3599 lines
		
	
	
		
			108 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3599 lines
		
	
	
		
			108 KiB
		
	
	
	
		
			C
		
	
	
	
| /***************************************************************************
 | |
|  *                                  _   _ ____  _
 | |
|  *  Project                     ___| | | |  _ \| |
 | |
|  *                             / __| | | | |_) | |
 | |
|  *                            | (__| |_| |  _ <| |___
 | |
|  *                             \___|\___/|_| \_\_____|
 | |
|  *
 | |
|  * Copyright (C) 1998 - 2021, Daniel Stenberg, <daniel@haxx.se>, et al.
 | |
|  *
 | |
|  * This software is licensed as described in the file COPYING, which
 | |
|  * you should have received as part of this distribution. The terms
 | |
|  * are also available at https://curl.se/docs/copyright.html.
 | |
|  *
 | |
|  * You may opt to use, copy, modify, merge, publish, distribute and/or sell
 | |
|  * copies of the Software, and permit persons to whom the Software is
 | |
|  * furnished to do so, under the terms of the COPYING file.
 | |
|  *
 | |
|  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 | |
|  * KIND, either express or implied.
 | |
|  *
 | |
|  ***************************************************************************/
 | |
| 
 | |
| #include "curl_setup.h"
 | |
| 
 | |
| #include <curl/curl.h>
 | |
| 
 | |
| #include "urldata.h"
 | |
| #include "transfer.h"
 | |
| #include "url.h"
 | |
| #include "connect.h"
 | |
| #include "progress.h"
 | |
| #include "easyif.h"
 | |
| #include "share.h"
 | |
| #include "psl.h"
 | |
| #include "multiif.h"
 | |
| #include "sendf.h"
 | |
| #include "timeval.h"
 | |
| #include "http.h"
 | |
| #include "select.h"
 | |
| #include "warnless.h"
 | |
| #include "speedcheck.h"
 | |
| #include "conncache.h"
 | |
| #include "multihandle.h"
 | |
| #include "sigpipe.h"
 | |
| #include "vtls/vtls.h"
 | |
| #include "connect.h"
 | |
| #include "http_proxy.h"
 | |
| #include "http2.h"
 | |
| #include "socketpair.h"
 | |
| #include "socks.h"
 | |
| /* The last 3 #include files should be in this order */
 | |
| #include "curl_printf.h"
 | |
| #include "curl_memory.h"
 | |
| #include "memdebug.h"
 | |
| 
 | |
| /*
 | |
|   CURL_SOCKET_HASH_TABLE_SIZE should be a prime number. Increasing it from 97
 | |
|   to 911 takes on a 32-bit machine 4 x 804 = 3211 more bytes.  Still, every
 | |
|   CURL handle takes 45-50 K memory, therefore this 3K are not significant.
 | |
| */
 | |
| #ifndef CURL_SOCKET_HASH_TABLE_SIZE
 | |
| #define CURL_SOCKET_HASH_TABLE_SIZE 911
 | |
| #endif
 | |
| 
 | |
| #ifndef CURL_CONNECTION_HASH_SIZE
 | |
| #define CURL_CONNECTION_HASH_SIZE 97
 | |
| #endif
 | |
| 
 | |
| #define CURL_MULTI_HANDLE 0x000bab1e
 | |
| 
 | |
| #define GOOD_MULTI_HANDLE(x) \
 | |
|   ((x) && (x)->magic == CURL_MULTI_HANDLE)
 | |
| 
 | |
| static CURLMcode singlesocket(struct Curl_multi *multi,
 | |
|                               struct Curl_easy *data);
 | |
| static CURLMcode add_next_timeout(struct curltime now,
 | |
|                                   struct Curl_multi *multi,
 | |
|                                   struct Curl_easy *d);
 | |
| static CURLMcode multi_timeout(struct Curl_multi *multi,
 | |
|                                long *timeout_ms);
 | |
| static void process_pending_handles(struct Curl_multi *multi);
 | |
| 
 | |
| #ifdef DEBUGBUILD
 | |
| static const char * const statename[]={
 | |
|   "INIT",
 | |
|   "PENDING",
 | |
|   "CONNECT",
 | |
|   "RESOLVING",
 | |
|   "CONNECTING",
 | |
|   "TUNNELING",
 | |
|   "PROTOCONNECT",
 | |
|   "PROTOCONNECTING",
 | |
|   "DO",
 | |
|   "DOING",
 | |
|   "DOING_MORE",
 | |
|   "DID",
 | |
|   "PERFORMING",
 | |
|   "RATELIMITING",
 | |
|   "DONE",
 | |
|   "COMPLETED",
 | |
|   "MSGSENT",
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /* function pointer called once when switching TO a state */
 | |
| typedef void (*init_multistate_func)(struct Curl_easy *data);
 | |
| 
 | |
| /* called in DID state, before PERFORMING state */
 | |
| static void before_perform(struct Curl_easy *data)
 | |
| {
 | |
|   data->req.chunk = FALSE;
 | |
|   Curl_pgrsTime(data, TIMER_PRETRANSFER);
 | |
| }
 | |
| 
 | |
| static void init_completed(struct Curl_easy *data)
 | |
| {
 | |
|   /* this is a completed transfer */
 | |
| 
 | |
|   /* Important: reset the conn pointer so that we don't point to memory
 | |
|      that could be freed anytime */
 | |
|   Curl_detach_connnection(data);
 | |
|   Curl_expire_clear(data); /* stop all timers */
 | |
| }
 | |
| 
 | |
| /* always use this function to change state, to make debugging easier */
 | |
| static void mstate(struct Curl_easy *data, CURLMstate state
 | |
| #ifdef DEBUGBUILD
 | |
|                    , int lineno
 | |
| #endif
 | |
| )
 | |
| {
 | |
|   CURLMstate oldstate = data->mstate;
 | |
|   static const init_multistate_func finit[MSTATE_LAST] = {
 | |
|     NULL,              /* INIT */
 | |
|     NULL,              /* PENDING */
 | |
|     Curl_init_CONNECT, /* CONNECT */
 | |
|     NULL,              /* RESOLVING */
 | |
|     NULL,              /* CONNECTING */
 | |
|     NULL,              /* TUNNELING */
 | |
|     NULL,              /* PROTOCONNECT */
 | |
|     NULL,              /* PROTOCONNECTING */
 | |
|     Curl_connect_free, /* DO */
 | |
|     NULL,              /* DOING */
 | |
|     NULL,              /* DOING_MORE */
 | |
|     before_perform,    /* DID */
 | |
|     NULL,              /* PERFORMING */
 | |
|     NULL,              /* RATELIMITING */
 | |
|     NULL,              /* DONE */
 | |
|     init_completed,    /* COMPLETED */
 | |
|     NULL               /* MSGSENT */
 | |
|   };
 | |
| 
 | |
| #if defined(DEBUGBUILD) && defined(CURL_DISABLE_VERBOSE_STRINGS)
 | |
|   (void) lineno;
 | |
| #endif
 | |
| 
 | |
|   if(oldstate == state)
 | |
|     /* don't bother when the new state is the same as the old state */
 | |
|     return;
 | |
| 
 | |
|   data->mstate = state;
 | |
| 
 | |
| #if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS)
 | |
|   if(data->mstate >= MSTATE_PENDING &&
 | |
|      data->mstate < MSTATE_COMPLETED) {
 | |
|     long connection_id = -5000;
 | |
| 
 | |
|     if(data->conn)
 | |
|       connection_id = data->conn->connection_id;
 | |
| 
 | |
|     infof(data,
 | |
|           "STATE: %s => %s handle %p; line %d (connection #%ld)",
 | |
|           statename[oldstate], statename[data->mstate],
 | |
|           (void *)data, lineno, connection_id);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if(state == MSTATE_COMPLETED) {
 | |
|     /* changing to COMPLETED means there's one less easy handle 'alive' */
 | |
|     DEBUGASSERT(data->multi->num_alive > 0);
 | |
|     data->multi->num_alive--;
 | |
|   }
 | |
| 
 | |
|   /* if this state has an init-function, run it */
 | |
|   if(finit[state])
 | |
|     finit[state](data);
 | |
| }
 | |
| 
 | |
| #ifndef DEBUGBUILD
 | |
| #define multistate(x,y) mstate(x,y)
 | |
| #else
 | |
| #define multistate(x,y) mstate(x,y, __LINE__)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * We add one of these structs to the sockhash for each socket
 | |
|  */
 | |
| 
 | |
| struct Curl_sh_entry {
 | |
|   struct Curl_hash transfers; /* hash of transfers using this socket */
 | |
|   unsigned int action;  /* what combined action READ/WRITE this socket waits
 | |
|                            for */
 | |
|   unsigned int users; /* number of transfers using this */
 | |
|   void *socketp; /* settable by users with curl_multi_assign() */
 | |
|   unsigned int readers; /* this many transfers want to read */
 | |
|   unsigned int writers; /* this many transfers want to write */
 | |
| };
 | |
| /* bits for 'action' having no bits means this socket is not expecting any
 | |
|    action */
 | |
| #define SH_READ  1
 | |
| #define SH_WRITE 2
 | |
| 
 | |
| /* look up a given socket in the socket hash, skip invalid sockets */
 | |
| static struct Curl_sh_entry *sh_getentry(struct Curl_hash *sh,
 | |
|                                          curl_socket_t s)
 | |
| {
 | |
|   if(s != CURL_SOCKET_BAD) {
 | |
|     /* only look for proper sockets */
 | |
|     return Curl_hash_pick(sh, (char *)&s, sizeof(curl_socket_t));
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| #define TRHASH_SIZE 13
 | |
| static size_t trhash(void *key, size_t key_length, size_t slots_num)
 | |
| {
 | |
|   size_t keyval = (size_t)*(struct Curl_easy **)key;
 | |
|   (void) key_length;
 | |
| 
 | |
|   return (keyval % slots_num);
 | |
| }
 | |
| 
 | |
| static size_t trhash_compare(void *k1, size_t k1_len, void *k2, size_t k2_len)
 | |
| {
 | |
|   (void)k1_len;
 | |
|   (void)k2_len;
 | |
| 
 | |
|   return *(struct Curl_easy **)k1 == *(struct Curl_easy **)k2;
 | |
| }
 | |
| 
 | |
| static void trhash_dtor(void *nada)
 | |
| {
 | |
|   (void)nada;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* make sure this socket is present in the hash for this handle */
 | |
| static struct Curl_sh_entry *sh_addentry(struct Curl_hash *sh,
 | |
|                                          curl_socket_t s)
 | |
| {
 | |
|   struct Curl_sh_entry *there = sh_getentry(sh, s);
 | |
|   struct Curl_sh_entry *check;
 | |
| 
 | |
|   if(there) {
 | |
|     /* it is present, return fine */
 | |
|     return there;
 | |
|   }
 | |
| 
 | |
|   /* not present, add it */
 | |
|   check = calloc(1, sizeof(struct Curl_sh_entry));
 | |
|   if(!check)
 | |
|     return NULL; /* major failure */
 | |
| 
 | |
|   if(Curl_hash_init(&check->transfers, TRHASH_SIZE, trhash,
 | |
|                     trhash_compare, trhash_dtor)) {
 | |
|     free(check);
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   /* make/add new hash entry */
 | |
|   if(!Curl_hash_add(sh, (char *)&s, sizeof(curl_socket_t), check)) {
 | |
|     Curl_hash_destroy(&check->transfers);
 | |
|     free(check);
 | |
|     return NULL; /* major failure */
 | |
|   }
 | |
| 
 | |
|   return check; /* things are good in sockhash land */
 | |
| }
 | |
| 
 | |
| 
 | |
| /* delete the given socket + handle from the hash */
 | |
| static void sh_delentry(struct Curl_sh_entry *entry,
 | |
|                         struct Curl_hash *sh, curl_socket_t s)
 | |
| {
 | |
|   Curl_hash_destroy(&entry->transfers);
 | |
| 
 | |
|   /* We remove the hash entry. This will end up in a call to
 | |
|      sh_freeentry(). */
 | |
|   Curl_hash_delete(sh, (char *)&s, sizeof(curl_socket_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free a sockhash entry
 | |
|  */
 | |
| static void sh_freeentry(void *freethis)
 | |
| {
 | |
|   struct Curl_sh_entry *p = (struct Curl_sh_entry *) freethis;
 | |
| 
 | |
|   free(p);
 | |
| }
 | |
| 
 | |
| static size_t fd_key_compare(void *k1, size_t k1_len, void *k2, size_t k2_len)
 | |
| {
 | |
|   (void) k1_len; (void) k2_len;
 | |
| 
 | |
|   return (*((curl_socket_t *) k1)) == (*((curl_socket_t *) k2));
 | |
| }
 | |
| 
 | |
| static size_t hash_fd(void *key, size_t key_length, size_t slots_num)
 | |
| {
 | |
|   curl_socket_t fd = *((curl_socket_t *) key);
 | |
|   (void) key_length;
 | |
| 
 | |
|   return (fd % slots_num);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sh_init() creates a new socket hash and returns the handle for it.
 | |
|  *
 | |
|  * Quote from README.multi_socket:
 | |
|  *
 | |
|  * "Some tests at 7000 and 9000 connections showed that the socket hash lookup
 | |
|  * is somewhat of a bottle neck. Its current implementation may be a bit too
 | |
|  * limiting. It simply has a fixed-size array, and on each entry in the array
 | |
|  * it has a linked list with entries. So the hash only checks which list to
 | |
|  * scan through. The code I had used so for used a list with merely 7 slots
 | |
|  * (as that is what the DNS hash uses) but with 7000 connections that would
 | |
|  * make an average of 1000 nodes in each list to run through. I upped that to
 | |
|  * 97 slots (I believe a prime is suitable) and noticed a significant speed
 | |
|  * increase.  I need to reconsider the hash implementation or use a rather
 | |
|  * large default value like this. At 9000 connections I was still below 10us
 | |
|  * per call."
 | |
|  *
 | |
|  */
 | |
| static int sh_init(struct Curl_hash *hash, int hashsize)
 | |
| {
 | |
|   return Curl_hash_init(hash, hashsize, hash_fd, fd_key_compare,
 | |
|                         sh_freeentry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * multi_addmsg()
 | |
|  *
 | |
|  * Called when a transfer is completed. Adds the given msg pointer to
 | |
|  * the list kept in the multi handle.
 | |
|  */
 | |
| static CURLMcode multi_addmsg(struct Curl_multi *multi,
 | |
|                               struct Curl_message *msg)
 | |
| {
 | |
|   Curl_llist_insert_next(&multi->msglist, multi->msglist.tail, msg,
 | |
|                          &msg->list);
 | |
|   return CURLM_OK;
 | |
| }
 | |
| 
 | |
| struct Curl_multi *Curl_multi_handle(int hashsize, /* socket hash */
 | |
|                                      int chashsize) /* connection hash */
 | |
| {
 | |
|   struct Curl_multi *multi = calloc(1, sizeof(struct Curl_multi));
 | |
| 
 | |
|   if(!multi)
 | |
|     return NULL;
 | |
| 
 | |
|   multi->magic = CURL_MULTI_HANDLE;
 | |
| 
 | |
|   if(Curl_mk_dnscache(&multi->hostcache))
 | |
|     goto error;
 | |
| 
 | |
|   if(sh_init(&multi->sockhash, hashsize))
 | |
|     goto error;
 | |
| 
 | |
|   if(Curl_conncache_init(&multi->conn_cache, chashsize))
 | |
|     goto error;
 | |
| 
 | |
|   Curl_llist_init(&multi->msglist, NULL);
 | |
|   Curl_llist_init(&multi->pending, NULL);
 | |
| 
 | |
|   multi->multiplexing = TRUE;
 | |
| 
 | |
|   /* -1 means it not set by user, use the default value */
 | |
|   multi->maxconnects = -1;
 | |
|   multi->max_concurrent_streams = 100;
 | |
|   multi->ipv6_works = Curl_ipv6works(NULL);
 | |
| 
 | |
| #ifdef USE_WINSOCK
 | |
|   multi->wsa_event = WSACreateEvent();
 | |
|   if(multi->wsa_event == WSA_INVALID_EVENT)
 | |
|     goto error;
 | |
| #else
 | |
| #ifdef ENABLE_WAKEUP
 | |
|   if(Curl_socketpair(AF_UNIX, SOCK_STREAM, 0, multi->wakeup_pair) < 0) {
 | |
|     multi->wakeup_pair[0] = CURL_SOCKET_BAD;
 | |
|     multi->wakeup_pair[1] = CURL_SOCKET_BAD;
 | |
|   }
 | |
|   else if(curlx_nonblock(multi->wakeup_pair[0], TRUE) < 0 ||
 | |
|           curlx_nonblock(multi->wakeup_pair[1], TRUE) < 0) {
 | |
|     sclose(multi->wakeup_pair[0]);
 | |
|     sclose(multi->wakeup_pair[1]);
 | |
|     multi->wakeup_pair[0] = CURL_SOCKET_BAD;
 | |
|     multi->wakeup_pair[1] = CURL_SOCKET_BAD;
 | |
|   }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|   return multi;
 | |
| 
 | |
|   error:
 | |
| 
 | |
|   Curl_hash_destroy(&multi->sockhash);
 | |
|   Curl_hash_destroy(&multi->hostcache);
 | |
|   Curl_conncache_destroy(&multi->conn_cache);
 | |
|   Curl_llist_destroy(&multi->msglist, NULL);
 | |
|   Curl_llist_destroy(&multi->pending, NULL);
 | |
| 
 | |
|   free(multi);
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| struct Curl_multi *curl_multi_init(void)
 | |
| {
 | |
|   return Curl_multi_handle(CURL_SOCKET_HASH_TABLE_SIZE,
 | |
|                            CURL_CONNECTION_HASH_SIZE);
 | |
| }
 | |
| 
 | |
| CURLMcode curl_multi_add_handle(struct Curl_multi *multi,
 | |
|                                 struct Curl_easy *data)
 | |
| {
 | |
|   /* First, make some basic checks that the CURLM handle is a good handle */
 | |
|   if(!GOOD_MULTI_HANDLE(multi))
 | |
|     return CURLM_BAD_HANDLE;
 | |
| 
 | |
|   /* Verify that we got a somewhat good easy handle too */
 | |
|   if(!GOOD_EASY_HANDLE(data))
 | |
|     return CURLM_BAD_EASY_HANDLE;
 | |
| 
 | |
|   /* Prevent users from adding same easy handle more than once and prevent
 | |
|      adding to more than one multi stack */
 | |
|   if(data->multi)
 | |
|     return CURLM_ADDED_ALREADY;
 | |
| 
 | |
|   if(multi->in_callback)
 | |
|     return CURLM_RECURSIVE_API_CALL;
 | |
| 
 | |
|   /* Initialize timeout list for this handle */
 | |
|   Curl_llist_init(&data->state.timeoutlist, NULL);
 | |
| 
 | |
|   /*
 | |
|    * No failure allowed in this function beyond this point. And no
 | |
|    * modification of easy nor multi handle allowed before this except for
 | |
|    * potential multi's connection cache growing which won't be undone in this
 | |
|    * function no matter what.
 | |
|    */
 | |
|   if(data->set.errorbuffer)
 | |
|     data->set.errorbuffer[0] = 0;
 | |
| 
 | |
|   /* set the easy handle */
 | |
|   multistate(data, MSTATE_INIT);
 | |
| 
 | |
|   /* for multi interface connections, we share DNS cache automatically if the
 | |
|      easy handle's one is currently not set. */
 | |
|   if(!data->dns.hostcache ||
 | |
|      (data->dns.hostcachetype == HCACHE_NONE)) {
 | |
|     data->dns.hostcache = &multi->hostcache;
 | |
|     data->dns.hostcachetype = HCACHE_MULTI;
 | |
|   }
 | |
| 
 | |
|   /* Point to the shared or multi handle connection cache */
 | |
|   if(data->share && (data->share->specifier & (1<< CURL_LOCK_DATA_CONNECT)))
 | |
|     data->state.conn_cache = &data->share->conn_cache;
 | |
|   else
 | |
|     data->state.conn_cache = &multi->conn_cache;
 | |
|   data->state.lastconnect_id = -1;
 | |
| 
 | |
| #ifdef USE_LIBPSL
 | |
|   /* Do the same for PSL. */
 | |
|   if(data->share && (data->share->specifier & (1 << CURL_LOCK_DATA_PSL)))
 | |
|     data->psl = &data->share->psl;
 | |
|   else
 | |
|     data->psl = &multi->psl;
 | |
| #endif
 | |
| 
 | |
|   /* We add the new entry last in the list. */
 | |
|   data->next = NULL; /* end of the line */
 | |
|   if(multi->easyp) {
 | |
|     struct Curl_easy *last = multi->easylp;
 | |
|     last->next = data;
 | |
|     data->prev = last;
 | |
|     multi->easylp = data; /* the new last node */
 | |
|   }
 | |
|   else {
 | |
|     /* first node, make prev NULL! */
 | |
|     data->prev = NULL;
 | |
|     multi->easylp = multi->easyp = data; /* both first and last */
 | |
|   }
 | |
| 
 | |
|   /* make the Curl_easy refer back to this multi handle */
 | |
|   data->multi = multi;
 | |
| 
 | |
|   /* Set the timeout for this handle to expire really soon so that it will
 | |
|      be taken care of even when this handle is added in the midst of operation
 | |
|      when only the curl_multi_socket() API is used. During that flow, only
 | |
|      sockets that time-out or have actions will be dealt with. Since this
 | |
|      handle has no action yet, we make sure it times out to get things to
 | |
|      happen. */
 | |
|   Curl_expire(data, 0, EXPIRE_RUN_NOW);
 | |
| 
 | |
|   /* increase the node-counter */
 | |
|   multi->num_easy++;
 | |
| 
 | |
|   /* increase the alive-counter */
 | |
|   multi->num_alive++;
 | |
| 
 | |
|   /* A somewhat crude work-around for a little glitch in Curl_update_timer()
 | |
|      that happens if the lastcall time is set to the same time when the handle
 | |
|      is removed as when the next handle is added, as then the check in
 | |
|      Curl_update_timer() that prevents calling the application multiple times
 | |
|      with the same timer info will not trigger and then the new handle's
 | |
|      timeout will not be notified to the app.
 | |
| 
 | |
|      The work-around is thus simply to clear the 'lastcall' variable to force
 | |
|      Curl_update_timer() to always trigger a callback to the app when a new
 | |
|      easy handle is added */
 | |
|   memset(&multi->timer_lastcall, 0, sizeof(multi->timer_lastcall));
 | |
| 
 | |
|   CONNCACHE_LOCK(data);
 | |
|   /* The closure handle only ever has default timeouts set. To improve the
 | |
|      state somewhat we clone the timeouts from each added handle so that the
 | |
|      closure handle always has the same timeouts as the most recently added
 | |
|      easy handle. */
 | |
|   data->state.conn_cache->closure_handle->set.timeout = data->set.timeout;
 | |
|   data->state.conn_cache->closure_handle->set.server_response_timeout =
 | |
|     data->set.server_response_timeout;
 | |
|   data->state.conn_cache->closure_handle->set.no_signal =
 | |
|     data->set.no_signal;
 | |
|   CONNCACHE_UNLOCK(data);
 | |
| 
 | |
|   Curl_update_timer(multi);
 | |
|   return CURLM_OK;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /* Debug-function, used like this:
 | |
|  *
 | |
|  * Curl_hash_print(multi->sockhash, debug_print_sock_hash);
 | |
|  *
 | |
|  * Enable the hash print function first by editing hash.c
 | |
|  */
 | |
| static void debug_print_sock_hash(void *p)
 | |
| {
 | |
|   struct Curl_sh_entry *sh = (struct Curl_sh_entry *)p;
 | |
| 
 | |
|   fprintf(stderr, " [easy %p/magic %x/socket %d]",
 | |
|           (void *)sh->data, sh->data->magic, (int)sh->socket);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static CURLcode multi_done(struct Curl_easy *data,
 | |
|                            CURLcode status,  /* an error if this is called
 | |
|                                                 after an error was detected */
 | |
|                            bool premature)
 | |
| {
 | |
|   CURLcode result;
 | |
|   struct connectdata *conn = data->conn;
 | |
|   unsigned int i;
 | |
| 
 | |
|   DEBUGF(infof(data, "multi_done"));
 | |
| 
 | |
|   if(data->state.done)
 | |
|     /* Stop if multi_done() has already been called */
 | |
|     return CURLE_OK;
 | |
| 
 | |
|   /* Stop the resolver and free its own resources (but not dns_entry yet). */
 | |
|   Curl_resolver_kill(data);
 | |
| 
 | |
|   /* Cleanup possible redirect junk */
 | |
|   Curl_safefree(data->req.newurl);
 | |
|   Curl_safefree(data->req.location);
 | |
| 
 | |
|   switch(status) {
 | |
|   case CURLE_ABORTED_BY_CALLBACK:
 | |
|   case CURLE_READ_ERROR:
 | |
|   case CURLE_WRITE_ERROR:
 | |
|     /* When we're aborted due to a callback return code it basically have to
 | |
|        be counted as premature as there is trouble ahead if we don't. We have
 | |
|        many callbacks and protocols work differently, we could potentially do
 | |
|        this more fine-grained in the future. */
 | |
|     premature = TRUE;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   /* this calls the protocol-specific function pointer previously set */
 | |
|   if(conn->handler->done)
 | |
|     result = conn->handler->done(data, status, premature);
 | |
|   else
 | |
|     result = status;
 | |
| 
 | |
|   if(CURLE_ABORTED_BY_CALLBACK != result) {
 | |
|     /* avoid this if we already aborted by callback to avoid this calling
 | |
|        another callback */
 | |
|     CURLcode rc = Curl_pgrsDone(data);
 | |
|     if(!result && rc)
 | |
|       result = CURLE_ABORTED_BY_CALLBACK;
 | |
|   }
 | |
| 
 | |
|   process_pending_handles(data->multi); /* connection / multiplex */
 | |
| 
 | |
|   CONNCACHE_LOCK(data);
 | |
|   Curl_detach_connnection(data);
 | |
|   if(CONN_INUSE(conn)) {
 | |
|     /* Stop if still used. */
 | |
|     CONNCACHE_UNLOCK(data);
 | |
|     DEBUGF(infof(data, "Connection still in use %zu, "
 | |
|                  "no more multi_done now!",
 | |
|                  conn->easyq.size));
 | |
|     return CURLE_OK;
 | |
|   }
 | |
| 
 | |
|   data->state.done = TRUE; /* called just now! */
 | |
| 
 | |
|   if(conn->dns_entry) {
 | |
|     Curl_resolv_unlock(data, conn->dns_entry); /* done with this */
 | |
|     conn->dns_entry = NULL;
 | |
|   }
 | |
|   Curl_hostcache_prune(data);
 | |
|   Curl_safefree(data->state.ulbuf);
 | |
| 
 | |
|   /* if the transfer was completed in a paused state there can be buffered
 | |
|      data left to free */
 | |
|   for(i = 0; i < data->state.tempcount; i++) {
 | |
|     Curl_dyn_free(&data->state.tempwrite[i].b);
 | |
|   }
 | |
|   data->state.tempcount = 0;
 | |
| 
 | |
|   /* if data->set.reuse_forbid is TRUE, it means the libcurl client has
 | |
|      forced us to close this connection. This is ignored for requests taking
 | |
|      place in a NTLM/NEGOTIATE authentication handshake
 | |
| 
 | |
|      if conn->bits.close is TRUE, it means that the connection should be
 | |
|      closed in spite of all our efforts to be nice, due to protocol
 | |
|      restrictions in our or the server's end
 | |
| 
 | |
|      if premature is TRUE, it means this connection was said to be DONE before
 | |
|      the entire request operation is complete and thus we can't know in what
 | |
|      state it is for re-using, so we're forced to close it. In a perfect world
 | |
|      we can add code that keep track of if we really must close it here or not,
 | |
|      but currently we have no such detail knowledge.
 | |
|   */
 | |
| 
 | |
|   if((data->set.reuse_forbid
 | |
| #if defined(USE_NTLM)
 | |
|       && !(conn->http_ntlm_state == NTLMSTATE_TYPE2 ||
 | |
|            conn->proxy_ntlm_state == NTLMSTATE_TYPE2)
 | |
| #endif
 | |
| #if defined(USE_SPNEGO)
 | |
|       && !(conn->http_negotiate_state == GSS_AUTHRECV ||
 | |
|            conn->proxy_negotiate_state == GSS_AUTHRECV)
 | |
| #endif
 | |
|      ) || conn->bits.close
 | |
|        || (premature && !(conn->handler->flags & PROTOPT_STREAM))) {
 | |
|     CURLcode res2;
 | |
|     connclose(conn, "disconnecting");
 | |
|     Curl_conncache_remove_conn(data, conn, FALSE);
 | |
|     CONNCACHE_UNLOCK(data);
 | |
|     res2 = Curl_disconnect(data, conn, premature);
 | |
| 
 | |
|     /* If we had an error already, make sure we return that one. But
 | |
|        if we got a new error, return that. */
 | |
|     if(!result && res2)
 | |
|       result = res2;
 | |
|   }
 | |
|   else {
 | |
|     char buffer[256];
 | |
|     const char *host =
 | |
| #ifndef CURL_DISABLE_PROXY
 | |
|       conn->bits.socksproxy ?
 | |
|       conn->socks_proxy.host.dispname :
 | |
|       conn->bits.httpproxy ? conn->http_proxy.host.dispname :
 | |
| #endif
 | |
|       conn->bits.conn_to_host ? conn->conn_to_host.dispname :
 | |
|       conn->host.dispname;
 | |
|     /* create string before returning the connection */
 | |
|     msnprintf(buffer, sizeof(buffer),
 | |
|               "Connection #%ld to host %s left intact",
 | |
|               conn->connection_id, host);
 | |
|     /* the connection is no longer in use by this transfer */
 | |
|     CONNCACHE_UNLOCK(data);
 | |
|     if(Curl_conncache_return_conn(data, conn)) {
 | |
|       /* remember the most recently used connection */
 | |
|       data->state.lastconnect_id = conn->connection_id;
 | |
|       infof(data, "%s", buffer);
 | |
|     }
 | |
|     else
 | |
|       data->state.lastconnect_id = -1;
 | |
|   }
 | |
| 
 | |
|   Curl_safefree(data->state.buffer);
 | |
|   Curl_free_request_state(data);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| static int close_connect_only(struct Curl_easy *data,
 | |
|                               struct connectdata *conn, void *param)
 | |
| {
 | |
|   (void)param;
 | |
|   if(data->state.lastconnect_id != conn->connection_id)
 | |
|     return 0;
 | |
| 
 | |
|   if(!conn->bits.connect_only)
 | |
|     return 1;
 | |
| 
 | |
|   connclose(conn, "Removing connect-only easy handle");
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| CURLMcode curl_multi_remove_handle(struct Curl_multi *multi,
 | |
|                                    struct Curl_easy *data)
 | |
| {
 | |
|   struct Curl_easy *easy = data;
 | |
|   bool premature;
 | |
|   struct Curl_llist_element *e;
 | |
| 
 | |
|   /* First, make some basic checks that the CURLM handle is a good handle */
 | |
|   if(!GOOD_MULTI_HANDLE(multi))
 | |
|     return CURLM_BAD_HANDLE;
 | |
| 
 | |
|   /* Verify that we got a somewhat good easy handle too */
 | |
|   if(!GOOD_EASY_HANDLE(data))
 | |
|     return CURLM_BAD_EASY_HANDLE;
 | |
| 
 | |
|   /* Prevent users from trying to remove same easy handle more than once */
 | |
|   if(!data->multi)
 | |
|     return CURLM_OK; /* it is already removed so let's say it is fine! */
 | |
| 
 | |
|   /* Prevent users from trying to remove an easy handle from the wrong multi */
 | |
|   if(data->multi != multi)
 | |
|     return CURLM_BAD_EASY_HANDLE;
 | |
| 
 | |
|   if(multi->in_callback)
 | |
|     return CURLM_RECURSIVE_API_CALL;
 | |
| 
 | |
|   premature = (data->mstate < MSTATE_COMPLETED) ? TRUE : FALSE;
 | |
| 
 | |
|   /* If the 'state' is not INIT or COMPLETED, we might need to do something
 | |
|      nice to put the easy_handle in a good known state when this returns. */
 | |
|   if(premature) {
 | |
|     /* this handle is "alive" so we need to count down the total number of
 | |
|        alive connections when this is removed */
 | |
|     multi->num_alive--;
 | |
|   }
 | |
| 
 | |
|   if(data->conn &&
 | |
|      data->mstate > MSTATE_DO &&
 | |
|      data->mstate < MSTATE_COMPLETED) {
 | |
|     /* Set connection owner so that the DONE function closes it.  We can
 | |
|        safely do this here since connection is killed. */
 | |
|     streamclose(data->conn, "Removed with partial response");
 | |
|   }
 | |
| 
 | |
|   if(data->conn) {
 | |
|     /* multi_done() clears the association between the easy handle and the
 | |
|        connection.
 | |
| 
 | |
|        Note that this ignores the return code simply because there's
 | |
|        nothing really useful to do with it anyway! */
 | |
|     (void)multi_done(data, data->result, premature);
 | |
|   }
 | |
| 
 | |
|   /* The timer must be shut down before data->multi is set to NULL, else the
 | |
|      timenode will remain in the splay tree after curl_easy_cleanup is
 | |
|      called. Do it after multi_done() in case that sets another time! */
 | |
|   Curl_expire_clear(data);
 | |
| 
 | |
|   if(data->connect_queue.ptr)
 | |
|     /* the handle was in the pending list waiting for an available connection,
 | |
|        so go ahead and remove it */
 | |
|     Curl_llist_remove(&multi->pending, &data->connect_queue, NULL);
 | |
| 
 | |
|   if(data->dns.hostcachetype == HCACHE_MULTI) {
 | |
|     /* stop using the multi handle's DNS cache, *after* the possible
 | |
|        multi_done() call above */
 | |
|     data->dns.hostcache = NULL;
 | |
|     data->dns.hostcachetype = HCACHE_NONE;
 | |
|   }
 | |
| 
 | |
|   Curl_wildcard_dtor(&data->wildcard);
 | |
| 
 | |
|   /* destroy the timeout list that is held in the easy handle, do this *after*
 | |
|      multi_done() as that may actually call Curl_expire that uses this */
 | |
|   Curl_llist_destroy(&data->state.timeoutlist, NULL);
 | |
| 
 | |
|   /* change state without using multistate(), only to make singlesocket() do
 | |
|      what we want */
 | |
|   data->mstate = MSTATE_COMPLETED;
 | |
|   singlesocket(multi, easy); /* to let the application know what sockets that
 | |
|                                 vanish with this handle */
 | |
| 
 | |
|   /* Remove the association between the connection and the handle */
 | |
|   Curl_detach_connnection(data);
 | |
| 
 | |
|   if(data->state.lastconnect_id != -1) {
 | |
|     /* Mark any connect-only connection for closure */
 | |
|     Curl_conncache_foreach(data, data->state.conn_cache,
 | |
|                            NULL, close_connect_only);
 | |
|   }
 | |
| 
 | |
| #ifdef USE_LIBPSL
 | |
|   /* Remove the PSL association. */
 | |
|   if(data->psl == &multi->psl)
 | |
|     data->psl = NULL;
 | |
| #endif
 | |
| 
 | |
|   /* as this was using a shared connection cache we clear the pointer to that
 | |
|      since we're not part of that multi handle anymore */
 | |
|   data->state.conn_cache = NULL;
 | |
| 
 | |
|   data->multi = NULL; /* clear the association to this multi handle */
 | |
| 
 | |
|   /* make sure there's no pending message in the queue sent from this easy
 | |
|      handle */
 | |
| 
 | |
|   for(e = multi->msglist.head; e; e = e->next) {
 | |
|     struct Curl_message *msg = e->ptr;
 | |
| 
 | |
|     if(msg->extmsg.easy_handle == easy) {
 | |
|       Curl_llist_remove(&multi->msglist, e, NULL);
 | |
|       /* there can only be one from this specific handle */
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Remove from the pending list if it is there. Otherwise this will
 | |
|      remain on the pending list forever due to the state change. */
 | |
|   for(e = multi->pending.head; e; e = e->next) {
 | |
|     struct Curl_easy *curr_data = e->ptr;
 | |
| 
 | |
|     if(curr_data == data) {
 | |
|       Curl_llist_remove(&multi->pending, e, NULL);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* make the previous node point to our next */
 | |
|   if(data->prev)
 | |
|     data->prev->next = data->next;
 | |
|   else
 | |
|     multi->easyp = data->next; /* point to first node */
 | |
| 
 | |
|   /* make our next point to our previous node */
 | |
|   if(data->next)
 | |
|     data->next->prev = data->prev;
 | |
|   else
 | |
|     multi->easylp = data->prev; /* point to last node */
 | |
| 
 | |
|   /* NOTE NOTE NOTE
 | |
|      We do not touch the easy handle here! */
 | |
|   multi->num_easy--; /* one less to care about now */
 | |
| 
 | |
|   process_pending_handles(multi);
 | |
| 
 | |
|   Curl_update_timer(multi);
 | |
|   return CURLM_OK;
 | |
| }
 | |
| 
 | |
| /* Return TRUE if the application asked for multiplexing */
 | |
| bool Curl_multiplex_wanted(const struct Curl_multi *multi)
 | |
| {
 | |
|   return (multi && (multi->multiplexing));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Curl_detach_connnection() removes the given transfer from the connection.
 | |
|  *
 | |
|  * This is the only function that should clear data->conn. This will
 | |
|  * occasionally be called with the data->conn pointer already cleared.
 | |
|  */
 | |
| void Curl_detach_connnection(struct Curl_easy *data)
 | |
| {
 | |
|   struct connectdata *conn = data->conn;
 | |
|   if(conn) {
 | |
|     Curl_llist_remove(&conn->easyq, &data->conn_queue, NULL);
 | |
|     Curl_ssl_detach_conn(data, conn);
 | |
|   }
 | |
|   data->conn = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Curl_attach_connnection() attaches this transfer to this connection.
 | |
|  *
 | |
|  * This is the only function that should assign data->conn
 | |
|  */
 | |
| void Curl_attach_connnection(struct Curl_easy *data,
 | |
|                              struct connectdata *conn)
 | |
| {
 | |
|   DEBUGASSERT(!data->conn);
 | |
|   DEBUGASSERT(conn);
 | |
|   data->conn = conn;
 | |
|   Curl_llist_insert_next(&conn->easyq, conn->easyq.tail, data,
 | |
|                          &data->conn_queue);
 | |
|   if(conn->handler->attach)
 | |
|     conn->handler->attach(data, conn);
 | |
|   Curl_ssl_associate_conn(data, conn);
 | |
| }
 | |
| 
 | |
| static int waitconnect_getsock(struct connectdata *conn,
 | |
|                                curl_socket_t *sock)
 | |
| {
 | |
|   int i;
 | |
|   int s = 0;
 | |
|   int rc = 0;
 | |
| 
 | |
| #ifdef USE_SSL
 | |
| #ifndef CURL_DISABLE_PROXY
 | |
|   if(CONNECT_FIRSTSOCKET_PROXY_SSL())
 | |
|     return Curl_ssl->getsock(conn, sock);
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|   if(SOCKS_STATE(conn->cnnct.state))
 | |
|     return Curl_SOCKS_getsock(conn, sock, FIRSTSOCKET);
 | |
| 
 | |
|   for(i = 0; i<2; i++) {
 | |
|     if(conn->tempsock[i] != CURL_SOCKET_BAD) {
 | |
|       sock[s] = conn->tempsock[i];
 | |
|       rc |= GETSOCK_WRITESOCK(s);
 | |
| #ifdef ENABLE_QUIC
 | |
|       if(conn->transport == TRNSPRT_QUIC)
 | |
|         /* when connecting QUIC, we want to read the socket too */
 | |
|         rc |= GETSOCK_READSOCK(s);
 | |
| #endif
 | |
|       s++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| static int waitproxyconnect_getsock(struct connectdata *conn,
 | |
|                                     curl_socket_t *sock)
 | |
| {
 | |
|   sock[0] = conn->sock[FIRSTSOCKET];
 | |
| 
 | |
|   if(conn->connect_state)
 | |
|     return Curl_connect_getsock(conn);
 | |
| 
 | |
|   return GETSOCK_WRITESOCK(0);
 | |
| }
 | |
| 
 | |
| static int domore_getsock(struct Curl_easy *data,
 | |
|                           struct connectdata *conn,
 | |
|                           curl_socket_t *socks)
 | |
| {
 | |
|   if(conn && conn->handler->domore_getsock)
 | |
|     return conn->handler->domore_getsock(data, conn, socks);
 | |
|   return GETSOCK_BLANK;
 | |
| }
 | |
| 
 | |
| static int doing_getsock(struct Curl_easy *data,
 | |
|                          struct connectdata *conn,
 | |
|                          curl_socket_t *socks)
 | |
| {
 | |
|   if(conn && conn->handler->doing_getsock)
 | |
|     return conn->handler->doing_getsock(data, conn, socks);
 | |
|   return GETSOCK_BLANK;
 | |
| }
 | |
| 
 | |
| static int protocol_getsock(struct Curl_easy *data,
 | |
|                             struct connectdata *conn,
 | |
|                             curl_socket_t *socks)
 | |
| {
 | |
|   if(conn->handler->proto_getsock)
 | |
|     return conn->handler->proto_getsock(data, conn, socks);
 | |
|   /* Backup getsock logic. Since there is a live socket in use, we must wait
 | |
|      for it or it will be removed from watching when the multi_socket API is
 | |
|      used. */
 | |
|   socks[0] = conn->sock[FIRSTSOCKET];
 | |
|   return GETSOCK_READSOCK(0) | GETSOCK_WRITESOCK(0);
 | |
| }
 | |
| 
 | |
| /* returns bitmapped flags for this handle and its sockets. The 'socks[]'
 | |
|    array contains MAX_SOCKSPEREASYHANDLE entries. */
 | |
| static int multi_getsock(struct Curl_easy *data,
 | |
|                          curl_socket_t *socks)
 | |
| {
 | |
|   struct connectdata *conn = data->conn;
 | |
|   /* The no connection case can happen when this is called from
 | |
|      curl_multi_remove_handle() => singlesocket() => multi_getsock().
 | |
|   */
 | |
|   if(!conn)
 | |
|     return 0;
 | |
| 
 | |
|   switch(data->mstate) {
 | |
|   default:
 | |
|     return 0;
 | |
| 
 | |
|   case MSTATE_RESOLVING:
 | |
|     return Curl_resolv_getsock(data, socks);
 | |
| 
 | |
|   case MSTATE_PROTOCONNECTING:
 | |
|   case MSTATE_PROTOCONNECT:
 | |
|     return protocol_getsock(data, conn, socks);
 | |
| 
 | |
|   case MSTATE_DO:
 | |
|   case MSTATE_DOING:
 | |
|     return doing_getsock(data, conn, socks);
 | |
| 
 | |
|   case MSTATE_TUNNELING:
 | |
|     return waitproxyconnect_getsock(conn, socks);
 | |
| 
 | |
|   case MSTATE_CONNECTING:
 | |
|     return waitconnect_getsock(conn, socks);
 | |
| 
 | |
|   case MSTATE_DOING_MORE:
 | |
|     return domore_getsock(data, conn, socks);
 | |
| 
 | |
|   case MSTATE_DID: /* since is set after DO is completed, we switch to
 | |
|                         waiting for the same as the PERFORMING state */
 | |
|   case MSTATE_PERFORMING:
 | |
|     return Curl_single_getsock(data, conn, socks);
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| CURLMcode curl_multi_fdset(struct Curl_multi *multi,
 | |
|                            fd_set *read_fd_set, fd_set *write_fd_set,
 | |
|                            fd_set *exc_fd_set, int *max_fd)
 | |
| {
 | |
|   /* Scan through all the easy handles to get the file descriptors set.
 | |
|      Some easy handles may not have connected to the remote host yet,
 | |
|      and then we must make sure that is done. */
 | |
|   struct Curl_easy *data;
 | |
|   int this_max_fd = -1;
 | |
|   curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE];
 | |
|   int i;
 | |
|   (void)exc_fd_set; /* not used */
 | |
| 
 | |
|   if(!GOOD_MULTI_HANDLE(multi))
 | |
|     return CURLM_BAD_HANDLE;
 | |
| 
 | |
|   if(multi->in_callback)
 | |
|     return CURLM_RECURSIVE_API_CALL;
 | |
| 
 | |
|   data = multi->easyp;
 | |
|   while(data) {
 | |
|     int bitmap;
 | |
| #ifdef __clang_analyzer_
 | |
|     /* to prevent "The left operand of '>=' is a garbage value" warnings */
 | |
|     memset(sockbunch, 0, sizeof(sockbunch));
 | |
| #endif
 | |
|     bitmap = multi_getsock(data, sockbunch);
 | |
| 
 | |
|     for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++) {
 | |
|       curl_socket_t s = CURL_SOCKET_BAD;
 | |
| 
 | |
|       if((bitmap & GETSOCK_READSOCK(i)) && VALID_SOCK(sockbunch[i])) {
 | |
|         if(!FDSET_SOCK(sockbunch[i]))
 | |
|           /* pretend it doesn't exist */
 | |
|           continue;
 | |
|         FD_SET(sockbunch[i], read_fd_set);
 | |
|         s = sockbunch[i];
 | |
|       }
 | |
|       if((bitmap & GETSOCK_WRITESOCK(i)) && VALID_SOCK(sockbunch[i])) {
 | |
|         if(!FDSET_SOCK(sockbunch[i]))
 | |
|           /* pretend it doesn't exist */
 | |
|           continue;
 | |
|         FD_SET(sockbunch[i], write_fd_set);
 | |
|         s = sockbunch[i];
 | |
|       }
 | |
|       if(s == CURL_SOCKET_BAD)
 | |
|         /* this socket is unused, break out of loop */
 | |
|         break;
 | |
|       if((int)s > this_max_fd)
 | |
|         this_max_fd = (int)s;
 | |
|     }
 | |
| 
 | |
|     data = data->next; /* check next handle */
 | |
|   }
 | |
| 
 | |
|   *max_fd = this_max_fd;
 | |
| 
 | |
|   return CURLM_OK;
 | |
| }
 | |
| 
 | |
| #define NUM_POLLS_ON_STACK 10
 | |
| 
 | |
| static CURLMcode multi_wait(struct Curl_multi *multi,
 | |
|                             struct curl_waitfd extra_fds[],
 | |
|                             unsigned int extra_nfds,
 | |
|                             int timeout_ms,
 | |
|                             int *ret,
 | |
|                             bool extrawait, /* when no socket, wait */
 | |
|                             bool use_wakeup)
 | |
| {
 | |
|   struct Curl_easy *data;
 | |
|   curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE];
 | |
|   int bitmap;
 | |
|   unsigned int i;
 | |
|   unsigned int nfds = 0;
 | |
|   unsigned int curlfds;
 | |
|   long timeout_internal;
 | |
|   int retcode = 0;
 | |
|   struct pollfd a_few_on_stack[NUM_POLLS_ON_STACK];
 | |
|   struct pollfd *ufds = &a_few_on_stack[0];
 | |
|   bool ufds_malloc = FALSE;
 | |
| #ifdef USE_WINSOCK
 | |
|   WSANETWORKEVENTS wsa_events;
 | |
|   DEBUGASSERT(multi->wsa_event != WSA_INVALID_EVENT);
 | |
| #endif
 | |
| #ifndef ENABLE_WAKEUP
 | |
|   (void)use_wakeup;
 | |
| #endif
 | |
| 
 | |
|   if(!GOOD_MULTI_HANDLE(multi))
 | |
|     return CURLM_BAD_HANDLE;
 | |
| 
 | |
|   if(multi->in_callback)
 | |
|     return CURLM_RECURSIVE_API_CALL;
 | |
| 
 | |
|   if(timeout_ms < 0)
 | |
|     return CURLM_BAD_FUNCTION_ARGUMENT;
 | |
| 
 | |
|   /* Count up how many fds we have from the multi handle */
 | |
|   data = multi->easyp;
 | |
|   while(data) {
 | |
|     bitmap = multi_getsock(data, sockbunch);
 | |
| 
 | |
|     for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++) {
 | |
|       curl_socket_t s = CURL_SOCKET_BAD;
 | |
| 
 | |
|       if((bitmap & GETSOCK_READSOCK(i)) && VALID_SOCK((sockbunch[i]))) {
 | |
|         ++nfds;
 | |
|         s = sockbunch[i];
 | |
|       }
 | |
|       if((bitmap & GETSOCK_WRITESOCK(i)) && VALID_SOCK((sockbunch[i]))) {
 | |
|         ++nfds;
 | |
|         s = sockbunch[i];
 | |
|       }
 | |
|       if(s == CURL_SOCKET_BAD) {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     data = data->next; /* check next handle */
 | |
|   }
 | |
| 
 | |
|   /* If the internally desired timeout is actually shorter than requested from
 | |
|      the outside, then use the shorter time! But only if the internal timer
 | |
|      is actually larger than -1! */
 | |
|   (void)multi_timeout(multi, &timeout_internal);
 | |
|   if((timeout_internal >= 0) && (timeout_internal < (long)timeout_ms))
 | |
|     timeout_ms = (int)timeout_internal;
 | |
| 
 | |
|   curlfds = nfds; /* number of internal file descriptors */
 | |
|   nfds += extra_nfds; /* add the externally provided ones */
 | |
| 
 | |
| #ifdef ENABLE_WAKEUP
 | |
| #ifdef USE_WINSOCK
 | |
|   if(use_wakeup) {
 | |
| #else
 | |
|   if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) {
 | |
| #endif
 | |
|     ++nfds;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if(nfds > NUM_POLLS_ON_STACK) {
 | |
|     /* 'nfds' is a 32 bit value and 'struct pollfd' is typically 8 bytes
 | |
|        big, so at 2^29 sockets this value might wrap. When a process gets
 | |
|        the capability to actually handle over 500 million sockets this
 | |
|        calculation needs a integer overflow check. */
 | |
|     ufds = malloc(nfds * sizeof(struct pollfd));
 | |
|     if(!ufds)
 | |
|       return CURLM_OUT_OF_MEMORY;
 | |
|     ufds_malloc = TRUE;
 | |
|   }
 | |
|   nfds = 0;
 | |
| 
 | |
|   /* only do the second loop if we found descriptors in the first stage run
 | |
|      above */
 | |
| 
 | |
|   if(curlfds) {
 | |
|     /* Add the curl handles to our pollfds first */
 | |
|     data = multi->easyp;
 | |
|     while(data) {
 | |
|       bitmap = multi_getsock(data, sockbunch);
 | |
| 
 | |
|       for(i = 0; i < MAX_SOCKSPEREASYHANDLE; i++) {
 | |
|         curl_socket_t s = CURL_SOCKET_BAD;
 | |
| #ifdef USE_WINSOCK
 | |
|         long mask = 0;
 | |
| #endif
 | |
|         if((bitmap & GETSOCK_READSOCK(i)) && VALID_SOCK((sockbunch[i]))) {
 | |
|           s = sockbunch[i];
 | |
| #ifdef USE_WINSOCK
 | |
|           mask |= FD_READ|FD_ACCEPT|FD_CLOSE;
 | |
| #endif
 | |
|           ufds[nfds].fd = s;
 | |
|           ufds[nfds].events = POLLIN;
 | |
|           ++nfds;
 | |
|         }
 | |
|         if((bitmap & GETSOCK_WRITESOCK(i)) && VALID_SOCK((sockbunch[i]))) {
 | |
|           s = sockbunch[i];
 | |
| #ifdef USE_WINSOCK
 | |
|           mask |= FD_WRITE|FD_CONNECT|FD_CLOSE;
 | |
|           send(s, NULL, 0, 0); /* reset FD_WRITE */
 | |
| #endif
 | |
|           ufds[nfds].fd = s;
 | |
|           ufds[nfds].events = POLLOUT;
 | |
|           ++nfds;
 | |
|         }
 | |
|         /* s is only set if either being readable or writable is checked */
 | |
|         if(s == CURL_SOCKET_BAD) {
 | |
|           /* break on entry not checked for being readable or writable */
 | |
|           break;
 | |
|         }
 | |
| #ifdef USE_WINSOCK
 | |
|         if(WSAEventSelect(s, multi->wsa_event, mask) != 0) {
 | |
|           if(ufds_malloc)
 | |
|             free(ufds);
 | |
|           return CURLM_INTERNAL_ERROR;
 | |
|         }
 | |
| #endif
 | |
|       }
 | |
| 
 | |
|       data = data->next; /* check next handle */
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Add external file descriptions from poll-like struct curl_waitfd */
 | |
|   for(i = 0; i < extra_nfds; i++) {
 | |
| #ifdef USE_WINSOCK
 | |
|     long mask = 0;
 | |
|     if(extra_fds[i].events & CURL_WAIT_POLLIN)
 | |
|       mask |= FD_READ|FD_ACCEPT|FD_CLOSE;
 | |
|     if(extra_fds[i].events & CURL_WAIT_POLLPRI)
 | |
|       mask |= FD_OOB;
 | |
|     if(extra_fds[i].events & CURL_WAIT_POLLOUT) {
 | |
|       mask |= FD_WRITE|FD_CONNECT|FD_CLOSE;
 | |
|       send(extra_fds[i].fd, NULL, 0, 0); /* reset FD_WRITE */
 | |
|     }
 | |
|     if(WSAEventSelect(extra_fds[i].fd, multi->wsa_event, mask) != 0) {
 | |
|       if(ufds_malloc)
 | |
|         free(ufds);
 | |
|       return CURLM_INTERNAL_ERROR;
 | |
|     }
 | |
| #endif
 | |
|     ufds[nfds].fd = extra_fds[i].fd;
 | |
|     ufds[nfds].events = 0;
 | |
|     if(extra_fds[i].events & CURL_WAIT_POLLIN)
 | |
|       ufds[nfds].events |= POLLIN;
 | |
|     if(extra_fds[i].events & CURL_WAIT_POLLPRI)
 | |
|       ufds[nfds].events |= POLLPRI;
 | |
|     if(extra_fds[i].events & CURL_WAIT_POLLOUT)
 | |
|       ufds[nfds].events |= POLLOUT;
 | |
|     ++nfds;
 | |
|   }
 | |
| 
 | |
| #ifdef ENABLE_WAKEUP
 | |
| #ifndef USE_WINSOCK
 | |
|   if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) {
 | |
|     ufds[nfds].fd = multi->wakeup_pair[0];
 | |
|     ufds[nfds].events = POLLIN;
 | |
|     ++nfds;
 | |
|   }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(ENABLE_WAKEUP) && defined(USE_WINSOCK)
 | |
|   if(nfds || use_wakeup) {
 | |
| #else
 | |
|   if(nfds) {
 | |
| #endif
 | |
|     int pollrc;
 | |
| #ifdef USE_WINSOCK
 | |
|     if(nfds)
 | |
|       pollrc = Curl_poll(ufds, nfds, 0); /* just pre-check with WinSock */
 | |
|     else
 | |
|       pollrc = 0;
 | |
|     if(pollrc <= 0) /* now wait... if not ready during the pre-check above */
 | |
|       WSAWaitForMultipleEvents(1, &multi->wsa_event, FALSE, timeout_ms, FALSE);
 | |
| #else
 | |
|     pollrc = Curl_poll(ufds, nfds, timeout_ms); /* wait... */
 | |
| #endif
 | |
| 
 | |
|     if(pollrc > 0) {
 | |
|       retcode = pollrc;
 | |
| #ifdef USE_WINSOCK
 | |
|     }
 | |
|     /* With WinSock, we have to run the following section unconditionally
 | |
|        to call WSAEventSelect(fd, event, 0) on all the sockets */
 | |
|     {
 | |
| #endif
 | |
|       /* copy revents results from the poll to the curl_multi_wait poll
 | |
|          struct, the bit values of the actual underlying poll() implementation
 | |
|          may not be the same as the ones in the public libcurl API! */
 | |
|       for(i = 0; i < extra_nfds; i++) {
 | |
|         unsigned r = ufds[curlfds + i].revents;
 | |
|         unsigned short mask = 0;
 | |
| #ifdef USE_WINSOCK
 | |
|         wsa_events.lNetworkEvents = 0;
 | |
|         if(WSAEnumNetworkEvents(extra_fds[i].fd, NULL, &wsa_events) == 0) {
 | |
|           if(wsa_events.lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE))
 | |
|             mask |= CURL_WAIT_POLLIN;
 | |
|           if(wsa_events.lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE))
 | |
|             mask |= CURL_WAIT_POLLOUT;
 | |
|           if(wsa_events.lNetworkEvents & FD_OOB)
 | |
|             mask |= CURL_WAIT_POLLPRI;
 | |
|           if(ret && pollrc <= 0 && wsa_events.lNetworkEvents)
 | |
|             retcode++;
 | |
|         }
 | |
|         WSAEventSelect(extra_fds[i].fd, multi->wsa_event, 0);
 | |
|         if(pollrc <= 0)
 | |
|           continue;
 | |
| #endif
 | |
|         if(r & POLLIN)
 | |
|           mask |= CURL_WAIT_POLLIN;
 | |
|         if(r & POLLOUT)
 | |
|           mask |= CURL_WAIT_POLLOUT;
 | |
|         if(r & POLLPRI)
 | |
|           mask |= CURL_WAIT_POLLPRI;
 | |
|         extra_fds[i].revents = mask;
 | |
|       }
 | |
| 
 | |
| #ifdef USE_WINSOCK
 | |
|       /* Count up all our own sockets that had activity,
 | |
|          and remove them from the event. */
 | |
|       if(curlfds) {
 | |
|         data = multi->easyp;
 | |
|         while(data) {
 | |
|           bitmap = multi_getsock(data, sockbunch);
 | |
| 
 | |
|           for(i = 0; i < MAX_SOCKSPEREASYHANDLE; i++) {
 | |
|             if(bitmap & (GETSOCK_READSOCK(i) | GETSOCK_WRITESOCK(i))) {
 | |
|               wsa_events.lNetworkEvents = 0;
 | |
|               if(WSAEnumNetworkEvents(sockbunch[i], NULL, &wsa_events) == 0) {
 | |
|                 if(ret && pollrc <= 0 && wsa_events.lNetworkEvents)
 | |
|                   retcode++;
 | |
|               }
 | |
|               WSAEventSelect(sockbunch[i], multi->wsa_event, 0);
 | |
|             }
 | |
|             else {
 | |
|               /* break on entry not checked for being readable or writable */
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           data = data->next;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       WSAResetEvent(multi->wsa_event);
 | |
| #else
 | |
| #ifdef ENABLE_WAKEUP
 | |
|       if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) {
 | |
|         if(ufds[curlfds + extra_nfds].revents & POLLIN) {
 | |
|           char buf[64];
 | |
|           ssize_t nread;
 | |
|           while(1) {
 | |
|             /* the reading socket is non-blocking, try to read
 | |
|                data from it until it receives an error (except EINTR).
 | |
|                In normal cases it will get EAGAIN or EWOULDBLOCK
 | |
|                when there is no more data, breaking the loop. */
 | |
|             nread = sread(multi->wakeup_pair[0], buf, sizeof(buf));
 | |
|             if(nread <= 0) {
 | |
|               if(nread < 0 && EINTR == SOCKERRNO)
 | |
|                 continue;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|           /* do not count the wakeup socket into the returned value */
 | |
|           retcode--;
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
| #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if(ufds_malloc)
 | |
|     free(ufds);
 | |
|   if(ret)
 | |
|     *ret = retcode;
 | |
| #if defined(ENABLE_WAKEUP) && defined(USE_WINSOCK)
 | |
|   if(extrawait && !nfds && !use_wakeup) {
 | |
| #else
 | |
|   if(extrawait && !nfds) {
 | |
| #endif
 | |
|     long sleep_ms = 0;
 | |
| 
 | |
|     /* Avoid busy-looping when there's nothing particular to wait for */
 | |
|     if(!curl_multi_timeout(multi, &sleep_ms) && sleep_ms) {
 | |
|       if(sleep_ms > timeout_ms)
 | |
|         sleep_ms = timeout_ms;
 | |
|       /* when there are no easy handles in the multi, this holds a -1
 | |
|          timeout */
 | |
|       else if(sleep_ms < 0)
 | |
|         sleep_ms = timeout_ms;
 | |
|       Curl_wait_ms(sleep_ms);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return CURLM_OK;
 | |
| }
 | |
| 
 | |
| CURLMcode curl_multi_wait(struct Curl_multi *multi,
 | |
|                           struct curl_waitfd extra_fds[],
 | |
|                           unsigned int extra_nfds,
 | |
|                           int timeout_ms,
 | |
|                           int *ret)
 | |
| {
 | |
|   return multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, FALSE,
 | |
|                     FALSE);
 | |
| }
 | |
| 
 | |
| CURLMcode curl_multi_poll(struct Curl_multi *multi,
 | |
|                           struct curl_waitfd extra_fds[],
 | |
|                           unsigned int extra_nfds,
 | |
|                           int timeout_ms,
 | |
|                           int *ret)
 | |
| {
 | |
|   return multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, TRUE,
 | |
|                     TRUE);
 | |
| }
 | |
| 
 | |
| CURLMcode curl_multi_wakeup(struct Curl_multi *multi)
 | |
| {
 | |
|   /* this function is usually called from another thread,
 | |
|      it has to be careful only to access parts of the
 | |
|      Curl_multi struct that are constant */
 | |
| 
 | |
|   /* GOOD_MULTI_HANDLE can be safely called */
 | |
|   if(!GOOD_MULTI_HANDLE(multi))
 | |
|     return CURLM_BAD_HANDLE;
 | |
| 
 | |
| #ifdef ENABLE_WAKEUP
 | |
| #ifdef USE_WINSOCK
 | |
|   if(WSASetEvent(multi->wsa_event))
 | |
|     return CURLM_OK;
 | |
| #else
 | |
|   /* the wakeup_pair variable is only written during init and cleanup,
 | |
|      making it safe to access from another thread after the init part
 | |
|      and before cleanup */
 | |
|   if(multi->wakeup_pair[1] != CURL_SOCKET_BAD) {
 | |
|     char buf[1];
 | |
|     buf[0] = 1;
 | |
|     while(1) {
 | |
|       /* swrite() is not thread-safe in general, because concurrent calls
 | |
|          can have their messages interleaved, but in this case the content
 | |
|          of the messages does not matter, which makes it ok to call.
 | |
| 
 | |
|          The write socket is set to non-blocking, this way this function
 | |
|          cannot block, making it safe to call even from the same thread
 | |
|          that will call curl_multi_wait(). If swrite() returns that it
 | |
|          would block, it's considered successful because it means that
 | |
|          previous calls to this function will wake up the poll(). */
 | |
|       if(swrite(multi->wakeup_pair[1], buf, sizeof(buf)) < 0) {
 | |
|         int err = SOCKERRNO;
 | |
|         int return_success;
 | |
| #ifdef USE_WINSOCK
 | |
|         return_success = WSAEWOULDBLOCK == err;
 | |
| #else
 | |
|         if(EINTR == err)
 | |
|           continue;
 | |
|         return_success = EWOULDBLOCK == err || EAGAIN == err;
 | |
| #endif
 | |
|         if(!return_success)
 | |
|           return CURLM_WAKEUP_FAILURE;
 | |
|       }
 | |
|       return CURLM_OK;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| #endif
 | |
|   return CURLM_WAKEUP_FAILURE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * multi_ischanged() is called
 | |
|  *
 | |
|  * Returns TRUE/FALSE whether the state is changed to trigger a CONNECT_PEND
 | |
|  * => CONNECT action.
 | |
|  *
 | |
|  * Set 'clear' to TRUE to have it also clear the state variable.
 | |
|  */
 | |
| static bool multi_ischanged(struct Curl_multi *multi, bool clear)
 | |
| {
 | |
|   bool retval = multi->recheckstate;
 | |
|   if(clear)
 | |
|     multi->recheckstate = FALSE;
 | |
|   return retval;
 | |
| }
 | |
| 
 | |
| CURLMcode Curl_multi_add_perform(struct Curl_multi *multi,
 | |
|                                  struct Curl_easy *data,
 | |
|                                  struct connectdata *conn)
 | |
| {
 | |
|   CURLMcode rc;
 | |
| 
 | |
|   if(multi->in_callback)
 | |
|     return CURLM_RECURSIVE_API_CALL;
 | |
| 
 | |
|   rc = curl_multi_add_handle(multi, data);
 | |
|   if(!rc) {
 | |
|     struct SingleRequest *k = &data->req;
 | |
| 
 | |
|     /* pass in NULL for 'conn' here since we don't want to init the
 | |
|        connection, only this transfer */
 | |
|     Curl_init_do(data, NULL);
 | |
| 
 | |
|     /* take this handle to the perform state right away */
 | |
|     multistate(data, MSTATE_PERFORMING);
 | |
|     Curl_attach_connnection(data, conn);
 | |
|     k->keepon |= KEEP_RECV; /* setup to receive! */
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| static CURLcode multi_do(struct Curl_easy *data, bool *done)
 | |
| {
 | |
|   CURLcode result = CURLE_OK;
 | |
|   struct connectdata *conn = data->conn;
 | |
| 
 | |
|   DEBUGASSERT(conn);
 | |
|   DEBUGASSERT(conn->handler);
 | |
| 
 | |
|   if(conn->handler->do_it)
 | |
|     /* generic protocol-specific function pointer set in curl_connect() */
 | |
|     result = conn->handler->do_it(data, done);
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * multi_do_more() is called during the DO_MORE multi state. It is basically a
 | |
|  * second stage DO state which (wrongly) was introduced to support FTP's
 | |
|  * second connection.
 | |
|  *
 | |
|  * 'complete' can return 0 for incomplete, 1 for done and -1 for go back to
 | |
|  * DOING state there's more work to do!
 | |
|  */
 | |
| 
 | |
| static CURLcode multi_do_more(struct Curl_easy *data, int *complete)
 | |
| {
 | |
|   CURLcode result = CURLE_OK;
 | |
|   struct connectdata *conn = data->conn;
 | |
| 
 | |
|   *complete = 0;
 | |
| 
 | |
|   if(conn->handler->do_more)
 | |
|     result = conn->handler->do_more(data, complete);
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether a timeout occurred, and handle it if it did
 | |
|  */
 | |
| static bool multi_handle_timeout(struct Curl_easy *data,
 | |
|                                  struct curltime *now,
 | |
|                                  bool *stream_error,
 | |
|                                  CURLcode *result,
 | |
|                                  bool connect_timeout)
 | |
| {
 | |
|   timediff_t timeout_ms;
 | |
|   timeout_ms = Curl_timeleft(data, now, connect_timeout);
 | |
| 
 | |
|   if(timeout_ms < 0) {
 | |
|     /* Handle timed out */
 | |
|     if(data->mstate == MSTATE_RESOLVING)
 | |
|       failf(data, "Resolving timed out after %" CURL_FORMAT_TIMEDIFF_T
 | |
|             " milliseconds",
 | |
|             Curl_timediff(*now, data->progress.t_startsingle));
 | |
|     else if(data->mstate == MSTATE_CONNECTING)
 | |
|       failf(data, "Connection timed out after %" CURL_FORMAT_TIMEDIFF_T
 | |
|             " milliseconds",
 | |
|             Curl_timediff(*now, data->progress.t_startsingle));
 | |
|     else {
 | |
|       struct SingleRequest *k = &data->req;
 | |
|       if(k->size != -1) {
 | |
|         failf(data, "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T
 | |
|               " milliseconds with %" CURL_FORMAT_CURL_OFF_T " out of %"
 | |
|               CURL_FORMAT_CURL_OFF_T " bytes received",
 | |
|               Curl_timediff(*now, data->progress.t_startsingle),
 | |
|               k->bytecount, k->size);
 | |
|       }
 | |
|       else {
 | |
|         failf(data, "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T
 | |
|               " milliseconds with %" CURL_FORMAT_CURL_OFF_T
 | |
|               " bytes received",
 | |
|               Curl_timediff(*now, data->progress.t_startsingle),
 | |
|               k->bytecount);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Force connection closed if the connection has indeed been used */
 | |
|     if(data->mstate > MSTATE_DO) {
 | |
|       streamclose(data->conn, "Disconnected with pending data");
 | |
|       *stream_error = TRUE;
 | |
|     }
 | |
|     *result = CURLE_OPERATION_TIMEDOUT;
 | |
|     (void)multi_done(data, *result, TRUE);
 | |
|   }
 | |
| 
 | |
|   return (timeout_ms < 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are doing protocol-specific connecting and this is being called over and
 | |
|  * over from the multi interface until the connection phase is done on
 | |
|  * protocol layer.
 | |
|  */
 | |
| 
 | |
| static CURLcode protocol_connecting(struct Curl_easy *data, bool *done)
 | |
| {
 | |
|   CURLcode result = CURLE_OK;
 | |
|   struct connectdata *conn = data->conn;
 | |
| 
 | |
|   if(conn && conn->handler->connecting) {
 | |
|     *done = FALSE;
 | |
|     result = conn->handler->connecting(data, done);
 | |
|   }
 | |
|   else
 | |
|     *done = TRUE;
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are DOING this is being called over and over from the multi interface
 | |
|  * until the DOING phase is done on protocol layer.
 | |
|  */
 | |
| 
 | |
| static CURLcode protocol_doing(struct Curl_easy *data, bool *done)
 | |
| {
 | |
|   CURLcode result = CURLE_OK;
 | |
|   struct connectdata *conn = data->conn;
 | |
| 
 | |
|   if(conn && conn->handler->doing) {
 | |
|     *done = FALSE;
 | |
|     result = conn->handler->doing(data, done);
 | |
|   }
 | |
|   else
 | |
|     *done = TRUE;
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We have discovered that the TCP connection has been successful, we can now
 | |
|  * proceed with some action.
 | |
|  *
 | |
|  */
 | |
| static CURLcode protocol_connect(struct Curl_easy *data,
 | |
|                                  bool *protocol_done)
 | |
| {
 | |
|   CURLcode result = CURLE_OK;
 | |
|   struct connectdata *conn = data->conn;
 | |
|   DEBUGASSERT(conn);
 | |
|   DEBUGASSERT(protocol_done);
 | |
| 
 | |
|   *protocol_done = FALSE;
 | |
| 
 | |
|   if(conn->bits.tcpconnect[FIRSTSOCKET] && conn->bits.protoconnstart) {
 | |
|     /* We already are connected, get back. This may happen when the connect
 | |
|        worked fine in the first call, like when we connect to a local server
 | |
|        or proxy. Note that we don't know if the protocol is actually done.
 | |
| 
 | |
|        Unless this protocol doesn't have any protocol-connect callback, as
 | |
|        then we know we're done. */
 | |
|     if(!conn->handler->connecting)
 | |
|       *protocol_done = TRUE;
 | |
| 
 | |
|     return CURLE_OK;
 | |
|   }
 | |
| 
 | |
|   if(!conn->bits.protoconnstart) {
 | |
| #ifndef CURL_DISABLE_PROXY
 | |
|     result = Curl_proxy_connect(data, FIRSTSOCKET);
 | |
|     if(result)
 | |
|       return result;
 | |
| 
 | |
|     if(CONNECT_FIRSTSOCKET_PROXY_SSL())
 | |
|       /* wait for HTTPS proxy SSL initialization to complete */
 | |
|       return CURLE_OK;
 | |
| 
 | |
|     if(conn->bits.tunnel_proxy && conn->bits.httpproxy &&
 | |
|        Curl_connect_ongoing(conn))
 | |
|       /* when using an HTTP tunnel proxy, await complete tunnel establishment
 | |
|          before proceeding further. Return CURLE_OK so we'll be called again */
 | |
|       return CURLE_OK;
 | |
| #endif
 | |
|     if(conn->handler->connect_it) {
 | |
|       /* is there a protocol-specific connect() procedure? */
 | |
| 
 | |
|       /* Call the protocol-specific connect function */
 | |
|       result = conn->handler->connect_it(data, protocol_done);
 | |
|     }
 | |
|     else
 | |
|       *protocol_done = TRUE;
 | |
| 
 | |
|     /* it has started, possibly even completed but that knowledge isn't stored
 | |
|        in this bit! */
 | |
|     if(!result)
 | |
|       conn->bits.protoconnstart = TRUE;
 | |
|   }
 | |
| 
 | |
|   return result; /* pass back status */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Curl_preconnect() is called immediately before a connect starts. When a
 | |
|  * redirect is followed, this is then called multiple times during a single
 | |
|  * transfer.
 | |
|  */
 | |
| CURLcode Curl_preconnect(struct Curl_easy *data)
 | |
| {
 | |
|   if(!data->state.buffer) {
 | |
|     data->state.buffer = malloc(data->set.buffer_size + 1);
 | |
|     if(!data->state.buffer)
 | |
|       return CURLE_OUT_OF_MEMORY;
 | |
|   }
 | |
|   return CURLE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| static CURLMcode multi_runsingle(struct Curl_multi *multi,
 | |
|                                  struct curltime *nowp,
 | |
|                                  struct Curl_easy *data)
 | |
| {
 | |
|   struct Curl_message *msg = NULL;
 | |
|   bool connected;
 | |
|   bool async;
 | |
|   bool protocol_connected = FALSE;
 | |
|   bool dophase_done = FALSE;
 | |
|   bool done = FALSE;
 | |
|   CURLMcode rc;
 | |
|   CURLcode result = CURLE_OK;
 | |
|   timediff_t recv_timeout_ms;
 | |
|   timediff_t send_timeout_ms;
 | |
|   int control;
 | |
| 
 | |
|   if(!GOOD_EASY_HANDLE(data))
 | |
|     return CURLM_BAD_EASY_HANDLE;
 | |
| 
 | |
|   do {
 | |
|     /* A "stream" here is a logical stream if the protocol can handle that
 | |
|        (HTTP/2), or the full connection for older protocols */
 | |
|     bool stream_error = FALSE;
 | |
|     rc = CURLM_OK;
 | |
| 
 | |
|     if(multi_ischanged(multi, TRUE)) {
 | |
|       DEBUGF(infof(data, "multi changed, check CONNECT_PEND queue!"));
 | |
|       process_pending_handles(multi); /* multiplexed */
 | |
|     }
 | |
| 
 | |
|     if(data->mstate > MSTATE_CONNECT &&
 | |
|        data->mstate < MSTATE_COMPLETED) {
 | |
|       /* Make sure we set the connection's current owner */
 | |
|       DEBUGASSERT(data->conn);
 | |
|       if(!data->conn)
 | |
|         return CURLM_INTERNAL_ERROR;
 | |
|     }
 | |
| 
 | |
|     if(data->conn &&
 | |
|        (data->mstate >= MSTATE_CONNECT) &&
 | |
|        (data->mstate < MSTATE_COMPLETED)) {
 | |
|       /* Check for overall operation timeout here but defer handling the
 | |
|        * connection timeout to later, to allow for a connection to be set up
 | |
|        * in the window since we last checked timeout. This prevents us
 | |
|        * tearing down a completed connection in the case where we were slow
 | |
|        * to check the timeout (e.g. process descheduled during this loop).
 | |
|        * We set connect_timeout=FALSE to do this. */
 | |
| 
 | |
|       /* we need to wait for the connect state as only then is the start time
 | |
|          stored, but we must not check already completed handles */
 | |
|       if(multi_handle_timeout(data, nowp, &stream_error, &result, FALSE)) {
 | |
|         /* Skip the statemachine and go directly to error handling section. */
 | |
|         goto statemachine_end;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch(data->mstate) {
 | |
|     case MSTATE_INIT:
 | |
|       /* init this transfer. */
 | |
|       result = Curl_pretransfer(data);
 | |
| 
 | |
|       if(!result) {
 | |
|         /* after init, go CONNECT */
 | |
|         multistate(data, MSTATE_CONNECT);
 | |
|         *nowp = Curl_pgrsTime(data, TIMER_STARTOP);
 | |
|         rc = CURLM_CALL_MULTI_PERFORM;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_PENDING:
 | |
|       /* We will stay here until there is a connection available. Then
 | |
|          we try again in the MSTATE_CONNECT state. */
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_CONNECT:
 | |
|       /* Connect. We want to get a connection identifier filled in. */
 | |
|       /* init this transfer. */
 | |
|       result = Curl_preconnect(data);
 | |
|       if(result)
 | |
|         break;
 | |
| 
 | |
|       *nowp = Curl_pgrsTime(data, TIMER_STARTSINGLE);
 | |
|       if(data->set.timeout)
 | |
|         Curl_expire(data, data->set.timeout, EXPIRE_TIMEOUT);
 | |
| 
 | |
|       if(data->set.connecttimeout)
 | |
|         Curl_expire(data, data->set.connecttimeout, EXPIRE_CONNECTTIMEOUT);
 | |
| 
 | |
|       result = Curl_connect(data, &async, &protocol_connected);
 | |
|       if(CURLE_NO_CONNECTION_AVAILABLE == result) {
 | |
|         /* There was no connection available. We will go to the pending
 | |
|            state and wait for an available connection. */
 | |
|         multistate(data, MSTATE_PENDING);
 | |
| 
 | |
|         /* add this handle to the list of connect-pending handles */
 | |
|         Curl_llist_insert_next(&multi->pending, multi->pending.tail, data,
 | |
|                                &data->connect_queue);
 | |
|         result = CURLE_OK;
 | |
|         break;
 | |
|       }
 | |
|       else if(data->state.previouslypending) {
 | |
|         /* this transfer comes from the pending queue so try move another */
 | |
|         infof(data, "Transfer was pending, now try another");
 | |
|         process_pending_handles(data->multi);
 | |
|       }
 | |
| 
 | |
|       if(!result) {
 | |
|         if(async)
 | |
|           /* We're now waiting for an asynchronous name lookup */
 | |
|           multistate(data, MSTATE_RESOLVING);
 | |
|         else {
 | |
|           /* after the connect has been sent off, go WAITCONNECT unless the
 | |
|              protocol connect is already done and we can go directly to
 | |
|              WAITDO or DO! */
 | |
|           rc = CURLM_CALL_MULTI_PERFORM;
 | |
| 
 | |
|           if(protocol_connected)
 | |
|             multistate(data, MSTATE_DO);
 | |
|           else {
 | |
| #ifndef CURL_DISABLE_HTTP
 | |
|             if(Curl_connect_ongoing(data->conn))
 | |
|               multistate(data, MSTATE_TUNNELING);
 | |
|             else
 | |
| #endif
 | |
|               multistate(data, MSTATE_CONNECTING);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_RESOLVING:
 | |
|       /* awaiting an asynch name resolve to complete */
 | |
|     {
 | |
|       struct Curl_dns_entry *dns = NULL;
 | |
|       struct connectdata *conn = data->conn;
 | |
|       const char *hostname;
 | |
| 
 | |
|       DEBUGASSERT(conn);
 | |
| #ifndef CURL_DISABLE_PROXY
 | |
|       if(conn->bits.httpproxy)
 | |
|         hostname = conn->http_proxy.host.name;
 | |
|       else
 | |
| #endif
 | |
|         if(conn->bits.conn_to_host)
 | |
|         hostname = conn->conn_to_host.name;
 | |
|       else
 | |
|         hostname = conn->host.name;
 | |
| 
 | |
|       /* check if we have the name resolved by now */
 | |
|       dns = Curl_fetch_addr(data, hostname, (int)conn->port);
 | |
| 
 | |
|       if(dns) {
 | |
| #ifdef CURLRES_ASYNCH
 | |
|         data->state.async.dns = dns;
 | |
|         data->state.async.done = TRUE;
 | |
| #endif
 | |
|         result = CURLE_OK;
 | |
|         infof(data, "Hostname '%s' was found in DNS cache", hostname);
 | |
|       }
 | |
| 
 | |
|       if(!dns)
 | |
|         result = Curl_resolv_check(data, &dns);
 | |
| 
 | |
|       /* Update sockets here, because the socket(s) may have been
 | |
|          closed and the application thus needs to be told, even if it
 | |
|          is likely that the same socket(s) will again be used further
 | |
|          down.  If the name has not yet been resolved, it is likely
 | |
|          that new sockets have been opened in an attempt to contact
 | |
|          another resolver. */
 | |
|       singlesocket(multi, data);
 | |
| 
 | |
|       if(dns) {
 | |
|         /* Perform the next step in the connection phase, and then move on
 | |
|            to the WAITCONNECT state */
 | |
|         result = Curl_once_resolved(data, &protocol_connected);
 | |
| 
 | |
|         if(result)
 | |
|           /* if Curl_once_resolved() returns failure, the connection struct
 | |
|              is already freed and gone */
 | |
|           data->conn = NULL; /* no more connection */
 | |
|         else {
 | |
|           /* call again please so that we get the next socket setup */
 | |
|           rc = CURLM_CALL_MULTI_PERFORM;
 | |
|           if(protocol_connected)
 | |
|             multistate(data, MSTATE_DO);
 | |
|           else {
 | |
| #ifndef CURL_DISABLE_HTTP
 | |
|             if(Curl_connect_ongoing(data->conn))
 | |
|               multistate(data, MSTATE_TUNNELING);
 | |
|             else
 | |
| #endif
 | |
|               multistate(data, MSTATE_CONNECTING);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if(result) {
 | |
|         /* failure detected */
 | |
|         stream_error = TRUE;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
| #ifndef CURL_DISABLE_HTTP
 | |
|     case MSTATE_TUNNELING:
 | |
|       /* this is HTTP-specific, but sending CONNECT to a proxy is HTTP... */
 | |
|       DEBUGASSERT(data->conn);
 | |
|       result = Curl_http_connect(data, &protocol_connected);
 | |
| #ifndef CURL_DISABLE_PROXY
 | |
|       if(data->conn->bits.proxy_connect_closed) {
 | |
|         rc = CURLM_CALL_MULTI_PERFORM;
 | |
|         /* connect back to proxy again */
 | |
|         result = CURLE_OK;
 | |
|         multi_done(data, CURLE_OK, FALSE);
 | |
|         multistate(data, MSTATE_CONNECT);
 | |
|       }
 | |
|       else
 | |
| #endif
 | |
|         if(!result) {
 | |
|           if(
 | |
| #ifndef CURL_DISABLE_PROXY
 | |
|             (data->conn->http_proxy.proxytype != CURLPROXY_HTTPS ||
 | |
|              data->conn->bits.proxy_ssl_connected[FIRSTSOCKET]) &&
 | |
| #endif
 | |
|             Curl_connect_complete(data->conn)) {
 | |
|             rc = CURLM_CALL_MULTI_PERFORM;
 | |
|             /* initiate protocol connect phase */
 | |
|             multistate(data, MSTATE_PROTOCONNECT);
 | |
|           }
 | |
|         }
 | |
|       else
 | |
|         stream_error = TRUE;
 | |
|       break;
 | |
| #endif
 | |
| 
 | |
|     case MSTATE_CONNECTING:
 | |
|       /* awaiting a completion of an asynch TCP connect */
 | |
|       DEBUGASSERT(data->conn);
 | |
|       result = Curl_is_connected(data, data->conn, FIRSTSOCKET, &connected);
 | |
|       if(connected && !result) {
 | |
| #ifndef CURL_DISABLE_HTTP
 | |
|         if(
 | |
| #ifndef CURL_DISABLE_PROXY
 | |
|           (data->conn->http_proxy.proxytype == CURLPROXY_HTTPS &&
 | |
|            !data->conn->bits.proxy_ssl_connected[FIRSTSOCKET]) ||
 | |
| #endif
 | |
|           Curl_connect_ongoing(data->conn)) {
 | |
|           multistate(data, MSTATE_TUNNELING);
 | |
|           break;
 | |
|         }
 | |
| #endif
 | |
|         rc = CURLM_CALL_MULTI_PERFORM;
 | |
| #ifndef CURL_DISABLE_PROXY
 | |
|         multistate(data,
 | |
|                    data->conn->bits.tunnel_proxy?
 | |
|                    MSTATE_TUNNELING : MSTATE_PROTOCONNECT);
 | |
| #else
 | |
|         multistate(data, MSTATE_PROTOCONNECT);
 | |
| #endif
 | |
|       }
 | |
|       else if(result) {
 | |
|         /* failure detected */
 | |
|         Curl_posttransfer(data);
 | |
|         multi_done(data, result, TRUE);
 | |
|         stream_error = TRUE;
 | |
|         break;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_PROTOCONNECT:
 | |
|       result = protocol_connect(data, &protocol_connected);
 | |
|       if(!result && !protocol_connected)
 | |
|         /* switch to waiting state */
 | |
|         multistate(data, MSTATE_PROTOCONNECTING);
 | |
|       else if(!result) {
 | |
|         /* protocol connect has completed, go WAITDO or DO */
 | |
|         multistate(data, MSTATE_DO);
 | |
|         rc = CURLM_CALL_MULTI_PERFORM;
 | |
|       }
 | |
|       else {
 | |
|         /* failure detected */
 | |
|         Curl_posttransfer(data);
 | |
|         multi_done(data, result, TRUE);
 | |
|         stream_error = TRUE;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_PROTOCONNECTING:
 | |
|       /* protocol-specific connect phase */
 | |
|       result = protocol_connecting(data, &protocol_connected);
 | |
|       if(!result && protocol_connected) {
 | |
|         /* after the connect has completed, go WAITDO or DO */
 | |
|         multistate(data, MSTATE_DO);
 | |
|         rc = CURLM_CALL_MULTI_PERFORM;
 | |
|       }
 | |
|       else if(result) {
 | |
|         /* failure detected */
 | |
|         Curl_posttransfer(data);
 | |
|         multi_done(data, result, TRUE);
 | |
|         stream_error = TRUE;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_DO:
 | |
|       if(data->set.fprereq) {
 | |
|         int prereq_rc;
 | |
| 
 | |
|         /* call the prerequest callback function */
 | |
|         Curl_set_in_callback(data, true);
 | |
|         prereq_rc = data->set.fprereq(data->set.prereq_userp,
 | |
|                                       data->info.conn_primary_ip,
 | |
|                                       data->info.conn_local_ip,
 | |
|                                       data->info.conn_primary_port,
 | |
|                                       data->info.conn_local_port);
 | |
|         Curl_set_in_callback(data, false);
 | |
|         if(prereq_rc != CURL_PREREQFUNC_OK) {
 | |
|           failf(data, "operation aborted by pre-request callback");
 | |
|           /* failure in pre-request callback - don't do any other processing */
 | |
|           result = CURLE_ABORTED_BY_CALLBACK;
 | |
|           Curl_posttransfer(data);
 | |
|           multi_done(data, result, FALSE);
 | |
|           stream_error = TRUE;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if(data->set.connect_only) {
 | |
|         /* keep connection open for application to use the socket */
 | |
|         connkeep(data->conn, "CONNECT_ONLY");
 | |
|         multistate(data, MSTATE_DONE);
 | |
|         result = CURLE_OK;
 | |
|         rc = CURLM_CALL_MULTI_PERFORM;
 | |
|       }
 | |
|       else {
 | |
|         /* Perform the protocol's DO action */
 | |
|         result = multi_do(data, &dophase_done);
 | |
| 
 | |
|         /* When multi_do() returns failure, data->conn might be NULL! */
 | |
| 
 | |
|         if(!result) {
 | |
|           if(!dophase_done) {
 | |
| #ifndef CURL_DISABLE_FTP
 | |
|             /* some steps needed for wildcard matching */
 | |
|             if(data->state.wildcardmatch) {
 | |
|               struct WildcardData *wc = &data->wildcard;
 | |
|               if(wc->state == CURLWC_DONE || wc->state == CURLWC_SKIP) {
 | |
|                 /* skip some states if it is important */
 | |
|                 multi_done(data, CURLE_OK, FALSE);
 | |
| 
 | |
|                 /* if there's no connection left, skip the DONE state */
 | |
|                 multistate(data, data->conn ?
 | |
|                            MSTATE_DONE : MSTATE_COMPLETED);
 | |
|                 rc = CURLM_CALL_MULTI_PERFORM;
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
| #endif
 | |
|             /* DO was not completed in one function call, we must continue
 | |
|                DOING... */
 | |
|             multistate(data, MSTATE_DOING);
 | |
|             rc = CURLM_OK;
 | |
|           }
 | |
| 
 | |
|           /* after DO, go DO_DONE... or DO_MORE */
 | |
|           else if(data->conn->bits.do_more) {
 | |
|             /* we're supposed to do more, but we need to sit down, relax
 | |
|                and wait a little while first */
 | |
|             multistate(data, MSTATE_DOING_MORE);
 | |
|             rc = CURLM_OK;
 | |
|           }
 | |
|           else {
 | |
|             /* we're done with the DO, now DID */
 | |
|             multistate(data, MSTATE_DID);
 | |
|             rc = CURLM_CALL_MULTI_PERFORM;
 | |
|           }
 | |
|         }
 | |
|         else if((CURLE_SEND_ERROR == result) &&
 | |
|                 data->conn->bits.reuse) {
 | |
|           /*
 | |
|            * In this situation, a connection that we were trying to use
 | |
|            * may have unexpectedly died.  If possible, send the connection
 | |
|            * back to the CONNECT phase so we can try again.
 | |
|            */
 | |
|           char *newurl = NULL;
 | |
|           followtype follow = FOLLOW_NONE;
 | |
|           CURLcode drc;
 | |
| 
 | |
|           drc = Curl_retry_request(data, &newurl);
 | |
|           if(drc) {
 | |
|             /* a failure here pretty much implies an out of memory */
 | |
|             result = drc;
 | |
|             stream_error = TRUE;
 | |
|           }
 | |
| 
 | |
|           Curl_posttransfer(data);
 | |
|           drc = multi_done(data, result, FALSE);
 | |
| 
 | |
|           /* When set to retry the connection, we must to go back to
 | |
|            * the CONNECT state */
 | |
|           if(newurl) {
 | |
|             if(!drc || (drc == CURLE_SEND_ERROR)) {
 | |
|               follow = FOLLOW_RETRY;
 | |
|               drc = Curl_follow(data, newurl, follow);
 | |
|               if(!drc) {
 | |
|                 multistate(data, MSTATE_CONNECT);
 | |
|                 rc = CURLM_CALL_MULTI_PERFORM;
 | |
|                 result = CURLE_OK;
 | |
|               }
 | |
|               else {
 | |
|                 /* Follow failed */
 | |
|                 result = drc;
 | |
|               }
 | |
|             }
 | |
|             else {
 | |
|               /* done didn't return OK or SEND_ERROR */
 | |
|               result = drc;
 | |
|             }
 | |
|           }
 | |
|           else {
 | |
|             /* Have error handler disconnect conn if we can't retry */
 | |
|             stream_error = TRUE;
 | |
|           }
 | |
|           free(newurl);
 | |
|         }
 | |
|         else {
 | |
|           /* failure detected */
 | |
|           Curl_posttransfer(data);
 | |
|           if(data->conn)
 | |
|             multi_done(data, result, FALSE);
 | |
|           stream_error = TRUE;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_DOING:
 | |
|       /* we continue DOING until the DO phase is complete */
 | |
|       DEBUGASSERT(data->conn);
 | |
|       result = protocol_doing(data, &dophase_done);
 | |
|       if(!result) {
 | |
|         if(dophase_done) {
 | |
|           /* after DO, go DO_DONE or DO_MORE */
 | |
|           multistate(data, data->conn->bits.do_more?
 | |
|                      MSTATE_DOING_MORE : MSTATE_DID);
 | |
|           rc = CURLM_CALL_MULTI_PERFORM;
 | |
|         } /* dophase_done */
 | |
|       }
 | |
|       else {
 | |
|         /* failure detected */
 | |
|         Curl_posttransfer(data);
 | |
|         multi_done(data, result, FALSE);
 | |
|         stream_error = TRUE;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_DOING_MORE:
 | |
|       /*
 | |
|        * When we are connected, DOING MORE and then go DID
 | |
|        */
 | |
|       DEBUGASSERT(data->conn);
 | |
|       result = multi_do_more(data, &control);
 | |
| 
 | |
|       if(!result) {
 | |
|         if(control) {
 | |
|           /* if positive, advance to DO_DONE
 | |
|              if negative, go back to DOING */
 | |
|           multistate(data, control == 1?
 | |
|                      MSTATE_DID : MSTATE_DOING);
 | |
|           rc = CURLM_CALL_MULTI_PERFORM;
 | |
|         }
 | |
|         else
 | |
|           /* stay in DO_MORE */
 | |
|           rc = CURLM_OK;
 | |
|       }
 | |
|       else {
 | |
|         /* failure detected */
 | |
|         Curl_posttransfer(data);
 | |
|         multi_done(data, result, FALSE);
 | |
|         stream_error = TRUE;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_DID:
 | |
|       DEBUGASSERT(data->conn);
 | |
|       if(data->conn->bits.multiplex)
 | |
|         /* Check if we can move pending requests to send pipe */
 | |
|         process_pending_handles(multi); /*  multiplexed */
 | |
| 
 | |
|       /* Only perform the transfer if there's a good socket to work with.
 | |
|          Having both BAD is a signal to skip immediately to DONE */
 | |
|       if((data->conn->sockfd != CURL_SOCKET_BAD) ||
 | |
|          (data->conn->writesockfd != CURL_SOCKET_BAD))
 | |
|         multistate(data, MSTATE_PERFORMING);
 | |
|       else {
 | |
| #ifndef CURL_DISABLE_FTP
 | |
|         if(data->state.wildcardmatch &&
 | |
|            ((data->conn->handler->flags & PROTOPT_WILDCARD) == 0)) {
 | |
|           data->wildcard.state = CURLWC_DONE;
 | |
|         }
 | |
| #endif
 | |
|         multistate(data, MSTATE_DONE);
 | |
|       }
 | |
|       rc = CURLM_CALL_MULTI_PERFORM;
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_RATELIMITING: /* limit-rate exceeded in either direction */
 | |
|       DEBUGASSERT(data->conn);
 | |
|       /* if both rates are within spec, resume transfer */
 | |
|       if(Curl_pgrsUpdate(data))
 | |
|         result = CURLE_ABORTED_BY_CALLBACK;
 | |
|       else
 | |
|         result = Curl_speedcheck(data, *nowp);
 | |
| 
 | |
|       if(result) {
 | |
|         if(!(data->conn->handler->flags & PROTOPT_DUAL) &&
 | |
|            result != CURLE_HTTP2_STREAM)
 | |
|           streamclose(data->conn, "Transfer returned error");
 | |
| 
 | |
|         Curl_posttransfer(data);
 | |
|         multi_done(data, result, TRUE);
 | |
|       }
 | |
|       else {
 | |
|         send_timeout_ms = 0;
 | |
|         if(data->set.max_send_speed)
 | |
|           send_timeout_ms =
 | |
|             Curl_pgrsLimitWaitTime(data->progress.uploaded,
 | |
|                                    data->progress.ul_limit_size,
 | |
|                                    data->set.max_send_speed,
 | |
|                                    data->progress.ul_limit_start,
 | |
|                                    *nowp);
 | |
| 
 | |
|         recv_timeout_ms = 0;
 | |
|         if(data->set.max_recv_speed)
 | |
|           recv_timeout_ms =
 | |
|             Curl_pgrsLimitWaitTime(data->progress.downloaded,
 | |
|                                    data->progress.dl_limit_size,
 | |
|                                    data->set.max_recv_speed,
 | |
|                                    data->progress.dl_limit_start,
 | |
|                                    *nowp);
 | |
| 
 | |
|         if(!send_timeout_ms && !recv_timeout_ms) {
 | |
|           multistate(data, MSTATE_PERFORMING);
 | |
|           Curl_ratelimit(data, *nowp);
 | |
|         }
 | |
|         else if(send_timeout_ms >= recv_timeout_ms)
 | |
|           Curl_expire(data, send_timeout_ms, EXPIRE_TOOFAST);
 | |
|         else
 | |
|           Curl_expire(data, recv_timeout_ms, EXPIRE_TOOFAST);
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_PERFORMING:
 | |
|     {
 | |
|       char *newurl = NULL;
 | |
|       bool retry = FALSE;
 | |
|       bool comeback = FALSE;
 | |
|       DEBUGASSERT(data->state.buffer);
 | |
|       /* check if over send speed */
 | |
|       send_timeout_ms = 0;
 | |
|       if(data->set.max_send_speed)
 | |
|         send_timeout_ms = Curl_pgrsLimitWaitTime(data->progress.uploaded,
 | |
|                                                  data->progress.ul_limit_size,
 | |
|                                                  data->set.max_send_speed,
 | |
|                                                  data->progress.ul_limit_start,
 | |
|                                                  *nowp);
 | |
| 
 | |
|       /* check if over recv speed */
 | |
|       recv_timeout_ms = 0;
 | |
|       if(data->set.max_recv_speed)
 | |
|         recv_timeout_ms = Curl_pgrsLimitWaitTime(data->progress.downloaded,
 | |
|                                                  data->progress.dl_limit_size,
 | |
|                                                  data->set.max_recv_speed,
 | |
|                                                  data->progress.dl_limit_start,
 | |
|                                                  *nowp);
 | |
| 
 | |
|       if(send_timeout_ms || recv_timeout_ms) {
 | |
|         Curl_ratelimit(data, *nowp);
 | |
|         multistate(data, MSTATE_RATELIMITING);
 | |
|         if(send_timeout_ms >= recv_timeout_ms)
 | |
|           Curl_expire(data, send_timeout_ms, EXPIRE_TOOFAST);
 | |
|         else
 | |
|           Curl_expire(data, recv_timeout_ms, EXPIRE_TOOFAST);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       /* read/write data if it is ready to do so */
 | |
|       result = Curl_readwrite(data->conn, data, &done, &comeback);
 | |
| 
 | |
|       if(done || (result == CURLE_RECV_ERROR)) {
 | |
|         /* If CURLE_RECV_ERROR happens early enough, we assume it was a race
 | |
|          * condition and the server closed the re-used connection exactly when
 | |
|          * we wanted to use it, so figure out if that is indeed the case.
 | |
|          */
 | |
|         CURLcode ret = Curl_retry_request(data, &newurl);
 | |
|         if(!ret)
 | |
|           retry = (newurl)?TRUE:FALSE;
 | |
|         else if(!result)
 | |
|           result = ret;
 | |
| 
 | |
|         if(retry) {
 | |
|           /* if we are to retry, set the result to OK and consider the
 | |
|              request as done */
 | |
|           result = CURLE_OK;
 | |
|           done = TRUE;
 | |
|         }
 | |
|       }
 | |
|       else if((CURLE_HTTP2_STREAM == result) &&
 | |
|               Curl_h2_http_1_1_error(data)) {
 | |
|         CURLcode ret = Curl_retry_request(data, &newurl);
 | |
| 
 | |
|         if(!ret) {
 | |
|           infof(data, "Downgrades to HTTP/1.1!");
 | |
|           streamclose(data->conn, "Disconnect HTTP/2 for HTTP/1");
 | |
|           data->state.httpwant = CURL_HTTP_VERSION_1_1;
 | |
|           /* clear the error message bit too as we ignore the one we got */
 | |
|           data->state.errorbuf = FALSE;
 | |
|           if(!newurl)
 | |
|             /* typically for HTTP_1_1_REQUIRED error on first flight */
 | |
|             newurl = strdup(data->state.url);
 | |
|           /* if we are to retry, set the result to OK and consider the request
 | |
|              as done */
 | |
|           retry = TRUE;
 | |
|           result = CURLE_OK;
 | |
|           done = TRUE;
 | |
|         }
 | |
|         else
 | |
|           result = ret;
 | |
|       }
 | |
| 
 | |
|       if(result) {
 | |
|         /*
 | |
|          * The transfer phase returned error, we mark the connection to get
 | |
|          * closed to prevent being re-used. This is because we can't possibly
 | |
|          * know if the connection is in a good shape or not now.  Unless it is
 | |
|          * a protocol which uses two "channels" like FTP, as then the error
 | |
|          * happened in the data connection.
 | |
|          */
 | |
| 
 | |
|         if(!(data->conn->handler->flags & PROTOPT_DUAL) &&
 | |
|            result != CURLE_HTTP2_STREAM)
 | |
|           streamclose(data->conn, "Transfer returned error");
 | |
| 
 | |
|         Curl_posttransfer(data);
 | |
|         multi_done(data, result, TRUE);
 | |
|       }
 | |
|       else if(done) {
 | |
| 
 | |
|         /* call this even if the readwrite function returned error */
 | |
|         Curl_posttransfer(data);
 | |
| 
 | |
|         /* When we follow redirects or is set to retry the connection, we must
 | |
|            to go back to the CONNECT state */
 | |
|         if(data->req.newurl || retry) {
 | |
|           followtype follow = FOLLOW_NONE;
 | |
|           if(!retry) {
 | |
|             /* if the URL is a follow-location and not just a retried request
 | |
|                then figure out the URL here */
 | |
|             free(newurl);
 | |
|             newurl = data->req.newurl;
 | |
|             data->req.newurl = NULL;
 | |
|             follow = FOLLOW_REDIR;
 | |
|           }
 | |
|           else
 | |
|             follow = FOLLOW_RETRY;
 | |
|           (void)multi_done(data, CURLE_OK, FALSE);
 | |
|           /* multi_done() might return CURLE_GOT_NOTHING */
 | |
|           result = Curl_follow(data, newurl, follow);
 | |
|           if(!result) {
 | |
|             multistate(data, MSTATE_CONNECT);
 | |
|             rc = CURLM_CALL_MULTI_PERFORM;
 | |
|           }
 | |
|           free(newurl);
 | |
|         }
 | |
|         else {
 | |
|           /* after the transfer is done, go DONE */
 | |
| 
 | |
|           /* but first check to see if we got a location info even though we're
 | |
|              not following redirects */
 | |
|           if(data->req.location) {
 | |
|             free(newurl);
 | |
|             newurl = data->req.location;
 | |
|             data->req.location = NULL;
 | |
|             result = Curl_follow(data, newurl, FOLLOW_FAKE);
 | |
|             free(newurl);
 | |
|             if(result) {
 | |
|               stream_error = TRUE;
 | |
|               result = multi_done(data, result, TRUE);
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           if(!result) {
 | |
|             multistate(data, MSTATE_DONE);
 | |
|             rc = CURLM_CALL_MULTI_PERFORM;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       else if(comeback) {
 | |
|         /* This avoids CURLM_CALL_MULTI_PERFORM so that a very fast transfer
 | |
|            won't get stuck on this transfer at the expense of other concurrent
 | |
|            transfers */
 | |
|         Curl_expire(data, 0, EXPIRE_RUN_NOW);
 | |
|         rc = CURLM_OK;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case MSTATE_DONE:
 | |
|       /* this state is highly transient, so run another loop after this */
 | |
|       rc = CURLM_CALL_MULTI_PERFORM;
 | |
| 
 | |
|       if(data->conn) {
 | |
|         CURLcode res;
 | |
| 
 | |
|         if(data->conn->bits.multiplex)
 | |
|           /* Check if we can move pending requests to connection */
 | |
|           process_pending_handles(multi); /* multiplexing */
 | |
| 
 | |
|         /* post-transfer command */
 | |
|         res = multi_done(data, result, FALSE);
 | |
| 
 | |
|         /* allow a previously set error code take precedence */
 | |
|         if(!result)
 | |
|           result = res;
 | |
|       }
 | |
| 
 | |
| #ifndef CURL_DISABLE_FTP
 | |
|       if(data->state.wildcardmatch) {
 | |
|         if(data->wildcard.state != CURLWC_DONE) {
 | |
|           /* if a wildcard is set and we are not ending -> lets start again
 | |
|              with MSTATE_INIT */
 | |
|           multistate(data, MSTATE_INIT);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
|       /* after we have DONE what we're supposed to do, go COMPLETED, and
 | |
|          it doesn't matter what the multi_done() returned! */
 | |
|       multistate(data, MSTATE_COMPLETED);
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_COMPLETED:
 | |
|       break;
 | |
| 
 | |
|     case MSTATE_MSGSENT:
 | |
|       data->result = result;
 | |
|       return CURLM_OK; /* do nothing */
 | |
| 
 | |
|     default:
 | |
|       return CURLM_INTERNAL_ERROR;
 | |
|     }
 | |
| 
 | |
|     if(data->conn &&
 | |
|        data->mstate >= MSTATE_CONNECT &&
 | |
|        data->mstate < MSTATE_DO &&
 | |
|        rc != CURLM_CALL_MULTI_PERFORM &&
 | |
|        !multi_ischanged(multi, false)) {
 | |
|       /* We now handle stream timeouts if and only if this will be the last
 | |
|        * loop iteration. We only check this on the last iteration to ensure
 | |
|        * that if we know we have additional work to do immediately
 | |
|        * (i.e. CURLM_CALL_MULTI_PERFORM == TRUE) then we should do that before
 | |
|        * declaring the connection timed out as we may almost have a completed
 | |
|        * connection. */
 | |
|       multi_handle_timeout(data, nowp, &stream_error, &result, TRUE);
 | |
|     }
 | |
| 
 | |
|     statemachine_end:
 | |
| 
 | |
|     if(data->mstate < MSTATE_COMPLETED) {
 | |
|       if(result) {
 | |
|         /*
 | |
|          * If an error was returned, and we aren't in completed state now,
 | |
|          * then we go to completed and consider this transfer aborted.
 | |
|          */
 | |
| 
 | |
|         /* NOTE: no attempt to disconnect connections must be made
 | |
|            in the case blocks above - cleanup happens only here */
 | |
| 
 | |
|         /* Check if we can move pending requests to send pipe */
 | |
|         process_pending_handles(multi); /* connection */
 | |
| 
 | |
|         if(data->conn) {
 | |
|           if(stream_error) {
 | |
|             /* Don't attempt to send data over a connection that timed out */
 | |
|             bool dead_connection = result == CURLE_OPERATION_TIMEDOUT;
 | |
|             struct connectdata *conn = data->conn;
 | |
| 
 | |
|             /* This is where we make sure that the conn pointer is reset.
 | |
|                We don't have to do this in every case block above where a
 | |
|                failure is detected */
 | |
|             Curl_detach_connnection(data);
 | |
| 
 | |
|             /* remove connection from cache */
 | |
|             Curl_conncache_remove_conn(data, conn, TRUE);
 | |
| 
 | |
|             /* disconnect properly */
 | |
|             Curl_disconnect(data, conn, dead_connection);
 | |
|           }
 | |
|         }
 | |
|         else if(data->mstate == MSTATE_CONNECT) {
 | |
|           /* Curl_connect() failed */
 | |
|           (void)Curl_posttransfer(data);
 | |
|         }
 | |
| 
 | |
|         multistate(data, MSTATE_COMPLETED);
 | |
|         rc = CURLM_CALL_MULTI_PERFORM;
 | |
|       }
 | |
|       /* if there's still a connection to use, call the progress function */
 | |
|       else if(data->conn && Curl_pgrsUpdate(data)) {
 | |
|         /* aborted due to progress callback return code must close the
 | |
|            connection */
 | |
|         result = CURLE_ABORTED_BY_CALLBACK;
 | |
|         streamclose(data->conn, "Aborted by callback");
 | |
| 
 | |
|         /* if not yet in DONE state, go there, otherwise COMPLETED */
 | |
|         multistate(data, (data->mstate < MSTATE_DONE)?
 | |
|                    MSTATE_DONE: MSTATE_COMPLETED);
 | |
|         rc = CURLM_CALL_MULTI_PERFORM;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if(MSTATE_COMPLETED == data->mstate) {
 | |
|       if(data->set.fmultidone) {
 | |
|         /* signal via callback instead */
 | |
|         data->set.fmultidone(data, result);
 | |
|       }
 | |
|       else {
 | |
|         /* now fill in the Curl_message with this info */
 | |
|         msg = &data->msg;
 | |
| 
 | |
|         msg->extmsg.msg = CURLMSG_DONE;
 | |
|         msg->extmsg.easy_handle = data;
 | |
|         msg->extmsg.data.result = result;
 | |
| 
 | |
|         rc = multi_addmsg(multi, msg);
 | |
|         DEBUGASSERT(!data->conn);
 | |
|       }
 | |
|       multistate(data, MSTATE_MSGSENT);
 | |
|     }
 | |
|   } while((rc == CURLM_CALL_MULTI_PERFORM) || multi_ischanged(multi, FALSE));
 | |
| 
 | |
|   data->result = result;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| CURLMcode curl_multi_perform(struct Curl_multi *multi, int *running_handles)
 | |
| {
 | |
|   struct Curl_easy *data;
 | |
|   CURLMcode returncode = CURLM_OK;
 | |
|   struct Curl_tree *t;
 | |
|   struct curltime now = Curl_now();
 | |
| 
 | |
|   if(!GOOD_MULTI_HANDLE(multi))
 | |
|     return CURLM_BAD_HANDLE;
 | |
| 
 | |
|   if(multi->in_callback)
 | |
|     return CURLM_RECURSIVE_API_CALL;
 | |
| 
 | |
|   data = multi->easyp;
 | |
|   while(data) {
 | |
|     CURLMcode result;
 | |
|     SIGPIPE_VARIABLE(pipe_st);
 | |
| 
 | |
|     sigpipe_ignore(data, &pipe_st);
 | |
|     result = multi_runsingle(multi, &now, data);
 | |
|     sigpipe_restore(&pipe_st);
 | |
| 
 | |
|     if(result)
 | |
|       returncode = result;
 | |
| 
 | |
|     data = data->next; /* operate on next handle */
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * Simply remove all expired timers from the splay since handles are dealt
 | |
|    * with unconditionally by this function and curl_multi_timeout() requires
 | |
|    * that already passed/handled expire times are removed from the splay.
 | |
|    *
 | |
|    * It is important that the 'now' value is set at the entry of this function
 | |
|    * and not for the current time as it may have ticked a little while since
 | |
|    * then and then we risk this loop to remove timers that actually have not
 | |
|    * been handled!
 | |
|    */
 | |
|   do {
 | |
|     multi->timetree = Curl_splaygetbest(now, multi->timetree, &t);
 | |
|     if(t)
 | |
|       /* the removed may have another timeout in queue */
 | |
|       (void)add_next_timeout(now, multi, t->payload);
 | |
| 
 | |
|   } while(t);
 | |
| 
 | |
|   *running_handles = multi->num_alive;
 | |
| 
 | |
|   if(CURLM_OK >= returncode)
 | |
|     Curl_update_timer(multi);
 | |
| 
 | |
|   return returncode;
 | |
| }
 | |
| 
 | |
| CURLMcode curl_multi_cleanup(struct Curl_multi *multi)
 | |
| {
 | |
|   struct Curl_easy *data;
 | |
|   struct Curl_easy *nextdata;
 | |
| 
 | |
|   if(GOOD_MULTI_HANDLE(multi)) {
 | |
|     if(multi->in_callback)
 | |
|       return CURLM_RECURSIVE_API_CALL;
 | |
| 
 | |
|     multi->magic = 0; /* not good anymore */
 | |
| 
 | |
|     /* First remove all remaining easy handles */
 | |
|     data = multi->easyp;
 | |
|     while(data) {
 | |
|       nextdata = data->next;
 | |
|       if(!data->state.done && data->conn)
 | |
|         /* if DONE was never called for this handle */
 | |
|         (void)multi_done(data, CURLE_OK, TRUE);
 | |
|       if(data->dns.hostcachetype == HCACHE_MULTI) {
 | |
|         /* clear out the usage of the shared DNS cache */
 | |
|         Curl_hostcache_clean(data, data->dns.hostcache);
 | |
|         data->dns.hostcache = NULL;
 | |
|         data->dns.hostcachetype = HCACHE_NONE;
 | |
|       }
 | |
| 
 | |
|       /* Clear the pointer to the connection cache */
 | |
|       data->state.conn_cache = NULL;
 | |
|       data->multi = NULL; /* clear the association */
 | |
| 
 | |
| #ifdef USE_LIBPSL
 | |
|       if(data->psl == &multi->psl)
 | |
|         data->psl = NULL;
 | |
| #endif
 | |
| 
 | |
|       data = nextdata;
 | |
|     }
 | |
| 
 | |
|     /* Close all the connections in the connection cache */
 | |
|     Curl_conncache_close_all_connections(&multi->conn_cache);
 | |
| 
 | |
|     Curl_hash_destroy(&multi->sockhash);
 | |
|     Curl_conncache_destroy(&multi->conn_cache);
 | |
|     Curl_llist_destroy(&multi->msglist, NULL);
 | |
|     Curl_llist_destroy(&multi->pending, NULL);
 | |
| 
 | |
|     Curl_hash_destroy(&multi->hostcache);
 | |
|     Curl_psl_destroy(&multi->psl);
 | |
| 
 | |
| #ifdef USE_WINSOCK
 | |
|     WSACloseEvent(multi->wsa_event);
 | |
| #else
 | |
| #ifdef ENABLE_WAKEUP
 | |
|     sclose(multi->wakeup_pair[0]);
 | |
|     sclose(multi->wakeup_pair[1]);
 | |
| #endif
 | |
| #endif
 | |
|     free(multi);
 | |
| 
 | |
|     return CURLM_OK;
 | |
|   }
 | |
|   return CURLM_BAD_HANDLE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * curl_multi_info_read()
 | |
|  *
 | |
|  * This function is the primary way for a multi/multi_socket application to
 | |
|  * figure out if a transfer has ended. We MUST make this function as fast as
 | |
|  * possible as it will be polled frequently and we MUST NOT scan any lists in
 | |
|  * here to figure out things. We must scale fine to thousands of handles and
 | |
|  * beyond. The current design is fully O(1).
 | |
|  */
 | |
| 
 | |
| CURLMsg *curl_multi_info_read(struct Curl_multi *multi, int *msgs_in_queue)
 | |
| {
 | |
|   struct Curl_message *msg;
 | |
| 
 | |
|   *msgs_in_queue = 0; /* default to none */
 | |
| 
 | |
|   if(GOOD_MULTI_HANDLE(multi) &&
 | |
|      !multi->in_callback &&
 | |
|      Curl_llist_count(&multi->msglist)) {
 | |
|     /* there is one or more messages in the list */
 | |
|     struct Curl_llist_element *e;
 | |
| 
 | |
|     /* extract the head of the list to return */
 | |
|     e = multi->msglist.head;
 | |
| 
 | |
|     msg = e->ptr;
 | |
| 
 | |
|     /* remove the extracted entry */
 | |
|     Curl_llist_remove(&multi->msglist, e, NULL);
 | |
| 
 | |
|     *msgs_in_queue = curlx_uztosi(Curl_llist_count(&multi->msglist));
 | |
| 
 | |
|     return &msg->extmsg;
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * singlesocket() checks what sockets we deal with and their "action state"
 | |
|  * and if we have a different state in any of those sockets from last time we
 | |
|  * call the callback accordingly.
 | |
|  */
 | |
| static CURLMcode singlesocket(struct Curl_multi *multi,
 | |
|                               struct Curl_easy *data)
 | |
| {
 | |
|   curl_socket_t socks[MAX_SOCKSPEREASYHANDLE];
 | |
|   int i;
 | |
|   struct Curl_sh_entry *entry;
 | |
|   curl_socket_t s;
 | |
|   int num;
 | |
|   unsigned int curraction;
 | |
|   unsigned char actions[MAX_SOCKSPEREASYHANDLE];
 | |
| 
 | |
|   for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++)
 | |
|     socks[i] = CURL_SOCKET_BAD;
 | |
| 
 | |
|   /* Fill in the 'current' struct with the state as it is now: what sockets to
 | |
|      supervise and for what actions */
 | |
|   curraction = multi_getsock(data, socks);
 | |
| 
 | |
|   /* We have 0 .. N sockets already and we get to know about the 0 .. M
 | |
|      sockets we should have from now on. Detect the differences, remove no
 | |
|      longer supervised ones and add new ones */
 | |
| 
 | |
|   /* walk over the sockets we got right now */
 | |
|   for(i = 0; (i< MAX_SOCKSPEREASYHANDLE) &&
 | |
|         (curraction & (GETSOCK_READSOCK(i) | GETSOCK_WRITESOCK(i)));
 | |
|       i++) {
 | |
|     unsigned char action = CURL_POLL_NONE;
 | |
|     unsigned char prevaction = 0;
 | |
|     int comboaction;
 | |
|     bool sincebefore = FALSE;
 | |
| 
 | |
|     s = socks[i];
 | |
| 
 | |
|     /* get it from the hash */
 | |
|     entry = sh_getentry(&multi->sockhash, s);
 | |
| 
 | |
|     if(curraction & GETSOCK_READSOCK(i))
 | |
|       action |= CURL_POLL_IN;
 | |
|     if(curraction & GETSOCK_WRITESOCK(i))
 | |
|       action |= CURL_POLL_OUT;
 | |
| 
 | |
|     actions[i] = action;
 | |
|     if(entry) {
 | |
|       /* check if new for this transfer */
 | |
|       int j;
 | |
|       for(j = 0; j< data->numsocks; j++) {
 | |
|         if(s == data->sockets[j]) {
 | |
|           prevaction = data->actions[j];
 | |
|           sincebefore = TRUE;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       /* this is a socket we didn't have before, add it to the hash! */
 | |
|       entry = sh_addentry(&multi->sockhash, s);
 | |
|       if(!entry)
 | |
|         /* fatal */
 | |
|         return CURLM_OUT_OF_MEMORY;
 | |
|     }
 | |
|     if(sincebefore && (prevaction != action)) {
 | |
|       /* Socket was used already, but different action now */
 | |
|       if(prevaction & CURL_POLL_IN)
 | |
|         entry->readers--;
 | |
|       if(prevaction & CURL_POLL_OUT)
 | |
|         entry->writers--;
 | |
|       if(action & CURL_POLL_IN)
 | |
|         entry->readers++;
 | |
|       if(action & CURL_POLL_OUT)
 | |
|         entry->writers++;
 | |
|     }
 | |
|     else if(!sincebefore) {
 | |
|       /* a new user */
 | |
|       entry->users++;
 | |
|       if(action & CURL_POLL_IN)
 | |
|         entry->readers++;
 | |
|       if(action & CURL_POLL_OUT)
 | |
|         entry->writers++;
 | |
| 
 | |
|       /* add 'data' to the transfer hash on this socket! */
 | |
|       if(!Curl_hash_add(&entry->transfers, (char *)&data, /* hash key */
 | |
|                         sizeof(struct Curl_easy *), data))
 | |
|         return CURLM_OUT_OF_MEMORY;
 | |
|     }
 | |
| 
 | |
|     comboaction = (entry->writers? CURL_POLL_OUT : 0) |
 | |
|                    (entry->readers ? CURL_POLL_IN : 0);
 | |
| 
 | |
|     /* socket existed before and has the same action set as before */
 | |
|     if(sincebefore && ((int)entry->action == comboaction))
 | |
|       /* same, continue */
 | |
|       continue;
 | |
| 
 | |
|     if(multi->socket_cb)
 | |
|       multi->socket_cb(data, s, comboaction, multi->socket_userp,
 | |
|                        entry->socketp);
 | |
| 
 | |
|     entry->action = comboaction; /* store the current action state */
 | |
|   }
 | |
| 
 | |
|   num = i; /* number of sockets */
 | |
| 
 | |
|   /* when we've walked over all the sockets we should have right now, we must
 | |
|      make sure to detect sockets that are removed */
 | |
|   for(i = 0; i< data->numsocks; i++) {
 | |
|     int j;
 | |
|     bool stillused = FALSE;
 | |
|     s = data->sockets[i];
 | |
|     for(j = 0; j < num; j++) {
 | |
|       if(s == socks[j]) {
 | |
|         /* this is still supervised */
 | |
|         stillused = TRUE;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if(stillused)
 | |
|       continue;
 | |
| 
 | |
|     entry = sh_getentry(&multi->sockhash, s);
 | |
|     /* if this is NULL here, the socket has been closed and notified so
 | |
|        already by Curl_multi_closed() */
 | |
|     if(entry) {
 | |
|       unsigned char oldactions = data->actions[i];
 | |
|       /* this socket has been removed. Decrease user count */
 | |
|       entry->users--;
 | |
|       if(oldactions & CURL_POLL_OUT)
 | |
|         entry->writers--;
 | |
|       if(oldactions & CURL_POLL_IN)
 | |
|         entry->readers--;
 | |
|       if(!entry->users) {
 | |
|         if(multi->socket_cb)
 | |
|           multi->socket_cb(data, s, CURL_POLL_REMOVE,
 | |
|                            multi->socket_userp,
 | |
|                            entry->socketp);
 | |
|         sh_delentry(entry, &multi->sockhash, s);
 | |
|       }
 | |
|       else {
 | |
|         /* still users, but remove this handle as a user of this socket */
 | |
|         if(Curl_hash_delete(&entry->transfers, (char *)&data,
 | |
|                             sizeof(struct Curl_easy *))) {
 | |
|           DEBUGASSERT(NULL);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } /* for loop over numsocks */
 | |
| 
 | |
|   memcpy(data->sockets, socks, num*sizeof(curl_socket_t));
 | |
|   memcpy(data->actions, actions, num*sizeof(char));
 | |
|   data->numsocks = num;
 | |
|   return CURLM_OK;
 | |
| }
 | |
| 
 | |
| void Curl_updatesocket(struct Curl_easy *data)
 | |
| {
 | |
|   singlesocket(data->multi, data);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Curl_multi_closed()
 | |
|  *
 | |
|  * Used by the connect code to tell the multi_socket code that one of the
 | |
|  * sockets we were using is about to be closed.  This function will then
 | |
|  * remove it from the sockethash for this handle to make the multi_socket API
 | |
|  * behave properly, especially for the case when libcurl will create another
 | |
|  * socket again and it gets the same file descriptor number.
 | |
|  */
 | |
| 
 | |
| void Curl_multi_closed(struct Curl_easy *data, curl_socket_t s)
 | |
| {
 | |
|   if(data) {
 | |
|     /* if there's still an easy handle associated with this connection */
 | |
|     struct Curl_multi *multi = data->multi;
 | |
|     if(multi) {
 | |
|       /* this is set if this connection is part of a handle that is added to
 | |
|          a multi handle, and only then this is necessary */
 | |
|       struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s);
 | |
| 
 | |
|       if(entry) {
 | |
|         if(multi->socket_cb)
 | |
|           multi->socket_cb(data, s, CURL_POLL_REMOVE,
 | |
|                            multi->socket_userp,
 | |
|                            entry->socketp);
 | |
| 
 | |
|         /* now remove it from the socket hash */
 | |
|         sh_delentry(entry, &multi->sockhash, s);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add_next_timeout()
 | |
|  *
 | |
|  * Each Curl_easy has a list of timeouts. The add_next_timeout() is called
 | |
|  * when it has just been removed from the splay tree because the timeout has
 | |
|  * expired. This function is then to advance in the list to pick the next
 | |
|  * timeout to use (skip the already expired ones) and add this node back to
 | |
|  * the splay tree again.
 | |
|  *
 | |
|  * The splay tree only has each sessionhandle as a single node and the nearest
 | |
|  * timeout is used to sort it on.
 | |
|  */
 | |
| static CURLMcode add_next_timeout(struct curltime now,
 | |
|                                   struct Curl_multi *multi,
 | |
|                                   struct Curl_easy *d)
 | |
| {
 | |
|   struct curltime *tv = &d->state.expiretime;
 | |
|   struct Curl_llist *list = &d->state.timeoutlist;
 | |
|   struct Curl_llist_element *e;
 | |
|   struct time_node *node = NULL;
 | |
| 
 | |
|   /* move over the timeout list for this specific handle and remove all
 | |
|      timeouts that are now passed tense and store the next pending
 | |
|      timeout in *tv */
 | |
|   for(e = list->head; e;) {
 | |
|     struct Curl_llist_element *n = e->next;
 | |
|     timediff_t diff;
 | |
|     node = (struct time_node *)e->ptr;
 | |
|     diff = Curl_timediff(node->time, now);
 | |
|     if(diff <= 0)
 | |
|       /* remove outdated entry */
 | |
|       Curl_llist_remove(list, e, NULL);
 | |
|     else
 | |
|       /* the list is sorted so get out on the first mismatch */
 | |
|       break;
 | |
|     e = n;
 | |
|   }
 | |
|   e = list->head;
 | |
|   if(!e) {
 | |
|     /* clear the expire times within the handles that we remove from the
 | |
|        splay tree */
 | |
|     tv->tv_sec = 0;
 | |
|     tv->tv_usec = 0;
 | |
|   }
 | |
|   else {
 | |
|     /* copy the first entry to 'tv' */
 | |
|     memcpy(tv, &node->time, sizeof(*tv));
 | |
| 
 | |
|     /* Insert this node again into the splay.  Keep the timer in the list in
 | |
|        case we need to recompute future timers. */
 | |
|     multi->timetree = Curl_splayinsert(*tv, multi->timetree,
 | |
|                                        &d->state.timenode);
 | |
|   }
 | |
|   return CURLM_OK;
 | |
| }
 | |
| 
 | |
| static CURLMcode multi_socket(struct Curl_multi *multi,
 | |
|                               bool checkall,
 | |
|                               curl_socket_t s,
 | |
|                               int ev_bitmask,
 | |
|                               int *running_handles)
 | |
| {
 | |
|   CURLMcode result = CURLM_OK;
 | |
|   struct Curl_easy *data = NULL;
 | |
|   struct Curl_tree *t;
 | |
|   struct curltime now = Curl_now();
 | |
| 
 | |
|   if(checkall) {
 | |
|     /* *perform() deals with running_handles on its own */
 | |
|     result = curl_multi_perform(multi, running_handles);
 | |
| 
 | |
|     /* walk through each easy handle and do the socket state change magic
 | |
|        and callbacks */
 | |
|     if(result != CURLM_BAD_HANDLE) {
 | |
|       data = multi->easyp;
 | |
|       while(data && !result) {
 | |
|         result = singlesocket(multi, data);
 | |
|         data = data->next;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* or should we fall-through and do the timer-based stuff? */
 | |
|     return result;
 | |
|   }
 | |
|   if(s != CURL_SOCKET_TIMEOUT) {
 | |
|     struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s);
 | |
| 
 | |
|     if(!entry)
 | |
|       /* Unmatched socket, we can't act on it but we ignore this fact.  In
 | |
|          real-world tests it has been proved that libevent can in fact give
 | |
|          the application actions even though the socket was just previously
 | |
|          asked to get removed, so thus we better survive stray socket actions
 | |
|          and just move on. */
 | |
|       ;
 | |
|     else {
 | |
|       struct Curl_hash_iterator iter;
 | |
|       struct Curl_hash_element *he;
 | |
| 
 | |
|       /* the socket can be shared by many transfers, iterate */
 | |
|       Curl_hash_start_iterate(&entry->transfers, &iter);
 | |
|       for(he = Curl_hash_next_element(&iter); he;
 | |
|           he = Curl_hash_next_element(&iter)) {
 | |
|         data = (struct Curl_easy *)he->ptr;
 | |
|         DEBUGASSERT(data);
 | |
|         DEBUGASSERT(data->magic == CURLEASY_MAGIC_NUMBER);
 | |
| 
 | |
|         if(data->conn && !(data->conn->handler->flags & PROTOPT_DIRLOCK))
 | |
|           /* set socket event bitmask if they're not locked */
 | |
|           data->conn->cselect_bits = ev_bitmask;
 | |
| 
 | |
|         Curl_expire(data, 0, EXPIRE_RUN_NOW);
 | |
|       }
 | |
| 
 | |
|       /* Now we fall-through and do the timer-based stuff, since we don't want
 | |
|          to force the user to have to deal with timeouts as long as at least
 | |
|          one connection in fact has traffic. */
 | |
| 
 | |
|       data = NULL; /* set data to NULL again to avoid calling
 | |
|                       multi_runsingle() in case there's no need to */
 | |
|       now = Curl_now(); /* get a newer time since the multi_runsingle() loop
 | |
|                            may have taken some time */
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     /* Asked to run due to time-out. Clear the 'lastcall' variable to force
 | |
|        Curl_update_timer() to trigger a callback to the app again even if the
 | |
|        same timeout is still the one to run after this call. That handles the
 | |
|        case when the application asks libcurl to run the timeout
 | |
|        prematurely. */
 | |
|     memset(&multi->timer_lastcall, 0, sizeof(multi->timer_lastcall));
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * The loop following here will go on as long as there are expire-times left
 | |
|    * to process in the splay and 'data' will be re-assigned for every expired
 | |
|    * handle we deal with.
 | |
|    */
 | |
|   do {
 | |
|     /* the first loop lap 'data' can be NULL */
 | |
|     if(data) {
 | |
|       SIGPIPE_VARIABLE(pipe_st);
 | |
| 
 | |
|       sigpipe_ignore(data, &pipe_st);
 | |
|       result = multi_runsingle(multi, &now, data);
 | |
|       sigpipe_restore(&pipe_st);
 | |
| 
 | |
|       if(CURLM_OK >= result) {
 | |
|         /* get the socket(s) and check if the state has been changed since
 | |
|            last */
 | |
|         result = singlesocket(multi, data);
 | |
|         if(result)
 | |
|           return result;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Check if there's one (more) expired timer to deal with! This function
 | |
|        extracts a matching node if there is one */
 | |
| 
 | |
|     multi->timetree = Curl_splaygetbest(now, multi->timetree, &t);
 | |
|     if(t) {
 | |
|       data = t->payload; /* assign this for next loop */
 | |
|       (void)add_next_timeout(now, multi, t->payload);
 | |
|     }
 | |
| 
 | |
|   } while(t);
 | |
| 
 | |
|   *running_handles = multi->num_alive;
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| #undef curl_multi_setopt
 | |
| CURLMcode curl_multi_setopt(struct Curl_multi *multi,
 | |
|                             CURLMoption option, ...)
 | |
| {
 | |
|   CURLMcode res = CURLM_OK;
 | |
|   va_list param;
 | |
| 
 | |
|   if(!GOOD_MULTI_HANDLE(multi))
 | |
|     return CURLM_BAD_HANDLE;
 | |
| 
 | |
|   if(multi->in_callback)
 | |
|     return CURLM_RECURSIVE_API_CALL;
 | |
| 
 | |
|   va_start(param, option);
 | |
| 
 | |
|   switch(option) {
 | |
|   case CURLMOPT_SOCKETFUNCTION:
 | |
|     multi->socket_cb = va_arg(param, curl_socket_callback);
 | |
|     break;
 | |
|   case CURLMOPT_SOCKETDATA:
 | |
|     multi->socket_userp = va_arg(param, void *);
 | |
|     break;
 | |
|   case CURLMOPT_PUSHFUNCTION:
 | |
|     multi->push_cb = va_arg(param, curl_push_callback);
 | |
|     break;
 | |
|   case CURLMOPT_PUSHDATA:
 | |
|     multi->push_userp = va_arg(param, void *);
 | |
|     break;
 | |
|   case CURLMOPT_PIPELINING:
 | |
|     multi->multiplexing = va_arg(param, long) & CURLPIPE_MULTIPLEX;
 | |
|     break;
 | |
|   case CURLMOPT_TIMERFUNCTION:
 | |
|     multi->timer_cb = va_arg(param, curl_multi_timer_callback);
 | |
|     break;
 | |
|   case CURLMOPT_TIMERDATA:
 | |
|     multi->timer_userp = va_arg(param, void *);
 | |
|     break;
 | |
|   case CURLMOPT_MAXCONNECTS:
 | |
|     multi->maxconnects = va_arg(param, long);
 | |
|     break;
 | |
|   case CURLMOPT_MAX_HOST_CONNECTIONS:
 | |
|     multi->max_host_connections = va_arg(param, long);
 | |
|     break;
 | |
|   case CURLMOPT_MAX_TOTAL_CONNECTIONS:
 | |
|     multi->max_total_connections = va_arg(param, long);
 | |
|     break;
 | |
|     /* options formerly used for pipelining */
 | |
|   case CURLMOPT_MAX_PIPELINE_LENGTH:
 | |
|     break;
 | |
|   case CURLMOPT_CONTENT_LENGTH_PENALTY_SIZE:
 | |
|     break;
 | |
|   case CURLMOPT_CHUNK_LENGTH_PENALTY_SIZE:
 | |
|     break;
 | |
|   case CURLMOPT_PIPELINING_SITE_BL:
 | |
|     break;
 | |
|   case CURLMOPT_PIPELINING_SERVER_BL:
 | |
|     break;
 | |
|   case CURLMOPT_MAX_CONCURRENT_STREAMS:
 | |
|     {
 | |
|       long streams = va_arg(param, long);
 | |
|       if(streams < 1)
 | |
|         streams = 100;
 | |
|       multi->max_concurrent_streams = curlx_sltoui(streams);
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     res = CURLM_UNKNOWN_OPTION;
 | |
|     break;
 | |
|   }
 | |
|   va_end(param);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* we define curl_multi_socket() in the public multi.h header */
 | |
| #undef curl_multi_socket
 | |
| 
 | |
| CURLMcode curl_multi_socket(struct Curl_multi *multi, curl_socket_t s,
 | |
|                             int *running_handles)
 | |
| {
 | |
|   CURLMcode result;
 | |
|   if(multi->in_callback)
 | |
|     return CURLM_RECURSIVE_API_CALL;
 | |
|   result = multi_socket(multi, FALSE, s, 0, running_handles);
 | |
|   if(CURLM_OK >= result)
 | |
|     Curl_update_timer(multi);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| CURLMcode curl_multi_socket_action(struct Curl_multi *multi, curl_socket_t s,
 | |
|                                    int ev_bitmask, int *running_handles)
 | |
| {
 | |
|   CURLMcode result;
 | |
|   if(multi->in_callback)
 | |
|     return CURLM_RECURSIVE_API_CALL;
 | |
|   result = multi_socket(multi, FALSE, s, ev_bitmask, running_handles);
 | |
|   if(CURLM_OK >= result)
 | |
|     Curl_update_timer(multi);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| CURLMcode curl_multi_socket_all(struct Curl_multi *multi, int *running_handles)
 | |
| {
 | |
|   CURLMcode result;
 | |
|   if(multi->in_callback)
 | |
|     return CURLM_RECURSIVE_API_CALL;
 | |
|   result = multi_socket(multi, TRUE, CURL_SOCKET_BAD, 0, running_handles);
 | |
|   if(CURLM_OK >= result)
 | |
|     Curl_update_timer(multi);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| static CURLMcode multi_timeout(struct Curl_multi *multi,
 | |
|                                long *timeout_ms)
 | |
| {
 | |
|   static const struct curltime tv_zero = {0, 0};
 | |
| 
 | |
|   if(multi->timetree) {
 | |
|     /* we have a tree of expire times */
 | |
|     struct curltime now = Curl_now();
 | |
| 
 | |
|     /* splay the lowest to the bottom */
 | |
|     multi->timetree = Curl_splay(tv_zero, multi->timetree);
 | |
| 
 | |
|     if(Curl_splaycomparekeys(multi->timetree->key, now) > 0) {
 | |
|       /* some time left before expiration */
 | |
|       timediff_t diff = Curl_timediff(multi->timetree->key, now);
 | |
|       if(diff <= 0)
 | |
|         /*
 | |
|          * Since we only provide millisecond resolution on the returned value
 | |
|          * and the diff might be less than one millisecond here, we don't
 | |
|          * return zero as that may cause short bursts of busyloops on fast
 | |
|          * processors while the diff is still present but less than one
 | |
|          * millisecond! instead we return 1 until the time is ripe.
 | |
|          */
 | |
|         *timeout_ms = 1;
 | |
|       else
 | |
|         /* this should be safe even on 64 bit archs, as we don't use that
 | |
|            overly long timeouts */
 | |
|         *timeout_ms = (long)diff;
 | |
|     }
 | |
|     else
 | |
|       /* 0 means immediately */
 | |
|       *timeout_ms = 0;
 | |
|   }
 | |
|   else
 | |
|     *timeout_ms = -1;
 | |
| 
 | |
|   return CURLM_OK;
 | |
| }
 | |
| 
 | |
| CURLMcode curl_multi_timeout(struct Curl_multi *multi,
 | |
|                              long *timeout_ms)
 | |
| {
 | |
|   /* First, make some basic checks that the CURLM handle is a good handle */
 | |
|   if(!GOOD_MULTI_HANDLE(multi))
 | |
|     return CURLM_BAD_HANDLE;
 | |
| 
 | |
|   if(multi->in_callback)
 | |
|     return CURLM_RECURSIVE_API_CALL;
 | |
| 
 | |
|   return multi_timeout(multi, timeout_ms);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tell the application it should update its timers, if it subscribes to the
 | |
|  * update timer callback.
 | |
|  */
 | |
| void Curl_update_timer(struct Curl_multi *multi)
 | |
| {
 | |
|   long timeout_ms;
 | |
| 
 | |
|   if(!multi->timer_cb)
 | |
|     return;
 | |
|   if(multi_timeout(multi, &timeout_ms)) {
 | |
|     return;
 | |
|   }
 | |
|   if(timeout_ms < 0) {
 | |
|     static const struct curltime none = {0, 0};
 | |
|     if(Curl_splaycomparekeys(none, multi->timer_lastcall)) {
 | |
|       multi->timer_lastcall = none;
 | |
|       /* there's no timeout now but there was one previously, tell the app to
 | |
|          disable it */
 | |
|       multi->timer_cb(multi, -1, multi->timer_userp);
 | |
|       return;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   /* When multi_timeout() is done, multi->timetree points to the node with the
 | |
|    * timeout we got the (relative) time-out time for. We can thus easily check
 | |
|    * if this is the same (fixed) time as we got in a previous call and then
 | |
|    * avoid calling the callback again. */
 | |
|   if(Curl_splaycomparekeys(multi->timetree->key, multi->timer_lastcall) == 0)
 | |
|     return;
 | |
| 
 | |
|   multi->timer_lastcall = multi->timetree->key;
 | |
| 
 | |
|   multi->timer_cb(multi, timeout_ms, multi->timer_userp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * multi_deltimeout()
 | |
|  *
 | |
|  * Remove a given timestamp from the list of timeouts.
 | |
|  */
 | |
| static void
 | |
| multi_deltimeout(struct Curl_easy *data, expire_id eid)
 | |
| {
 | |
|   struct Curl_llist_element *e;
 | |
|   struct Curl_llist *timeoutlist = &data->state.timeoutlist;
 | |
|   /* find and remove the specific node from the list */
 | |
|   for(e = timeoutlist->head; e; e = e->next) {
 | |
|     struct time_node *n = (struct time_node *)e->ptr;
 | |
|     if(n->eid == eid) {
 | |
|       Curl_llist_remove(timeoutlist, e, NULL);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * multi_addtimeout()
 | |
|  *
 | |
|  * Add a timestamp to the list of timeouts. Keep the list sorted so that head
 | |
|  * of list is always the timeout nearest in time.
 | |
|  *
 | |
|  */
 | |
| static CURLMcode
 | |
| multi_addtimeout(struct Curl_easy *data,
 | |
|                  struct curltime *stamp,
 | |
|                  expire_id eid)
 | |
| {
 | |
|   struct Curl_llist_element *e;
 | |
|   struct time_node *node;
 | |
|   struct Curl_llist_element *prev = NULL;
 | |
|   size_t n;
 | |
|   struct Curl_llist *timeoutlist = &data->state.timeoutlist;
 | |
| 
 | |
|   node = &data->state.expires[eid];
 | |
| 
 | |
|   /* copy the timestamp and id */
 | |
|   memcpy(&node->time, stamp, sizeof(*stamp));
 | |
|   node->eid = eid; /* also marks it as in use */
 | |
| 
 | |
|   n = Curl_llist_count(timeoutlist);
 | |
|   if(n) {
 | |
|     /* find the correct spot in the list */
 | |
|     for(e = timeoutlist->head; e; e = e->next) {
 | |
|       struct time_node *check = (struct time_node *)e->ptr;
 | |
|       timediff_t diff = Curl_timediff(check->time, node->time);
 | |
|       if(diff > 0)
 | |
|         break;
 | |
|       prev = e;
 | |
|     }
 | |
| 
 | |
|   }
 | |
|   /* else
 | |
|      this is the first timeout on the list */
 | |
| 
 | |
|   Curl_llist_insert_next(timeoutlist, prev, node, &node->list);
 | |
|   return CURLM_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Curl_expire()
 | |
|  *
 | |
|  * given a number of milliseconds from now to use to set the 'act before
 | |
|  * this'-time for the transfer, to be extracted by curl_multi_timeout()
 | |
|  *
 | |
|  * The timeout will be added to a queue of timeouts if it defines a moment in
 | |
|  * time that is later than the current head of queue.
 | |
|  *
 | |
|  * Expire replaces a former timeout using the same id if already set.
 | |
|  */
 | |
| void Curl_expire(struct Curl_easy *data, timediff_t milli, expire_id id)
 | |
| {
 | |
|   struct Curl_multi *multi = data->multi;
 | |
|   struct curltime *nowp = &data->state.expiretime;
 | |
|   struct curltime set;
 | |
| 
 | |
|   /* this is only interesting while there is still an associated multi struct
 | |
|      remaining! */
 | |
|   if(!multi)
 | |
|     return;
 | |
| 
 | |
|   DEBUGASSERT(id < EXPIRE_LAST);
 | |
| 
 | |
|   set = Curl_now();
 | |
|   set.tv_sec += (time_t)(milli/1000); /* might be a 64 to 32 bit conversion */
 | |
|   set.tv_usec += (unsigned int)(milli%1000)*1000;
 | |
| 
 | |
|   if(set.tv_usec >= 1000000) {
 | |
|     set.tv_sec++;
 | |
|     set.tv_usec -= 1000000;
 | |
|   }
 | |
| 
 | |
|   /* Remove any timer with the same id just in case. */
 | |
|   multi_deltimeout(data, id);
 | |
| 
 | |
|   /* Add it to the timer list.  It must stay in the list until it has expired
 | |
|      in case we need to recompute the minimum timer later. */
 | |
|   multi_addtimeout(data, &set, id);
 | |
| 
 | |
|   if(nowp->tv_sec || nowp->tv_usec) {
 | |
|     /* This means that the struct is added as a node in the splay tree.
 | |
|        Compare if the new time is earlier, and only remove-old/add-new if it
 | |
|        is. */
 | |
|     timediff_t diff = Curl_timediff(set, *nowp);
 | |
|     int rc;
 | |
| 
 | |
|     if(diff > 0) {
 | |
|       /* The current splay tree entry is sooner than this new expiry time.
 | |
|          We don't need to update our splay tree entry. */
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     /* Since this is an updated time, we must remove the previous entry from
 | |
|        the splay tree first and then re-add the new value */
 | |
|     rc = Curl_splayremove(multi->timetree, &data->state.timenode,
 | |
|                           &multi->timetree);
 | |
|     if(rc)
 | |
|       infof(data, "Internal error removing splay node = %d", rc);
 | |
|   }
 | |
| 
 | |
|   /* Indicate that we are in the splay tree and insert the new timer expiry
 | |
|      value since it is our local minimum. */
 | |
|   *nowp = set;
 | |
|   data->state.timenode.payload = data;
 | |
|   multi->timetree = Curl_splayinsert(*nowp, multi->timetree,
 | |
|                                      &data->state.timenode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Curl_expire_done()
 | |
|  *
 | |
|  * Removes the expire timer. Marks it as done.
 | |
|  *
 | |
|  */
 | |
| void Curl_expire_done(struct Curl_easy *data, expire_id id)
 | |
| {
 | |
|   /* remove the timer, if there */
 | |
|   multi_deltimeout(data, id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Curl_expire_clear()
 | |
|  *
 | |
|  * Clear ALL timeout values for this handle.
 | |
|  */
 | |
| void Curl_expire_clear(struct Curl_easy *data)
 | |
| {
 | |
|   struct Curl_multi *multi = data->multi;
 | |
|   struct curltime *nowp = &data->state.expiretime;
 | |
| 
 | |
|   /* this is only interesting while there is still an associated multi struct
 | |
|      remaining! */
 | |
|   if(!multi)
 | |
|     return;
 | |
| 
 | |
|   if(nowp->tv_sec || nowp->tv_usec) {
 | |
|     /* Since this is an cleared time, we must remove the previous entry from
 | |
|        the splay tree */
 | |
|     struct Curl_llist *list = &data->state.timeoutlist;
 | |
|     int rc;
 | |
| 
 | |
|     rc = Curl_splayremove(multi->timetree, &data->state.timenode,
 | |
|                           &multi->timetree);
 | |
|     if(rc)
 | |
|       infof(data, "Internal error clearing splay node = %d", rc);
 | |
| 
 | |
|     /* flush the timeout list too */
 | |
|     while(list->size > 0) {
 | |
|       Curl_llist_remove(list, list->tail, NULL);
 | |
|     }
 | |
| 
 | |
| #ifdef DEBUGBUILD
 | |
|     infof(data, "Expire cleared (transfer %p)", data);
 | |
| #endif
 | |
|     nowp->tv_sec = 0;
 | |
|     nowp->tv_usec = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| CURLMcode curl_multi_assign(struct Curl_multi *multi, curl_socket_t s,
 | |
|                             void *hashp)
 | |
| {
 | |
|   struct Curl_sh_entry *there = NULL;
 | |
| 
 | |
|   if(multi->in_callback)
 | |
|     return CURLM_RECURSIVE_API_CALL;
 | |
| 
 | |
|   there = sh_getentry(&multi->sockhash, s);
 | |
| 
 | |
|   if(!there)
 | |
|     return CURLM_BAD_SOCKET;
 | |
| 
 | |
|   there->socketp = hashp;
 | |
| 
 | |
|   return CURLM_OK;
 | |
| }
 | |
| 
 | |
| size_t Curl_multi_max_host_connections(struct Curl_multi *multi)
 | |
| {
 | |
|   return multi ? multi->max_host_connections : 0;
 | |
| }
 | |
| 
 | |
| size_t Curl_multi_max_total_connections(struct Curl_multi *multi)
 | |
| {
 | |
|   return multi ? multi->max_total_connections : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When information about a connection has appeared, call this!
 | |
|  */
 | |
| 
 | |
| void Curl_multiuse_state(struct Curl_easy *data,
 | |
|                          int bundlestate) /* use BUNDLE_* defines */
 | |
| {
 | |
|   struct connectdata *conn;
 | |
|   DEBUGASSERT(data);
 | |
|   DEBUGASSERT(data->multi);
 | |
|   conn = data->conn;
 | |
|   DEBUGASSERT(conn);
 | |
|   DEBUGASSERT(conn->bundle);
 | |
| 
 | |
|   conn->bundle->multiuse = bundlestate;
 | |
|   process_pending_handles(data->multi);
 | |
| }
 | |
| 
 | |
| static void process_pending_handles(struct Curl_multi *multi)
 | |
| {
 | |
|   struct Curl_llist_element *e = multi->pending.head;
 | |
|   if(e) {
 | |
|     struct Curl_easy *data = e->ptr;
 | |
| 
 | |
|     DEBUGASSERT(data->mstate == MSTATE_PENDING);
 | |
| 
 | |
|     multistate(data, MSTATE_CONNECT);
 | |
| 
 | |
|     /* Remove this node from the list */
 | |
|     Curl_llist_remove(&multi->pending, e, NULL);
 | |
| 
 | |
|     /* Make sure that the handle will be processed soonish. */
 | |
|     Curl_expire(data, 0, EXPIRE_RUN_NOW);
 | |
| 
 | |
|     /* mark this as having been in the pending queue */
 | |
|     data->state.previouslypending = TRUE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Curl_set_in_callback(struct Curl_easy *data, bool value)
 | |
| {
 | |
|   /* might get called when there is no data pointer! */
 | |
|   if(data) {
 | |
|     if(data->multi_easy)
 | |
|       data->multi_easy->in_callback = value;
 | |
|     else if(data->multi)
 | |
|       data->multi->in_callback = value;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Curl_is_in_callback(struct Curl_easy *easy)
 | |
| {
 | |
|   return ((easy->multi && easy->multi->in_callback) ||
 | |
|           (easy->multi_easy && easy->multi_easy->in_callback));
 | |
| }
 | |
| 
 | |
| #ifdef DEBUGBUILD
 | |
| void Curl_multi_dump(struct Curl_multi *multi)
 | |
| {
 | |
|   struct Curl_easy *data;
 | |
|   int i;
 | |
|   fprintf(stderr, "* Multi status: %d handles, %d alive\n",
 | |
|           multi->num_easy, multi->num_alive);
 | |
|   for(data = multi->easyp; data; data = data->next) {
 | |
|     if(data->mstate < MSTATE_COMPLETED) {
 | |
|       /* only display handles that are not completed */
 | |
|       fprintf(stderr, "handle %p, state %s, %d sockets\n",
 | |
|               (void *)data,
 | |
|               statename[data->mstate], data->numsocks);
 | |
|       for(i = 0; i < data->numsocks; i++) {
 | |
|         curl_socket_t s = data->sockets[i];
 | |
|         struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s);
 | |
| 
 | |
|         fprintf(stderr, "%d ", (int)s);
 | |
|         if(!entry) {
 | |
|           fprintf(stderr, "INTERNAL CONFUSION\n");
 | |
|           continue;
 | |
|         }
 | |
|         fprintf(stderr, "[%s %s] ",
 | |
|                 (entry->action&CURL_POLL_IN)?"RECVING":"",
 | |
|                 (entry->action&CURL_POLL_OUT)?"SENDING":"");
 | |
|       }
 | |
|       if(data->numsocks)
 | |
|         fprintf(stderr, "\n");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| unsigned int Curl_multi_max_concurrent_streams(struct Curl_multi *multi)
 | |
| {
 | |
|   DEBUGASSERT(multi);
 | |
|   return multi->max_concurrent_streams;
 | |
| }
 |