|
} // namespace nn
|
|
} // namespace android
|