620 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			620 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
| // RUN: %clang_cc1 -fsyntax-only -verify -fcxx-exceptions %s
 | |
| 
 | |
| //
 | |
| // Tests for "expression traits" intrinsics such as __is_lvalue_expr.
 | |
| //
 | |
| // For the time being, these tests are written against the 2003 C++
 | |
| // standard (ISO/IEC 14882:2003 -- see draft at
 | |
| // http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2001/n1316/).
 | |
| //
 | |
| // C++0x has its own, more-refined, idea of lvalues and rvalues.
 | |
| // If/when we need to support those, we'll need to track both
 | |
| // standard documents.
 | |
| 
 | |
| #if !__has_feature(cxx_static_assert)
 | |
| # define CONCAT_(X_, Y_) CONCAT1_(X_, Y_)
 | |
| # define CONCAT1_(X_, Y_) X_ ## Y_
 | |
| 
 | |
| // This emulation can be used multiple times on one line (and thus in
 | |
| // a macro), except at class scope
 | |
| # define static_assert(b_, m_) \
 | |
|   typedef int CONCAT_(sa_, __LINE__)[b_ ? 1 : -1]
 | |
| #endif
 | |
| 
 | |
| // Tests are broken down according to section of the C++03 standard
 | |
| // (ISO/IEC 14882:2003(E))
 | |
| 
 | |
| // Assertion macros encoding the following two paragraphs
 | |
| //
 | |
| // basic.lval/1 Every expression is either an lvalue or an rvalue.
 | |
| //
 | |
| // expr.prim/5 A parenthesized expression is a primary expression whose type
 | |
| // and value are identical to those of the enclosed expression. The
 | |
| // presence of parentheses does not affect whether the expression is
 | |
| // an lvalue.
 | |
| //
 | |
| // Note: these asserts cannot be made at class scope in C++03.  Put
 | |
| // them in a member function instead.
 | |
| #define ASSERT_LVALUE(expr)                                             \
 | |
|     static_assert(__is_lvalue_expr(expr), "should be an lvalue");       \
 | |
|     static_assert(__is_lvalue_expr((expr)),                             \
 | |
|                   "the presence of parentheses should have"             \
 | |
|                   " no effect on lvalueness (expr.prim/5)");            \
 | |
|     static_assert(!__is_rvalue_expr(expr), "should be an lvalue");      \
 | |
|     static_assert(!__is_rvalue_expr((expr)),                            \
 | |
|                   "the presence of parentheses should have"             \
 | |
|                   " no effect on lvalueness (expr.prim/5)")
 | |
| 
 | |
| #define ASSERT_RVALUE(expr);                                            \
 | |
|     static_assert(__is_rvalue_expr(expr), "should be an rvalue");       \
 | |
|     static_assert(__is_rvalue_expr((expr)),                             \
 | |
|                   "the presence of parentheses should have"             \
 | |
|                   " no effect on lvalueness (expr.prim/5)");            \
 | |
|     static_assert(!__is_lvalue_expr(expr), "should be an rvalue");      \
 | |
|     static_assert(!__is_lvalue_expr((expr)),                            \
 | |
|                   "the presence of parentheses should have"             \
 | |
|                   " no effect on lvalueness (expr.prim/5)")
 | |
| 
 | |
| enum Enum { Enumerator };
 | |
| 
 | |
| int ReturnInt();
 | |
| void ReturnVoid();
 | |
| Enum ReturnEnum();
 | |
| 
 | |
| void basic_lval_5()
 | |
| {
 | |
|     // basic.lval/5: The result of calling a function that does not return
 | |
|     // a reference is an rvalue.
 | |
|     ASSERT_RVALUE(ReturnInt());
 | |
|     ASSERT_RVALUE(ReturnVoid());
 | |
|     ASSERT_RVALUE(ReturnEnum());
 | |
| }
 | |
| 
 | |
| int& ReturnIntReference();
 | |
| extern Enum& ReturnEnumReference();
 | |
| 
 | |
| void basic_lval_6()
 | |
| {
 | |
|     // basic.lval/6: An expression which holds a temporary object resulting
 | |
|     // from a cast to a nonreference type is an rvalue (this includes
 | |
|     // the explicit creation of an object using functional notation
 | |
|     struct IntClass
 | |
|     {
 | |
|         explicit IntClass(int = 0);
 | |
|         IntClass(char const*);
 | |
|         operator int() const;
 | |
|     };
 | |
|     
 | |
|     struct ConvertibleToIntClass
 | |
|     {
 | |
|         operator IntClass() const;
 | |
|     };
 | |
| 
 | |
|     ConvertibleToIntClass b;
 | |
| 
 | |
|     // Make sure even trivial conversions are not detected as lvalues
 | |
|     int intLvalue = 0;
 | |
|     ASSERT_RVALUE((int)intLvalue);
 | |
|     ASSERT_RVALUE((short)intLvalue);
 | |
|     ASSERT_RVALUE((long)intLvalue);
 | |
|     
 | |
|     // Same tests with function-call notation
 | |
|     ASSERT_RVALUE(int(intLvalue));
 | |
|     ASSERT_RVALUE(short(intLvalue));
 | |
|     ASSERT_RVALUE(long(intLvalue));
 | |
| 
 | |
|     char charLValue = 'x';
 | |
|     ASSERT_RVALUE((signed char)charLValue);
 | |
|     ASSERT_RVALUE((unsigned char)charLValue);
 | |
| 
 | |
|     ASSERT_RVALUE(static_cast<int>(IntClass()));
 | |
|     IntClass intClassLValue;
 | |
|     ASSERT_RVALUE(static_cast<int>(intClassLValue)); 
 | |
|     ASSERT_RVALUE(static_cast<IntClass>(ConvertibleToIntClass()));
 | |
|     ConvertibleToIntClass convertibleToIntClassLValue;
 | |
|     ASSERT_RVALUE(static_cast<IntClass>(convertibleToIntClassLValue));
 | |
|     
 | |
| 
 | |
|     typedef signed char signed_char;
 | |
|     typedef unsigned char unsigned_char;
 | |
|     ASSERT_RVALUE(signed_char(charLValue));
 | |
|     ASSERT_RVALUE(unsigned_char(charLValue));
 | |
| 
 | |
|     ASSERT_RVALUE(int(IntClass()));
 | |
|     ASSERT_RVALUE(int(intClassLValue)); 
 | |
|     ASSERT_RVALUE(IntClass(ConvertibleToIntClass()));
 | |
|     ASSERT_RVALUE(IntClass(convertibleToIntClassLValue));
 | |
| }
 | |
| 
 | |
| void conv_ptr_1()
 | |
| {
 | |
|     // conv.ptr/1: A null pointer constant is an integral constant
 | |
|     // expression (5.19) rvalue of integer type that evaluates to
 | |
|     // zero.
 | |
|     ASSERT_RVALUE(0);
 | |
| }
 | |
| 
 | |
| void expr_6()
 | |
| {
 | |
|     // expr/6: If an expression initially has the type "reference to T"
 | |
|     // (8.3.2, 8.5.3), ... the expression is an lvalue.
 | |
|     int x = 0;
 | |
|     int& referenceToInt = x;
 | |
|     ASSERT_LVALUE(referenceToInt);
 | |
|     ASSERT_LVALUE(ReturnIntReference());
 | |
| }
 | |
| 
 | |
| void expr_prim_2()
 | |
| {
 | |
|     // 5.1/2 A string literal is an lvalue; all other
 | |
|     // literals are rvalues.
 | |
|     ASSERT_LVALUE("foo");
 | |
|     ASSERT_RVALUE(1);
 | |
|     ASSERT_RVALUE(1.2);
 | |
|     ASSERT_RVALUE(10UL);
 | |
| }
 | |
| 
 | |
| void expr_prim_3()
 | |
| {
 | |
|     // 5.1/3: The keyword "this" names a pointer to the object for
 | |
|     // which a nonstatic member function (9.3.2) is invoked. ...The
 | |
|     // expression is an rvalue.
 | |
|     struct ThisTest
 | |
|     {
 | |
|         void f() { ASSERT_RVALUE(this); }
 | |
|     };
 | |
| }
 | |
| 
 | |
| extern int variable;
 | |
| void Function();
 | |
| 
 | |
| struct BaseClass
 | |
| {
 | |
|     virtual ~BaseClass();
 | |
|     
 | |
|     int BaseNonstaticMemberFunction();
 | |
|     static int BaseStaticMemberFunction();
 | |
|     int baseDataMember;
 | |
| };
 | |
| 
 | |
| struct Class : BaseClass
 | |
| {
 | |
|     static void function();
 | |
|     static int variable;
 | |
| 
 | |
|     template <class T>
 | |
|     struct NestedClassTemplate {};
 | |
| 
 | |
|     template <class T>
 | |
|     static int& NestedFuncTemplate() { return variable; }  // expected-note{{possible target for call}}
 | |
| 
 | |
|     template <class T>
 | |
|     int& NestedMemfunTemplate() { return variable; } // expected-note{{possible target for call}}
 | |
| 
 | |
|     int operator*() const;
 | |
| 
 | |
|     template <class T>
 | |
|     int operator+(T) const; // expected-note{{possible target for call}}
 | |
| 
 | |
|     int NonstaticMemberFunction();
 | |
|     static int StaticMemberFunction();
 | |
|     int dataMember;
 | |
| 
 | |
|     int& referenceDataMember;
 | |
|     static int& staticReferenceDataMember;
 | |
|     static int staticNonreferenceDataMember;
 | |
| 
 | |
|     enum Enum { Enumerator };
 | |
| 
 | |
|     operator long() const;
 | |
|     
 | |
|     Class();
 | |
|     Class(int,int);
 | |
| 
 | |
|     void expr_prim_4()
 | |
|     {
 | |
|         // 5.1/4: The operator :: followed by an identifier, a
 | |
|         // qualified-id, or an operator-function-id is a primary-
 | |
|         // expression. ...The result is an lvalue if the entity is
 | |
|         // a function or variable.
 | |
|         ASSERT_LVALUE(::Function);         // identifier: function
 | |
|         ASSERT_LVALUE(::variable);         // identifier: variable
 | |
| 
 | |
|         // the only qualified-id form that can start without "::" (and thus
 | |
|         // be legal after "::" ) is
 | |
|         //
 | |
|         // ::<sub>opt</sub> nested-name-specifier template<sub>opt</sub> unqualified-id
 | |
|         ASSERT_LVALUE(::Class::function);  // qualified-id: function
 | |
|         ASSERT_LVALUE(::Class::variable);  // qualified-id: variable
 | |
| 
 | |
|         // The standard doesn't give a clear answer about whether these
 | |
|         // should really be lvalues or rvalues without some surrounding
 | |
|         // context that forces them to be interpreted as naming a
 | |
|         // particular function template specialization (that situation
 | |
|         // doesn't come up in legal pure C++ programs). This language
 | |
|         // extension simply rejects them as requiring additional context
 | |
|         __is_lvalue_expr(::Class::NestedFuncTemplate);    // qualified-id: template \
 | |
|         // expected-error{{reference to overloaded function could not be resolved; did you mean to call it?}}
 | |
|         
 | |
|         __is_lvalue_expr(::Class::NestedMemfunTemplate);  // qualified-id: template \
 | |
|         // expected-error{{reference to non-static member function must be called}}
 | |
|         
 | |
|         __is_lvalue_expr(::Class::operator+);             // operator-function-id: template \
 | |
|         // expected-error{{reference to non-static member function must be called}}
 | |
| 
 | |
|         //ASSERT_RVALUE(::Class::operator*);         // operator-function-id: member function
 | |
|     }
 | |
| 
 | |
|     void expr_prim_7()
 | |
|     {
 | |
|         // expr.prim/7 An identifier is an id-expression provided it has been
 | |
|         // suitably declared (clause 7). [Note: ... ] The type of the
 | |
|         // expression is the type of the identifier. The result is the
 | |
|         // entity denoted by the identifier. The result is an lvalue if
 | |
|         // the entity is a function, variable, or data member... (cont'd)
 | |
|         ASSERT_LVALUE(Function);        // identifier: function
 | |
|         ASSERT_LVALUE(StaticMemberFunction);        // identifier: function
 | |
|         ASSERT_LVALUE(variable);        // identifier: variable
 | |
|         ASSERT_LVALUE(dataMember);      // identifier: data member
 | |
|         //ASSERT_RVALUE(NonstaticMemberFunction); // identifier: member function
 | |
| 
 | |
|         // (cont'd)...A nested-name-specifier that names a class,
 | |
|         // optionally followed by the keyword template (14.2), and then
 | |
|         // followed by the name of a member of either that class (9.2) or
 | |
|         // one of its base classes... is a qualified-id... The result is
 | |
|         // the member. The type of the result is the type of the
 | |
|         // member. The result is an lvalue if the member is a static
 | |
|         // member function or a data member.
 | |
|         ASSERT_LVALUE(Class::dataMember);
 | |
|         ASSERT_LVALUE(Class::StaticMemberFunction);
 | |
|         //ASSERT_RVALUE(Class::NonstaticMemberFunction); // identifier: member function
 | |
| 
 | |
|         ASSERT_LVALUE(Class::baseDataMember);
 | |
|         ASSERT_LVALUE(Class::BaseStaticMemberFunction);
 | |
|         //ASSERT_RVALUE(Class::BaseNonstaticMemberFunction); // identifier: member function
 | |
|     }
 | |
| };
 | |
| 
 | |
| void expr_call_10()
 | |
| {
 | |
|     // expr.call/10: A function call is an lvalue if and only if the
 | |
|     // result type is a reference.  This statement is partially
 | |
|     // redundant with basic.lval/5
 | |
|     basic_lval_5();
 | |
|     
 | |
|     ASSERT_LVALUE(ReturnIntReference());
 | |
|     ASSERT_LVALUE(ReturnEnumReference());
 | |
| }
 | |
| 
 | |
| namespace Namespace
 | |
| {
 | |
|   int x;
 | |
|   void function();
 | |
| }
 | |
| 
 | |
| void expr_prim_8()
 | |
| {
 | |
|     // expr.prim/8 A nested-name-specifier that names a namespace
 | |
|     // (7.3), followed by the name of a member of that namespace (or
 | |
|     // the name of a member of a namespace made visible by a
 | |
|     // using-directive ) is a qualified-id; 3.4.3.2 describes name
 | |
|     // lookup for namespace members that appear in qualified-ids. The
 | |
|     // result is the member. The type of the result is the type of the
 | |
|     // member. The result is an lvalue if the member is a function or
 | |
|     // a variable.
 | |
|     ASSERT_LVALUE(Namespace::x);
 | |
|     ASSERT_LVALUE(Namespace::function);
 | |
| }
 | |
| 
 | |
| void expr_sub_1(int* pointer)
 | |
| {
 | |
|     // expr.sub/1 A postfix expression followed by an expression in
 | |
|     // square brackets is a postfix expression. One of the expressions
 | |
|     // shall have the type "pointer to T" and the other shall have
 | |
|     // enumeration or integral type. The result is an lvalue of type
 | |
|     // "T."
 | |
|     ASSERT_LVALUE(pointer[1]);
 | |
|     
 | |
|     // The expression E1[E2] is identical (by definition) to *((E1)+(E2)).
 | |
|     ASSERT_LVALUE(*(pointer+1));
 | |
| }
 | |
| 
 | |
| void expr_type_conv_1()
 | |
| {
 | |
|     // expr.type.conv/1 A simple-type-specifier (7.1.5) followed by a
 | |
|     // parenthesized expression-list constructs a value of the specified
 | |
|     // type given the expression list. ... If the expression list
 | |
|     // specifies more than a single value, the type shall be a class with
 | |
|     // a suitably declared constructor (8.5, 12.1), and the expression
 | |
|     // T(x1, x2, ...) is equivalent in effect to the declaration T t(x1,
 | |
|     // x2, ...); for some invented temporary variable t, with the result
 | |
|     // being the value of t as an rvalue.
 | |
|     ASSERT_RVALUE(Class(2,2));
 | |
| }
 | |
| 
 | |
| void expr_type_conv_2()
 | |
| {
 | |
|     // expr.type.conv/2 The expression T(), where T is a
 | |
|     // simple-type-specifier (7.1.5.2) for a non-array complete object
 | |
|     // type or the (possibly cv-qualified) void type, creates an
 | |
|     // rvalue of the specified type,
 | |
|     ASSERT_RVALUE(int());
 | |
|     ASSERT_RVALUE(Class());
 | |
|     ASSERT_RVALUE(void());
 | |
| }
 | |
| 
 | |
| 
 | |
| void expr_ref_4()
 | |
| {
 | |
|     // Applies to expressions of the form E1.E2
 | |
|     
 | |
|     // If E2 is declared to have type "reference to T", then E1.E2 is
 | |
|     // an lvalue;.... Otherwise, one of the following rules applies.
 | |
|     ASSERT_LVALUE(Class().staticReferenceDataMember);
 | |
|     ASSERT_LVALUE(Class().referenceDataMember);
 | |
|     
 | |
|     // - If E2 is a static data member, and the type of E2 is T, then
 | |
|     // E1.E2 is an lvalue; ...
 | |
|     ASSERT_LVALUE(Class().staticNonreferenceDataMember);
 | |
|     ASSERT_LVALUE(Class().staticReferenceDataMember);
 | |
| 
 | |
| 
 | |
|     // - If E2 is a non-static data member, ... If E1 is an lvalue,
 | |
|     // then E1.E2 is an lvalue...
 | |
|     Class lvalue;
 | |
|     ASSERT_LVALUE(lvalue.dataMember);
 | |
|     ASSERT_RVALUE(Class().dataMember);
 | |
| 
 | |
|     // - If E1.E2 refers to a static member function, ... then E1.E2
 | |
|     // is an lvalue
 | |
|     ASSERT_LVALUE(Class().StaticMemberFunction);
 | |
|     
 | |
|     // - Otherwise, if E1.E2 refers to a non-static member function,
 | |
|     // then E1.E2 is not an lvalue.
 | |
|     //ASSERT_RVALUE(Class().NonstaticMemberFunction);
 | |
| 
 | |
|     // - If E2 is a member enumerator, and the type of E2 is T, the
 | |
|     // expression E1.E2 is not an lvalue. The type of E1.E2 is T.
 | |
|     ASSERT_RVALUE(Class().Enumerator);
 | |
|     ASSERT_RVALUE(lvalue.Enumerator);
 | |
| }
 | |
| 
 | |
| 
 | |
| void expr_post_incr_1(int x)
 | |
| {
 | |
|     // expr.post.incr/1 The value obtained by applying a postfix ++ is
 | |
|     // the value that the operand had before applying the
 | |
|     // operator... The result is an rvalue.
 | |
|     ASSERT_RVALUE(x++);
 | |
| }
 | |
| 
 | |
| void expr_dynamic_cast_2()
 | |
| {
 | |
|     // expr.dynamic.cast/2: If T is a pointer type, v shall be an
 | |
|     // rvalue of a pointer to complete class type, and the result is
 | |
|     // an rvalue of type T.
 | |
|     Class instance;
 | |
|     ASSERT_RVALUE(dynamic_cast<Class*>(&instance));
 | |
| 
 | |
|     // If T is a reference type, v shall be an
 | |
|     // lvalue of a complete class type, and the result is an lvalue of
 | |
|     // the type referred to by T.
 | |
|     ASSERT_LVALUE(dynamic_cast<Class&>(instance));
 | |
| }
 | |
| 
 | |
| void expr_dynamic_cast_5()
 | |
| {
 | |
|     // expr.dynamic.cast/5: If T is "reference to cv1 B" and v has type
 | |
|     // "cv2 D" such that B is a base class of D, the result is an
 | |
|     // lvalue for the unique B sub-object of the D object referred
 | |
|     // to by v.
 | |
|     typedef BaseClass B;
 | |
|     typedef Class D;
 | |
|     D object;
 | |
|     ASSERT_LVALUE(dynamic_cast<B&>(object));
 | |
| }
 | |
| 
 | |
| // expr.dynamic.cast/8: The run-time check logically executes as follows:
 | |
| //
 | |
| // - If, in the most derived object pointed (referred) to by v, v
 | |
| // points (refers) to a public base class subobject of a T object, and
 | |
| // if only one object of type T is derived from the sub-object pointed
 | |
| // (referred) to by v, the result is a pointer (an lvalue referring)
 | |
| // to that T object.
 | |
| //
 | |
| // - Otherwise, if v points (refers) to a public base class sub-object
 | |
| // of the most derived object, and the type of the most derived object
 | |
| // has a base class, of type T, that is unambiguous and public, the
 | |
| // result is a pointer (an lvalue referring) to the T sub-object of
 | |
| // the most derived object.
 | |
| //
 | |
| // The mention of "lvalue" in the text above appears to be a
 | |
| // defect that is being corrected by the response to UK65 (see
 | |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2841.html).
 | |
| 
 | |
| #if 0
 | |
| void expr_typeid_1()
 | |
| {
 | |
|     // expr.typeid/1: The result of a typeid expression is an lvalue...
 | |
|     ASSERT_LVALUE(typeid(1));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void expr_static_cast_1(int x)
 | |
| {
 | |
|     // expr.static.cast/1: The result of the expression
 | |
|     // static_cast<T>(v) is the result of converting the expression v
 | |
|     // to type T. If T is a reference type, the result is an lvalue;
 | |
|     // otherwise, the result is an rvalue.
 | |
|     ASSERT_LVALUE(static_cast<int&>(x));
 | |
|     ASSERT_RVALUE(static_cast<int>(x));
 | |
| }
 | |
| 
 | |
| void expr_reinterpret_cast_1()
 | |
| {
 | |
|     // expr.reinterpret.cast/1: The result of the expression
 | |
|     // reinterpret_cast<T>(v) is the result of converting the
 | |
|     // expression v to type T. If T is a reference type, the result is
 | |
|     // an lvalue; otherwise, the result is an rvalue
 | |
|     ASSERT_RVALUE(reinterpret_cast<int*>(0));
 | |
|     char const v = 0;
 | |
|     ASSERT_LVALUE(reinterpret_cast<char const&>(v));
 | |
| }
 | |
| 
 | |
| void expr_unary_op_1(int* pointer, struct incomplete* pointerToIncompleteType)
 | |
| {
 | |
|     // expr.unary.op/1: The unary * operator performs indirection: the
 | |
|     // expression to which it is applied shall be a pointer to an
 | |
|     // object type, or a pointer to a function type and the result is
 | |
|     // an lvalue referring to the object or function to which the
 | |
|     // expression points.  
 | |
|     ASSERT_LVALUE(*pointer);
 | |
|     ASSERT_LVALUE(*Function);
 | |
| 
 | |
|     // [Note: a pointer to an incomplete type
 | |
|     // (other than cv void ) can be dereferenced. ]
 | |
|     ASSERT_LVALUE(*pointerToIncompleteType);
 | |
| }
 | |
| 
 | |
| void expr_pre_incr_1(int operand)
 | |
| {
 | |
|     // expr.pre.incr/1: The operand of prefix ++ ... shall be a
 | |
|     // modifiable lvalue.... The value is the new value of the
 | |
|     // operand; it is an lvalue.
 | |
|     ASSERT_LVALUE(++operand);
 | |
| }
 | |
| 
 | |
| void expr_cast_1(int x)
 | |
| {
 | |
|     // expr.cast/1: The result of the expression (T) cast-expression
 | |
|     // is of type T. The result is an lvalue if T is a reference type,
 | |
|     // otherwise the result is an rvalue.
 | |
|     ASSERT_LVALUE((void(&)())expr_cast_1);
 | |
|     ASSERT_LVALUE((int&)x);
 | |
|     ASSERT_RVALUE((void(*)())expr_cast_1);
 | |
|     ASSERT_RVALUE((int)x);
 | |
| }
 | |
| 
 | |
| void expr_mptr_oper()
 | |
| {
 | |
|     // expr.mptr.oper/6: The result of a .* expression is an lvalue
 | |
|     // only if its first operand is an lvalue and its second operand
 | |
|     // is a pointer to data member... (cont'd)
 | |
|     typedef Class MakeRValue;
 | |
|     ASSERT_RVALUE(MakeRValue().*(&Class::dataMember));
 | |
|     //ASSERT_RVALUE(MakeRValue().*(&Class::NonstaticMemberFunction));
 | |
|     Class lvalue;
 | |
|     ASSERT_LVALUE(lvalue.*(&Class::dataMember));
 | |
|     //ASSERT_RVALUE(lvalue.*(&Class::NonstaticMemberFunction));
 | |
|     
 | |
|     // (cont'd)...The result of an ->* expression is an lvalue only
 | |
|     // if its second operand is a pointer to data member. If the
 | |
|     // second operand is the null pointer to member value (4.11), the
 | |
|     // behavior is undefined.
 | |
|     ASSERT_LVALUE((&lvalue)->*(&Class::dataMember));
 | |
|     //ASSERT_RVALUE((&lvalue)->*(&Class::NonstaticMemberFunction));
 | |
| }
 | |
| 
 | |
| void expr_cond(bool cond)
 | |
| {
 | |
|     // 5.16 Conditional operator [expr.cond]
 | |
|     //
 | |
|     // 2 If either the second or the third operand has type (possibly
 | |
|     // cv-qualified) void, one of the following shall hold:
 | |
|     //
 | |
|     // - The second or the third operand (but not both) is a
 | |
|     // (possibly parenthesized) throw-expression (15.1); the result
 | |
|     // is of the type and value category of the other.
 | |
| 
 | |
|     Class classLvalue;
 | |
|     ASSERT_RVALUE(cond ? throw 1 : (void)0);
 | |
|     ASSERT_RVALUE(cond ? (void)0 : throw 1);
 | |
|     ASSERT_RVALUE(cond ? throw 1 : 0);
 | |
|     ASSERT_RVALUE(cond ? 0 : throw 1);
 | |
|     ASSERT_LVALUE(cond ? throw 1 : classLvalue);
 | |
|     ASSERT_LVALUE(cond ? classLvalue : throw 1);
 | |
| 
 | |
|     // - Both the second and the third operands have type void; the result
 | |
|     // is of type void and is an rvalue. [Note: this includes the case
 | |
|     // where both operands are throw-expressions. ]
 | |
|     ASSERT_RVALUE(cond ? (void)1 : (void)0);
 | |
|     ASSERT_RVALUE(cond ? throw 1 : throw 0);
 | |
|     
 | |
|     // expr.cond/4: If the second and third operands are lvalues and
 | |
|     // have the same type, the result is of that type and is an
 | |
|     // lvalue.
 | |
|     ASSERT_LVALUE(cond ? classLvalue : classLvalue);
 | |
|     int intLvalue = 0;
 | |
|     ASSERT_LVALUE(cond ? intLvalue : intLvalue);
 | |
|     
 | |
|     // expr.cond/5:Otherwise, the result is an rvalue.
 | |
|     typedef Class MakeRValue;
 | |
|     ASSERT_RVALUE(cond ? MakeRValue() : classLvalue);
 | |
|     ASSERT_RVALUE(cond ? classLvalue : MakeRValue());
 | |
|     ASSERT_RVALUE(cond ? MakeRValue() : MakeRValue());
 | |
|     ASSERT_RVALUE(cond ? classLvalue : intLvalue);
 | |
|     ASSERT_RVALUE(cond ? intLvalue : int());
 | |
| }
 | |
| 
 | |
| void expr_ass_1(int x)
 | |
| {
 | |
|     // expr.ass/1: There are several assignment operators, all of
 | |
|     // which group right-to-left. All require a modifiable lvalue as
 | |
|     // their left operand, and the type of an assignment expression is
 | |
|     // that of its left operand. The result of the assignment
 | |
|     // operation is the value stored in the left operand after the
 | |
|     // assignment has taken place; the result is an lvalue.
 | |
|     ASSERT_LVALUE(x = 1);
 | |
|     ASSERT_LVALUE(x += 1);
 | |
|     ASSERT_LVALUE(x -= 1);
 | |
|     ASSERT_LVALUE(x *= 1);
 | |
|     ASSERT_LVALUE(x /= 1);
 | |
|     ASSERT_LVALUE(x %= 1);
 | |
|     ASSERT_LVALUE(x ^= 1);
 | |
|     ASSERT_LVALUE(x &= 1);
 | |
|     ASSERT_LVALUE(x |= 1);
 | |
| }
 | |
| 
 | |
| void expr_comma(int x)
 | |
| {
 | |
|     // expr.comma: A pair of expressions separated by a comma is
 | |
|     // evaluated left-to-right and the value of the left expression is
 | |
|     // discarded... result is an lvalue if its right operand is.
 | |
| 
 | |
|     // Can't use the ASSERT_XXXX macros without adding parens around
 | |
|     // the comma expression.
 | |
|     static_assert(__is_lvalue_expr(x,x), "expected an lvalue");
 | |
|     static_assert(__is_rvalue_expr(x,1), "expected an rvalue");
 | |
|     static_assert(__is_lvalue_expr(1,x), "expected an lvalue");
 | |
|     static_assert(__is_rvalue_expr(1,1), "expected an rvalue");
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| template<typename T> void f();
 | |
| 
 | |
| // FIXME These currently fail
 | |
| void expr_fun_lvalue()
 | |
| {
 | |
|   ASSERT_LVALUE(&f<int>);
 | |
| }
 | |
| 
 | |
| void expr_fun_rvalue()
 | |
| {
 | |
|   ASSERT_RVALUE(f<int>);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| template <int NonTypeNonReferenceParameter, int& NonTypeReferenceParameter>
 | |
| void check_temp_param_6()
 | |
| {
 | |
|     ASSERT_RVALUE(NonTypeNonReferenceParameter);
 | |
|     ASSERT_LVALUE(NonTypeReferenceParameter);
 | |
| }
 | |
| 
 | |
| int AnInt = 0;
 | |
| 
 | |
| void temp_param_6()
 | |
| {
 | |
|     check_temp_param_6<3,AnInt>();
 | |
| }
 |