200 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			200 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2019 The Abseil Authors.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     https://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "absl/profiling/internal/exponential_biased.h"
 | |
| 
 | |
| #include <stddef.h>
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| #include <vector>
 | |
| 
 | |
| #include "gmock/gmock.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include "absl/strings/str_cat.h"
 | |
| 
 | |
| using ::testing::Ge;
 | |
| 
 | |
| namespace absl {
 | |
| ABSL_NAMESPACE_BEGIN
 | |
| namespace profiling_internal {
 | |
| 
 | |
| MATCHER_P2(IsBetween, a, b,
 | |
|            absl::StrCat(std::string(negation ? "isn't" : "is"), " between ", a,
 | |
|                         " and ", b)) {
 | |
|   return a <= arg && arg <= b;
 | |
| }
 | |
| 
 | |
| // Tests of the quality of the random numbers generated
 | |
| // This uses the Anderson Darling test for uniformity.
 | |
| // See "Evaluating the Anderson-Darling Distribution" by Marsaglia
 | |
| // for details.
 | |
| 
 | |
| // Short cut version of ADinf(z), z>0 (from Marsaglia)
 | |
| // This returns the p-value for Anderson Darling statistic in
 | |
| // the limit as n-> infinity. For finite n, apply the error fix below.
 | |
| double AndersonDarlingInf(double z) {
 | |
|   if (z < 2) {
 | |
|     return exp(-1.2337141 / z) / sqrt(z) *
 | |
|            (2.00012 +
 | |
|             (0.247105 -
 | |
|              (0.0649821 - (0.0347962 - (0.011672 - 0.00168691 * z) * z) * z) *
 | |
|                  z) *
 | |
|                 z);
 | |
|   }
 | |
|   return exp(
 | |
|       -exp(1.0776 -
 | |
|            (2.30695 -
 | |
|             (0.43424 - (0.082433 - (0.008056 - 0.0003146 * z) * z) * z) * z) *
 | |
|                z));
 | |
| }
 | |
| 
 | |
| // Corrects the approximation error in AndersonDarlingInf for small values of n
 | |
| // Add this to AndersonDarlingInf to get a better approximation
 | |
| // (from Marsaglia)
 | |
| double AndersonDarlingErrFix(int n, double x) {
 | |
|   if (x > 0.8) {
 | |
|     return (-130.2137 +
 | |
|             (745.2337 -
 | |
|              (1705.091 - (1950.646 - (1116.360 - 255.7844 * x) * x) * x) * x) *
 | |
|                 x) /
 | |
|            n;
 | |
|   }
 | |
|   double cutoff = 0.01265 + 0.1757 / n;
 | |
|   if (x < cutoff) {
 | |
|     double t = x / cutoff;
 | |
|     t = sqrt(t) * (1 - t) * (49 * t - 102);
 | |
|     return t * (0.0037 / (n * n) + 0.00078 / n + 0.00006) / n;
 | |
|   } else {
 | |
|     double t = (x - cutoff) / (0.8 - cutoff);
 | |
|     t = -0.00022633 +
 | |
|         (6.54034 - (14.6538 - (14.458 - (8.259 - 1.91864 * t) * t) * t) * t) *
 | |
|             t;
 | |
|     return t * (0.04213 + 0.01365 / n) / n;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Returns the AndersonDarling p-value given n and the value of the statistic
 | |
| double AndersonDarlingPValue(int n, double z) {
 | |
|   double ad = AndersonDarlingInf(z);
 | |
|   double errfix = AndersonDarlingErrFix(n, ad);
 | |
|   return ad + errfix;
 | |
| }
 | |
| 
 | |
| double AndersonDarlingStatistic(const std::vector<double>& random_sample) {
 | |
|   int n = random_sample.size();
 | |
|   double ad_sum = 0;
 | |
|   for (int i = 0; i < n; i++) {
 | |
|     ad_sum += (2 * i + 1) *
 | |
|               std::log(random_sample[i] * (1 - random_sample[n - 1 - i]));
 | |
|   }
 | |
|   double ad_statistic = -n - 1 / static_cast<double>(n) * ad_sum;
 | |
|   return ad_statistic;
 | |
| }
 | |
| 
 | |
| // Tests if the array of doubles is uniformly distributed.
 | |
| // Returns the p-value of the Anderson Darling Statistic
 | |
| // for the given set of sorted random doubles
 | |
| // See "Evaluating the Anderson-Darling Distribution" by
 | |
| // Marsaglia and Marsaglia for details.
 | |
| double AndersonDarlingTest(const std::vector<double>& random_sample) {
 | |
|   double ad_statistic = AndersonDarlingStatistic(random_sample);
 | |
|   double p = AndersonDarlingPValue(random_sample.size(), ad_statistic);
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| TEST(ExponentialBiasedTest, CoinTossDemoWithGetSkipCount) {
 | |
|   ExponentialBiased eb;
 | |
|   for (int runs = 0; runs < 10; ++runs) {
 | |
|     for (int flips = eb.GetSkipCount(1); flips > 0; --flips) {
 | |
|       printf("head...");
 | |
|     }
 | |
|     printf("tail\n");
 | |
|   }
 | |
|   int heads = 0;
 | |
|   for (int i = 0; i < 10000000; i += 1 + eb.GetSkipCount(1)) {
 | |
|     ++heads;
 | |
|   }
 | |
|   printf("Heads = %d (%f%%)\n", heads, 100.0 * heads / 10000000);
 | |
| }
 | |
| 
 | |
| TEST(ExponentialBiasedTest, SampleDemoWithStride) {
 | |
|   ExponentialBiased eb;
 | |
|   int stride = eb.GetStride(10);
 | |
|   int samples = 0;
 | |
|   for (int i = 0; i < 10000000; ++i) {
 | |
|     if (--stride == 0) {
 | |
|       ++samples;
 | |
|       stride = eb.GetStride(10);
 | |
|     }
 | |
|   }
 | |
|   printf("Samples = %d (%f%%)\n", samples, 100.0 * samples / 10000000);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Testing that NextRandom generates uniform random numbers. Applies the
 | |
| // Anderson-Darling test for uniformity
 | |
| TEST(ExponentialBiasedTest, TestNextRandom) {
 | |
|   for (auto n : std::vector<int>({
 | |
|            10,  // Check short-range correlation
 | |
|            100, 1000,
 | |
|            10000  // Make sure there's no systemic error
 | |
|        })) {
 | |
|     uint64_t x = 1;
 | |
|     // This assumes that the prng returns 48 bit numbers
 | |
|     uint64_t max_prng_value = static_cast<uint64_t>(1) << 48;
 | |
|     // Initialize.
 | |
|     for (int i = 1; i <= 20; i++) {
 | |
|       x = ExponentialBiased::NextRandom(x);
 | |
|     }
 | |
|     std::vector<uint64_t> int_random_sample(n);
 | |
|     // Collect samples
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       int_random_sample[i] = x;
 | |
|       x = ExponentialBiased::NextRandom(x);
 | |
|     }
 | |
|     // First sort them...
 | |
|     std::sort(int_random_sample.begin(), int_random_sample.end());
 | |
|     std::vector<double> random_sample(n);
 | |
|     // Convert them to uniform randoms (in the range [0,1])
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       random_sample[i] =
 | |
|           static_cast<double>(int_random_sample[i]) / max_prng_value;
 | |
|     }
 | |
|     // Now compute the Anderson-Darling statistic
 | |
|     double ad_pvalue = AndersonDarlingTest(random_sample);
 | |
|     EXPECT_GT(std::min(ad_pvalue, 1 - ad_pvalue), 0.0001)
 | |
|         << "prng is not uniform: n = " << n << " p = " << ad_pvalue;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // The generator needs to be available as a thread_local and as a static
 | |
| // variable.
 | |
| TEST(ExponentialBiasedTest, InitializationModes) {
 | |
|   ABSL_CONST_INIT static ExponentialBiased eb_static;
 | |
|   EXPECT_THAT(eb_static.GetSkipCount(2), Ge(0));
 | |
| 
 | |
| #ifdef ABSL_HAVE_THREAD_LOCAL
 | |
|   thread_local ExponentialBiased eb_thread;
 | |
|   EXPECT_THAT(eb_thread.GetSkipCount(2), Ge(0));
 | |
| #endif
 | |
| 
 | |
|   ExponentialBiased eb_stack;
 | |
|   EXPECT_THAT(eb_stack.GetSkipCount(2), Ge(0));
 | |
| }
 | |
| 
 | |
| }  // namespace profiling_internal
 | |
| ABSL_NAMESPACE_END
 | |
| }  // namespace absl
 |