208 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			208 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (c) 2019-2020 Arm Limited.
 | |
|  *
 | |
|  * SPDX-License-Identifier: MIT
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to
 | |
|  * deal in the Software without restriction, including without limitation the
 | |
|  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 | |
|  * sell copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in all
 | |
|  * copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
|  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  */
 | |
| #ifndef ARM_COMPUTE_NELSTMLAYERQUANTIZED_H
 | |
| #define ARM_COMPUTE_NELSTMLAYERQUANTIZED_H
 | |
| 
 | |
| #include "arm_compute/core/Types.h"
 | |
| #include "arm_compute/runtime/NEON/functions/NEActivationLayer.h"
 | |
| #include "arm_compute/runtime/NEON/functions/NEArithmeticAddition.h"
 | |
| #include "arm_compute/runtime/NEON/functions/NEConcatenateLayer.h"
 | |
| #include "arm_compute/runtime/NEON/functions/NEDequantizationLayer.h"
 | |
| #include "arm_compute/runtime/NEON/functions/NEElementwiseOperations.h"
 | |
| #include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h"
 | |
| #include "arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h"
 | |
| #include "arm_compute/runtime/NEON/functions/NEGEMMLowpOutputStage.h"
 | |
| #include "arm_compute/runtime/NEON/functions/NEPixelWiseMultiplication.h"
 | |
| #include "arm_compute/runtime/NEON/functions/NEQuantizationLayer.h"
 | |
| #include "arm_compute/runtime/NEON/functions/NESlice.h"
 | |
| #include "arm_compute/runtime/NEON/functions/NETranspose.h"
 | |
| 
 | |
| #include "arm_compute/runtime/common/LSTMParams.h"
 | |
| 
 | |
| namespace arm_compute
 | |
| {
 | |
| // Forward declarations
 | |
| class ITensor;
 | |
| 
 | |
| /** Basic function to run @ref NELSTMLayerQuantized
 | |
|  *
 | |
|  * This function calls the following NEON functions/kernels:
 | |
|  *
 | |
|  * -# @ref NEGEMMLowpMatrixMultiplyCore                          Quantized matrix multiplication core. Accumulators are 32-bit integers
 | |
|  * -# @ref NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPoint   Convert 32-bit integers into QSYMM16
 | |
|  * -# @ref NETranspose                                           Matrix transpose
 | |
|  * -# @ref NEConcatenateLayer                                    Tensor concatenation
 | |
|  * -# @ref NEActivationLayer                                     Activation functions (tanh and logistic)
 | |
|  * -# @ref NEArithmeticAddition                                  Elementwise addition
 | |
|  * -# @ref NEPixelWiseMultiplication                             Elementwise multiplication
 | |
|  * -# @ref NESlice                                               Tensor slicing
 | |
|  * -# @ref NEDequantizationLayer                                 Dequantize into float
 | |
|  * -# @ref NEQuantizationLayer                                   Quantize from float
 | |
|  * */
 | |
| class NELSTMLayerQuantized : public IFunction
 | |
| {
 | |
| public:
 | |
|     /** Default constructor */
 | |
|     NELSTMLayerQuantized(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
 | |
|     /** Prevent instances of this class from being copied (As this class contains pointers) */
 | |
|     NELSTMLayerQuantized(const NELSTMLayerQuantized &) = delete;
 | |
|     /** Prevent instances of this class from being moved (As this class contains pointers) */
 | |
|     NELSTMLayerQuantized(NELSTMLayerQuantized &&) = delete;
 | |
|     /** Prevent instances of this class from being copied (As this class contains pointers) */
 | |
|     NELSTMLayerQuantized &operator=(const NELSTMLayerQuantized &) = delete;
 | |
|     /** Prevent instances of this class from being moved (As this class contains pointers) */
 | |
|     NELSTMLayerQuantized &operator=(NELSTMLayerQuantized &&) = delete;
 | |
|     /** Default destructor */
 | |
|     ~NELSTMLayerQuantized();
 | |
|     /** Initialize function's tensors.
 | |
|      *
 | |
|      * @param[in]  input                       Source tensor. Input is a 2D tensor with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
 | |
|      * @param[in]  input_to_input_weights      2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  input_to_forget_weights     2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  input_to_cell_weights       2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  input_to_output_weights     2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  recurrent_to_input_weights  2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  recurrent_to_forget_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  recurrent_to_cell_weights   2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  recurrent_to_output_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  input_gate_bias             1D weights tensor with dimensions [output_size]. Data type supported: S32.
 | |
|      * @param[in]  forget_gate_bias            1D weights tensor with dimensions [output_size]. Data type supported: S32.
 | |
|      * @param[in]  cell_bias                   1D weights tensor with dimensions [output_size]. Data type supported: S32.
 | |
|      * @param[in]  output_gate_bias            1D weights tensor with dimensions [output_size]. Data type supported: S32.
 | |
|      * @param[in]  cell_state_in               2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
 | |
|      * @param[in]  output_state_in             2D tensor with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
 | |
|      * @param[out] cell_state_out              Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
 | |
|      * @param[out] output_state_out            Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].Data types supported: Same as @p input.
 | |
|      */
 | |
|     void configure(const ITensor *input,
 | |
|                    const ITensor *input_to_input_weights, const ITensor *input_to_forget_weights, const ITensor *input_to_cell_weights, const ITensor *input_to_output_weights,
 | |
|                    const ITensor *recurrent_to_input_weights, const ITensor *recurrent_to_forget_weights, const ITensor *recurrent_to_cell_weights, const ITensor *recurrent_to_output_weights,
 | |
|                    const ITensor *input_gate_bias, const ITensor *forget_gate_bias, const ITensor *cell_bias, const ITensor *output_gate_bias,
 | |
|                    ITensor *cell_state_in, const ITensor *output_state_in,
 | |
|                    ITensor *cell_state_out, ITensor *output_state_out);
 | |
| 
 | |
|     /** Static function to check if given info will lead to a valid configuration of @ref NELSTMLayer
 | |
|      *
 | |
|      * @param[in]  input                       Source tensor info. Input is a 2D tensor info with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
 | |
|      * @param[in]  input_to_input_weights      2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  input_to_forget_weights     2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  input_to_cell_weights       2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  input_to_output_weights     2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  recurrent_to_input_weights  2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  recurrent_to_forget_weights 2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  recurrent_to_cell_weights   2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  recurrent_to_output_weights 2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
 | |
|      * @param[in]  input_gate_bias             1D weights tensor info with dimensions [output_size]. Data type supported: S32.
 | |
|      * @param[in]  forget_gate_bias            1D weights tensor info with dimensions [output_size]. Data type supported: S32.
 | |
|      * @param[in]  cell_bias                   1D weights tensor info with dimensions [output_size]. Data type supported: S32.
 | |
|      * @param[in]  output_gate_bias            1D weights tensor info with dimensions [output_size]. Data type supported: S32.
 | |
|      * @param[in]  cell_state_in               2D tensor info with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
 | |
|      * @param[in]  output_state_in             2D tensor info with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
 | |
|      * @param[out] cell_state_out              Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
 | |
|      * @param[out] output_state_out            Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size].Data types supported: Same as @p input.
 | |
|      *
 | |
|      * @return a status
 | |
|      */
 | |
|     static Status validate(const ITensorInfo *input,
 | |
|                            const ITensorInfo *input_to_input_weights, const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights,
 | |
|                            const ITensorInfo *recurrent_to_input_weights, const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights,
 | |
|                            const ITensorInfo *input_gate_bias, const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias,
 | |
|                            const ITensorInfo *cell_state_in, const ITensorInfo *output_state_in,
 | |
|                            const ITensorInfo *cell_state_out, const ITensorInfo *output_state_out);
 | |
| 
 | |
|     // Inherited methods overridden:
 | |
|     void run() override;
 | |
|     void prepare() override;
 | |
| 
 | |
| private:
 | |
|     MemoryGroup _memory_group;
 | |
| 
 | |
|     // Functions used
 | |
|     NEGEMMLowpMatrixMultiplyCore                        _gemmlowp;
 | |
|     NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPoint _output_stage;
 | |
|     NETranspose                                         _transpose_weights;
 | |
|     NEConcatenateLayer                                  _concat_input_weights;
 | |
|     NEConcatenateLayer                                  _concat_recurrent_weights;
 | |
|     NEConcatenateLayer                                  _concat_weights;
 | |
|     NEConcatenateLayer                                  _concat_inputs;
 | |
|     NEConcatenateLayer                                  _concat_bias;
 | |
|     NEActivationLayer                                   _sigmoid_forget_gate;
 | |
|     NEActivationLayer                                   _sigmoid_input_gate;
 | |
|     NEActivationLayer                                   _sigmoid_output_gate;
 | |
|     NEActivationLayer                                   _tanh_modulation_gate;
 | |
|     NEActivationLayer                                   _tanh_output_state;
 | |
|     NEArithmeticAddition                                _add1;
 | |
|     NEArithmeticAddition                                _add2;
 | |
|     NEPixelWiseMultiplication                           _mul1;
 | |
|     NEPixelWiseMultiplication                           _mul2;
 | |
|     NEPixelWiseMultiplication                           _mul3;
 | |
|     NESlice                                             _slice_input_tensor;
 | |
|     NESlice                                             _slice_forget_tensor;
 | |
|     NESlice                                             _slice_cell_tensor;
 | |
|     NESlice                                             _slice_output_tensor;
 | |
|     NEDequantizationLayer                               _dequantize;
 | |
|     NEQuantizationLayer                                 _quantize;
 | |
| 
 | |
|     // Tensor pointers
 | |
|     const ITensor *_input_to_input_weights;
 | |
|     const ITensor *_input_to_forget_weights;
 | |
|     const ITensor *_input_to_cell_weights;
 | |
|     const ITensor *_input_to_output_weights;
 | |
|     const ITensor *_recurrent_to_input_weights;
 | |
|     const ITensor *_recurrent_to_forget_weights;
 | |
|     const ITensor *_recurrent_to_cell_weights;
 | |
|     const ITensor *_recurrent_to_output_weights;
 | |
|     const ITensor *_input_gate_bias;
 | |
|     const ITensor *_forget_gate_bias;
 | |
|     const ITensor *_cell_bias;
 | |
|     const ITensor *_output_gate_bias;
 | |
| 
 | |
|     // Temporary tensors
 | |
|     Tensor _recurrent_weights;
 | |
|     Tensor _input_weights;
 | |
|     Tensor _weights;
 | |
|     Tensor _input;
 | |
|     Tensor _weights_transposed;
 | |
|     Tensor _output_highp;
 | |
|     Tensor _output_lowp;
 | |
|     Tensor _bias;
 | |
|     Tensor _forget_gate_input;
 | |
|     Tensor _input_gate_input;
 | |
|     Tensor _output_gate_input;
 | |
|     Tensor _input_modulation_gate_input;
 | |
|     Tensor _forget_gate_output;
 | |
|     Tensor _input_gate_output;
 | |
|     Tensor _output_gate_output;
 | |
|     Tensor _input_modulation_gate_output;
 | |
|     Tensor _cell_state1;
 | |
|     Tensor _cell_state2;
 | |
|     Tensor _output_state_tmp;
 | |
|     Tensor _output_state_out_symm;
 | |
|     Tensor _output_state_out_f32;
 | |
| 
 | |
|     bool _is_prepared;
 | |
| };
 | |
| } // namespace arm_compute
 | |
| #endif /* ARM_COMPUTE_NELSTMLAYERQUANTIZED_H */
 |