3787 lines
		
	
	
		
			144 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3787 lines
		
	
	
		
			144 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Bitcode writer implementation.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ValueEnumerator.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/Bitcode/BitstreamWriter.h"
 | |
| #include "llvm/Bitcode/LLVMBitCodes.h"
 | |
| #include "llvm/Bitcode/ReaderWriter.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/UseListOrder.h"
 | |
| #include "llvm/IR/ValueSymbolTable.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Program.h"
 | |
| #include "llvm/Support/SHA1.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cctype>
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| /// These are manifest constants used by the bitcode writer. They do not need to
 | |
| /// be kept in sync with the reader, but need to be consistent within this file.
 | |
| enum {
 | |
|   // VALUE_SYMTAB_BLOCK abbrev id's.
 | |
|   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
 | |
|   VST_ENTRY_7_ABBREV,
 | |
|   VST_ENTRY_6_ABBREV,
 | |
|   VST_BBENTRY_6_ABBREV,
 | |
| 
 | |
|   // CONSTANTS_BLOCK abbrev id's.
 | |
|   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
 | |
|   CONSTANTS_INTEGER_ABBREV,
 | |
|   CONSTANTS_CE_CAST_Abbrev,
 | |
|   CONSTANTS_NULL_Abbrev,
 | |
| 
 | |
|   // FUNCTION_BLOCK abbrev id's.
 | |
|   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
 | |
|   FUNCTION_INST_BINOP_ABBREV,
 | |
|   FUNCTION_INST_BINOP_FLAGS_ABBREV,
 | |
|   FUNCTION_INST_CAST_ABBREV,
 | |
|   FUNCTION_INST_RET_VOID_ABBREV,
 | |
|   FUNCTION_INST_RET_VAL_ABBREV,
 | |
|   FUNCTION_INST_UNREACHABLE_ABBREV,
 | |
|   FUNCTION_INST_GEP_ABBREV,
 | |
| };
 | |
| 
 | |
| /// Abstract class to manage the bitcode writing, subclassed for each bitcode
 | |
| /// file type. Owns the BitstreamWriter, and includes the main entry point for
 | |
| /// writing.
 | |
| class BitcodeWriter {
 | |
| protected:
 | |
|   /// Pointer to the buffer allocated by caller for bitcode writing.
 | |
|   const SmallVectorImpl<char> &Buffer;
 | |
| 
 | |
|   /// The stream created and owned by the BitodeWriter.
 | |
|   BitstreamWriter Stream;
 | |
| 
 | |
|   /// Saves the offset of the VSTOffset record that must eventually be
 | |
|   /// backpatched with the offset of the actual VST.
 | |
|   uint64_t VSTOffsetPlaceholder = 0;
 | |
| 
 | |
| public:
 | |
|   /// Constructs a BitcodeWriter object, and initializes a BitstreamRecord,
 | |
|   /// writing to the provided \p Buffer.
 | |
|   BitcodeWriter(SmallVectorImpl<char> &Buffer)
 | |
|       : Buffer(Buffer), Stream(Buffer) {}
 | |
| 
 | |
|   virtual ~BitcodeWriter() = default;
 | |
| 
 | |
|   /// Main entry point to write the bitcode file, which writes the bitcode
 | |
|   /// header and will then invoke the virtual writeBlocks() method.
 | |
|   void write();
 | |
| 
 | |
| private:
 | |
|   /// Derived classes must implement this to write the corresponding blocks for
 | |
|   /// that bitcode file type.
 | |
|   virtual void writeBlocks() = 0;
 | |
| 
 | |
| protected:
 | |
|   bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; }
 | |
|   void writeValueSymbolTableForwardDecl();
 | |
|   void writeBitcodeHeader();
 | |
| };
 | |
| 
 | |
| /// Class to manage the bitcode writing for a module.
 | |
| class ModuleBitcodeWriter : public BitcodeWriter {
 | |
|   /// The Module to write to bitcode.
 | |
|   const Module &M;
 | |
| 
 | |
|   /// Enumerates ids for all values in the module.
 | |
|   ValueEnumerator VE;
 | |
| 
 | |
|   /// Optional per-module index to write for ThinLTO.
 | |
|   const ModuleSummaryIndex *Index;
 | |
| 
 | |
|   /// True if a module hash record should be written.
 | |
|   bool GenerateHash;
 | |
| 
 | |
|   /// The start bit of the module block, for use in generating a module hash
 | |
|   uint64_t BitcodeStartBit = 0;
 | |
| 
 | |
| public:
 | |
|   /// Constructs a ModuleBitcodeWriter object for the given Module,
 | |
|   /// writing to the provided \p Buffer.
 | |
|   ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
 | |
|                       bool ShouldPreserveUseListOrder,
 | |
|                       const ModuleSummaryIndex *Index, bool GenerateHash)
 | |
|       : BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder),
 | |
|         Index(Index), GenerateHash(GenerateHash) {
 | |
|     // Save the start bit of the actual bitcode, in case there is space
 | |
|     // saved at the start for the darwin header above. The reader stream
 | |
|     // will start at the bitcode, and we need the offset of the VST
 | |
|     // to line up.
 | |
|     BitcodeStartBit = Stream.GetCurrentBitNo();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Main entry point for writing a module to bitcode, invoked by
 | |
|   /// BitcodeWriter::write() after it writes the header.
 | |
|   void writeBlocks() override;
 | |
| 
 | |
|   /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
 | |
|   /// current llvm version, and a record for the epoch number.
 | |
|   void writeIdentificationBlock();
 | |
| 
 | |
|   /// Emit the current module to the bitstream.
 | |
|   void writeModule();
 | |
| 
 | |
|   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
 | |
| 
 | |
|   void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse);
 | |
|   void writeAttributeGroupTable();
 | |
|   void writeAttributeTable();
 | |
|   void writeTypeTable();
 | |
|   void writeComdats();
 | |
|   void writeModuleInfo();
 | |
|   void writeValueAsMetadata(const ValueAsMetadata *MD,
 | |
|                             SmallVectorImpl<uint64_t> &Record);
 | |
|   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
 | |
|                     unsigned Abbrev);
 | |
|   unsigned createDILocationAbbrev();
 | |
|   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
 | |
|                        unsigned &Abbrev);
 | |
|   unsigned createGenericDINodeAbbrev();
 | |
|   void writeGenericDINode(const GenericDINode *N,
 | |
|                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
 | |
|   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
 | |
|                        unsigned Abbrev);
 | |
|   void writeDIEnumerator(const DIEnumerator *N,
 | |
|                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
 | |
|   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
 | |
|                         unsigned Abbrev);
 | |
|   void writeDIDerivedType(const DIDerivedType *N,
 | |
|                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
 | |
|   void writeDICompositeType(const DICompositeType *N,
 | |
|                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
 | |
|   void writeDISubroutineType(const DISubroutineType *N,
 | |
|                              SmallVectorImpl<uint64_t> &Record,
 | |
|                              unsigned Abbrev);
 | |
|   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
 | |
|                    unsigned Abbrev);
 | |
|   void writeDICompileUnit(const DICompileUnit *N,
 | |
|                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
 | |
|   void writeDISubprogram(const DISubprogram *N,
 | |
|                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
 | |
|   void writeDILexicalBlock(const DILexicalBlock *N,
 | |
|                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
 | |
|   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
 | |
|                                SmallVectorImpl<uint64_t> &Record,
 | |
|                                unsigned Abbrev);
 | |
|   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
 | |
|                         unsigned Abbrev);
 | |
|   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
 | |
|                     unsigned Abbrev);
 | |
|   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
 | |
|                         unsigned Abbrev);
 | |
|   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
 | |
|                      unsigned Abbrev);
 | |
|   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
 | |
|                                     SmallVectorImpl<uint64_t> &Record,
 | |
|                                     unsigned Abbrev);
 | |
|   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
 | |
|                                      SmallVectorImpl<uint64_t> &Record,
 | |
|                                      unsigned Abbrev);
 | |
|   void writeDIGlobalVariable(const DIGlobalVariable *N,
 | |
|                              SmallVectorImpl<uint64_t> &Record,
 | |
|                              unsigned Abbrev);
 | |
|   void writeDILocalVariable(const DILocalVariable *N,
 | |
|                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
 | |
|   void writeDIExpression(const DIExpression *N,
 | |
|                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
 | |
|   void writeDIObjCProperty(const DIObjCProperty *N,
 | |
|                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
 | |
|   void writeDIImportedEntity(const DIImportedEntity *N,
 | |
|                              SmallVectorImpl<uint64_t> &Record,
 | |
|                              unsigned Abbrev);
 | |
|   unsigned createNamedMetadataAbbrev();
 | |
|   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
 | |
|   unsigned createMetadataStringsAbbrev();
 | |
|   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
 | |
|                             SmallVectorImpl<uint64_t> &Record);
 | |
|   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
 | |
|                             SmallVectorImpl<uint64_t> &Record);
 | |
|   void writeModuleMetadata();
 | |
|   void writeFunctionMetadata(const Function &F);
 | |
|   void writeFunctionMetadataAttachment(const Function &F);
 | |
|   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
 | |
|   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
 | |
|                                     const GlobalObject &GO);
 | |
|   void writeModuleMetadataKinds();
 | |
|   void writeOperandBundleTags();
 | |
|   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
 | |
|   void writeModuleConstants();
 | |
|   bool pushValueAndType(const Value *V, unsigned InstID,
 | |
|                         SmallVectorImpl<unsigned> &Vals);
 | |
|   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
 | |
|   void pushValue(const Value *V, unsigned InstID,
 | |
|                  SmallVectorImpl<unsigned> &Vals);
 | |
|   void pushValueSigned(const Value *V, unsigned InstID,
 | |
|                        SmallVectorImpl<uint64_t> &Vals);
 | |
|   void writeInstruction(const Instruction &I, unsigned InstID,
 | |
|                         SmallVectorImpl<unsigned> &Vals);
 | |
|   void writeValueSymbolTable(
 | |
|       const ValueSymbolTable &VST, bool IsModuleLevel = false,
 | |
|       DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr);
 | |
|   void writeUseList(UseListOrder &&Order);
 | |
|   void writeUseListBlock(const Function *F);
 | |
|   void
 | |
|   writeFunction(const Function &F,
 | |
|                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
 | |
|   void writeBlockInfo();
 | |
|   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
 | |
|                                            GlobalValueSummary *Summary,
 | |
|                                            unsigned ValueID,
 | |
|                                            unsigned FSCallsAbbrev,
 | |
|                                            unsigned FSCallsProfileAbbrev,
 | |
|                                            const Function &F);
 | |
|   void writeModuleLevelReferences(const GlobalVariable &V,
 | |
|                                   SmallVector<uint64_t, 64> &NameVals,
 | |
|                                   unsigned FSModRefsAbbrev);
 | |
|   void writePerModuleGlobalValueSummary();
 | |
|   void writeModuleHash(size_t BlockStartPos);
 | |
| };
 | |
| 
 | |
| /// Class to manage the bitcode writing for a combined index.
 | |
| class IndexBitcodeWriter : public BitcodeWriter {
 | |
|   /// The combined index to write to bitcode.
 | |
|   const ModuleSummaryIndex &Index;
 | |
| 
 | |
|   /// When writing a subset of the index for distributed backends, client
 | |
|   /// provides a map of modules to the corresponding GUIDs/summaries to write.
 | |
|   std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
 | |
| 
 | |
|   /// Map that holds the correspondence between the GUID used in the combined
 | |
|   /// index and a value id generated by this class to use in references.
 | |
|   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
 | |
| 
 | |
|   /// Tracks the last value id recorded in the GUIDToValueMap.
 | |
|   unsigned GlobalValueId = 0;
 | |
| 
 | |
| public:
 | |
|   /// Constructs a IndexBitcodeWriter object for the given combined index,
 | |
|   /// writing to the provided \p Buffer. When writing a subset of the index
 | |
|   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
 | |
|   IndexBitcodeWriter(SmallVectorImpl<char> &Buffer,
 | |
|                      const ModuleSummaryIndex &Index,
 | |
|                      std::map<std::string, GVSummaryMapTy>
 | |
|                          *ModuleToSummariesForIndex = nullptr)
 | |
|       : BitcodeWriter(Buffer), Index(Index),
 | |
|         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
 | |
|     // Assign unique value ids to all summaries to be written, for use
 | |
|     // in writing out the call graph edges. Save the mapping from GUID
 | |
|     // to the new global value id to use when writing those edges, which
 | |
|     // are currently saved in the index in terms of GUID.
 | |
|     for (const auto &I : *this)
 | |
|       GUIDToValueIdMap[I.first] = ++GlobalValueId;
 | |
|   }
 | |
| 
 | |
|   /// The below iterator returns the GUID and associated summary.
 | |
|   typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
 | |
| 
 | |
|   /// Iterator over the value GUID and summaries to be written to bitcode,
 | |
|   /// hides the details of whether they are being pulled from the entire
 | |
|   /// index or just those in a provided ModuleToSummariesForIndex map.
 | |
|   class iterator
 | |
|       : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
 | |
|                                           GVInfo> {
 | |
|     /// Enables access to parent class.
 | |
|     const IndexBitcodeWriter &Writer;
 | |
| 
 | |
|     // Iterators used when writing only those summaries in a provided
 | |
|     // ModuleToSummariesForIndex map:
 | |
| 
 | |
|     /// Points to the last element in outer ModuleToSummariesForIndex map.
 | |
|     std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesBack;
 | |
|     /// Iterator on outer ModuleToSummariesForIndex map.
 | |
|     std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesIter;
 | |
|     /// Iterator on an inner global variable summary map.
 | |
|     GVSummaryMapTy::iterator ModuleGVSummariesIter;
 | |
| 
 | |
|     // Iterators used when writing all summaries in the index:
 | |
| 
 | |
|     /// Points to the last element in the Index outer GlobalValueMap.
 | |
|     const_gvsummary_iterator IndexSummariesBack;
 | |
|     /// Iterator on outer GlobalValueMap.
 | |
|     const_gvsummary_iterator IndexSummariesIter;
 | |
|     /// Iterator on an inner GlobalValueSummaryList.
 | |
|     GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
 | |
| 
 | |
|   public:
 | |
|     /// Construct iterator from parent \p Writer and indicate if we are
 | |
|     /// constructing the end iterator.
 | |
|     iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
 | |
|       // Set up the appropriate set of iterators given whether we are writing
 | |
|       // the full index or just a subset.
 | |
|       // Can't setup the Back or inner iterators if the corresponding map
 | |
|       // is empty. This will be handled specially in operator== as well.
 | |
|       if (Writer.ModuleToSummariesForIndex &&
 | |
|           !Writer.ModuleToSummariesForIndex->empty()) {
 | |
|         for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
 | |
|              std::next(ModuleSummariesBack) !=
 | |
|              Writer.ModuleToSummariesForIndex->end();
 | |
|              ModuleSummariesBack++)
 | |
|           ;
 | |
|         ModuleSummariesIter = !IsAtEnd
 | |
|                                   ? Writer.ModuleToSummariesForIndex->begin()
 | |
|                                   : ModuleSummariesBack;
 | |
|         ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
 | |
|                                          : ModuleSummariesBack->second.end();
 | |
|       } else if (!Writer.ModuleToSummariesForIndex &&
 | |
|                  Writer.Index.begin() != Writer.Index.end()) {
 | |
|         for (IndexSummariesBack = Writer.Index.begin();
 | |
|              std::next(IndexSummariesBack) != Writer.Index.end();
 | |
|              IndexSummariesBack++)
 | |
|           ;
 | |
|         IndexSummariesIter =
 | |
|             !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack;
 | |
|         IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
 | |
|                                         : IndexSummariesBack->second.end();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// Increment the appropriate set of iterators.
 | |
|     iterator &operator++() {
 | |
|       // First the inner iterator is incremented, then if it is at the end
 | |
|       // and there are more outer iterations to go, the inner is reset to
 | |
|       // the start of the next inner list.
 | |
|       if (Writer.ModuleToSummariesForIndex) {
 | |
|         ++ModuleGVSummariesIter;
 | |
|         if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
 | |
|             ModuleSummariesIter != ModuleSummariesBack) {
 | |
|           ++ModuleSummariesIter;
 | |
|           ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
 | |
|         }
 | |
|       } else {
 | |
|         ++IndexGVSummariesIter;
 | |
|         if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
 | |
|             IndexSummariesIter != IndexSummariesBack) {
 | |
|           ++IndexSummariesIter;
 | |
|           IndexGVSummariesIter = IndexSummariesIter->second.begin();
 | |
|         }
 | |
|       }
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
 | |
|     /// outer and inner iterator positions.
 | |
|     GVInfo operator*() {
 | |
|       if (Writer.ModuleToSummariesForIndex)
 | |
|         return std::make_pair(ModuleGVSummariesIter->first,
 | |
|                               ModuleGVSummariesIter->second);
 | |
|       return std::make_pair(IndexSummariesIter->first,
 | |
|                             IndexGVSummariesIter->get());
 | |
|     }
 | |
| 
 | |
|     /// Checks if the iterators are equal, with special handling for empty
 | |
|     /// indexes.
 | |
|     bool operator==(const iterator &RHS) const {
 | |
|       if (Writer.ModuleToSummariesForIndex) {
 | |
|         // First ensure that both are writing the same subset.
 | |
|         if (Writer.ModuleToSummariesForIndex !=
 | |
|             RHS.Writer.ModuleToSummariesForIndex)
 | |
|           return false;
 | |
|         // Already determined above that maps are the same, so if one is
 | |
|         // empty, they both are.
 | |
|         if (Writer.ModuleToSummariesForIndex->empty())
 | |
|           return true;
 | |
|         // Ensure the ModuleGVSummariesIter are iterating over the same
 | |
|         // container before checking them below.
 | |
|         if (ModuleSummariesIter != RHS.ModuleSummariesIter)
 | |
|           return false;
 | |
|         return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
 | |
|       }
 | |
|       // First ensure RHS also writing the full index, and that both are
 | |
|       // writing the same full index.
 | |
|       if (RHS.Writer.ModuleToSummariesForIndex ||
 | |
|           &Writer.Index != &RHS.Writer.Index)
 | |
|         return false;
 | |
|       // Already determined above that maps are the same, so if one is
 | |
|       // empty, they both are.
 | |
|       if (Writer.Index.begin() == Writer.Index.end())
 | |
|         return true;
 | |
|       // Ensure the IndexGVSummariesIter are iterating over the same
 | |
|       // container before checking them below.
 | |
|       if (IndexSummariesIter != RHS.IndexSummariesIter)
 | |
|         return false;
 | |
|       return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// Obtain the start iterator over the summaries to be written.
 | |
|   iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
 | |
|   /// Obtain the end iterator over the summaries to be written.
 | |
|   iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
 | |
| 
 | |
| private:
 | |
|   /// Main entry point for writing a combined index to bitcode, invoked by
 | |
|   /// BitcodeWriter::write() after it writes the header.
 | |
|   void writeBlocks() override;
 | |
| 
 | |
|   void writeIndex();
 | |
|   void writeModStrings();
 | |
|   void writeCombinedValueSymbolTable();
 | |
|   void writeCombinedGlobalValueSummary();
 | |
| 
 | |
|   /// Indicates whether the provided \p ModulePath should be written into
 | |
|   /// the module string table, e.g. if full index written or if it is in
 | |
|   /// the provided subset.
 | |
|   bool doIncludeModule(StringRef ModulePath) {
 | |
|     return !ModuleToSummariesForIndex ||
 | |
|            ModuleToSummariesForIndex->count(ModulePath);
 | |
|   }
 | |
| 
 | |
|   bool hasValueId(GlobalValue::GUID ValGUID) {
 | |
|     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
 | |
|     return VMI != GUIDToValueIdMap.end();
 | |
|   }
 | |
|   unsigned getValueId(GlobalValue::GUID ValGUID) {
 | |
|     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
 | |
|     // If this GUID doesn't have an entry, assign one.
 | |
|     if (VMI == GUIDToValueIdMap.end()) {
 | |
|       GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
 | |
|       return GlobalValueId;
 | |
|     } else {
 | |
|       return VMI->second;
 | |
|     }
 | |
|   }
 | |
|   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static unsigned getEncodedCastOpcode(unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: llvm_unreachable("Unknown cast instruction!");
 | |
|   case Instruction::Trunc   : return bitc::CAST_TRUNC;
 | |
|   case Instruction::ZExt    : return bitc::CAST_ZEXT;
 | |
|   case Instruction::SExt    : return bitc::CAST_SEXT;
 | |
|   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
 | |
|   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
 | |
|   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
 | |
|   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
 | |
|   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
 | |
|   case Instruction::FPExt   : return bitc::CAST_FPEXT;
 | |
|   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
 | |
|   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
 | |
|   case Instruction::BitCast : return bitc::CAST_BITCAST;
 | |
|   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: llvm_unreachable("Unknown binary instruction!");
 | |
|   case Instruction::Add:
 | |
|   case Instruction::FAdd: return bitc::BINOP_ADD;
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::FSub: return bitc::BINOP_SUB;
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::FMul: return bitc::BINOP_MUL;
 | |
|   case Instruction::UDiv: return bitc::BINOP_UDIV;
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::SDiv: return bitc::BINOP_SDIV;
 | |
|   case Instruction::URem: return bitc::BINOP_UREM;
 | |
|   case Instruction::FRem:
 | |
|   case Instruction::SRem: return bitc::BINOP_SREM;
 | |
|   case Instruction::Shl:  return bitc::BINOP_SHL;
 | |
|   case Instruction::LShr: return bitc::BINOP_LSHR;
 | |
|   case Instruction::AShr: return bitc::BINOP_ASHR;
 | |
|   case Instruction::And:  return bitc::BINOP_AND;
 | |
|   case Instruction::Or:   return bitc::BINOP_OR;
 | |
|   case Instruction::Xor:  return bitc::BINOP_XOR;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
 | |
|   switch (Op) {
 | |
|   default: llvm_unreachable("Unknown RMW operation!");
 | |
|   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
 | |
|   case AtomicRMWInst::Add: return bitc::RMW_ADD;
 | |
|   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
 | |
|   case AtomicRMWInst::And: return bitc::RMW_AND;
 | |
|   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
 | |
|   case AtomicRMWInst::Or: return bitc::RMW_OR;
 | |
|   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
 | |
|   case AtomicRMWInst::Max: return bitc::RMW_MAX;
 | |
|   case AtomicRMWInst::Min: return bitc::RMW_MIN;
 | |
|   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
 | |
|   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
 | |
|   switch (Ordering) {
 | |
|   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
 | |
|   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
 | |
|   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
 | |
|   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
 | |
|   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
 | |
|   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
 | |
|   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
 | |
|   }
 | |
|   llvm_unreachable("Invalid ordering");
 | |
| }
 | |
| 
 | |
| static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
 | |
|   switch (SynchScope) {
 | |
|   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
 | |
|   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
 | |
|   }
 | |
|   llvm_unreachable("Invalid synch scope");
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str,
 | |
|                                             unsigned AbbrevToUse) {
 | |
|   SmallVector<unsigned, 64> Vals;
 | |
| 
 | |
|   // Code: [strchar x N]
 | |
|   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
 | |
|     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
 | |
|       AbbrevToUse = 0;
 | |
|     Vals.push_back(Str[i]);
 | |
|   }
 | |
| 
 | |
|   // Emit the finished record.
 | |
|   Stream.EmitRecord(Code, Vals, AbbrevToUse);
 | |
| }
 | |
| 
 | |
| static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
 | |
|   switch (Kind) {
 | |
|   case Attribute::Alignment:
 | |
|     return bitc::ATTR_KIND_ALIGNMENT;
 | |
|   case Attribute::AllocSize:
 | |
|     return bitc::ATTR_KIND_ALLOC_SIZE;
 | |
|   case Attribute::AlwaysInline:
 | |
|     return bitc::ATTR_KIND_ALWAYS_INLINE;
 | |
|   case Attribute::ArgMemOnly:
 | |
|     return bitc::ATTR_KIND_ARGMEMONLY;
 | |
|   case Attribute::Builtin:
 | |
|     return bitc::ATTR_KIND_BUILTIN;
 | |
|   case Attribute::ByVal:
 | |
|     return bitc::ATTR_KIND_BY_VAL;
 | |
|   case Attribute::Convergent:
 | |
|     return bitc::ATTR_KIND_CONVERGENT;
 | |
|   case Attribute::InAlloca:
 | |
|     return bitc::ATTR_KIND_IN_ALLOCA;
 | |
|   case Attribute::Cold:
 | |
|     return bitc::ATTR_KIND_COLD;
 | |
|   case Attribute::InaccessibleMemOnly:
 | |
|     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
 | |
|   case Attribute::InaccessibleMemOrArgMemOnly:
 | |
|     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
 | |
|   case Attribute::InlineHint:
 | |
|     return bitc::ATTR_KIND_INLINE_HINT;
 | |
|   case Attribute::InReg:
 | |
|     return bitc::ATTR_KIND_IN_REG;
 | |
|   case Attribute::JumpTable:
 | |
|     return bitc::ATTR_KIND_JUMP_TABLE;
 | |
|   case Attribute::MinSize:
 | |
|     return bitc::ATTR_KIND_MIN_SIZE;
 | |
|   case Attribute::Naked:
 | |
|     return bitc::ATTR_KIND_NAKED;
 | |
|   case Attribute::Nest:
 | |
|     return bitc::ATTR_KIND_NEST;
 | |
|   case Attribute::NoAlias:
 | |
|     return bitc::ATTR_KIND_NO_ALIAS;
 | |
|   case Attribute::NoBuiltin:
 | |
|     return bitc::ATTR_KIND_NO_BUILTIN;
 | |
|   case Attribute::NoCapture:
 | |
|     return bitc::ATTR_KIND_NO_CAPTURE;
 | |
|   case Attribute::NoDuplicate:
 | |
|     return bitc::ATTR_KIND_NO_DUPLICATE;
 | |
|   case Attribute::NoImplicitFloat:
 | |
|     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
 | |
|   case Attribute::NoInline:
 | |
|     return bitc::ATTR_KIND_NO_INLINE;
 | |
|   case Attribute::NoRecurse:
 | |
|     return bitc::ATTR_KIND_NO_RECURSE;
 | |
|   case Attribute::NonLazyBind:
 | |
|     return bitc::ATTR_KIND_NON_LAZY_BIND;
 | |
|   case Attribute::NonNull:
 | |
|     return bitc::ATTR_KIND_NON_NULL;
 | |
|   case Attribute::Dereferenceable:
 | |
|     return bitc::ATTR_KIND_DEREFERENCEABLE;
 | |
|   case Attribute::DereferenceableOrNull:
 | |
|     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
 | |
|   case Attribute::NoRedZone:
 | |
|     return bitc::ATTR_KIND_NO_RED_ZONE;
 | |
|   case Attribute::NoReturn:
 | |
|     return bitc::ATTR_KIND_NO_RETURN;
 | |
|   case Attribute::NoUnwind:
 | |
|     return bitc::ATTR_KIND_NO_UNWIND;
 | |
|   case Attribute::OptimizeForSize:
 | |
|     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
 | |
|   case Attribute::OptimizeNone:
 | |
|     return bitc::ATTR_KIND_OPTIMIZE_NONE;
 | |
|   case Attribute::ReadNone:
 | |
|     return bitc::ATTR_KIND_READ_NONE;
 | |
|   case Attribute::ReadOnly:
 | |
|     return bitc::ATTR_KIND_READ_ONLY;
 | |
|   case Attribute::Returned:
 | |
|     return bitc::ATTR_KIND_RETURNED;
 | |
|   case Attribute::ReturnsTwice:
 | |
|     return bitc::ATTR_KIND_RETURNS_TWICE;
 | |
|   case Attribute::SExt:
 | |
|     return bitc::ATTR_KIND_S_EXT;
 | |
|   case Attribute::StackAlignment:
 | |
|     return bitc::ATTR_KIND_STACK_ALIGNMENT;
 | |
|   case Attribute::StackProtect:
 | |
|     return bitc::ATTR_KIND_STACK_PROTECT;
 | |
|   case Attribute::StackProtectReq:
 | |
|     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
 | |
|   case Attribute::StackProtectStrong:
 | |
|     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
 | |
|   case Attribute::SafeStack:
 | |
|     return bitc::ATTR_KIND_SAFESTACK;
 | |
|   case Attribute::StructRet:
 | |
|     return bitc::ATTR_KIND_STRUCT_RET;
 | |
|   case Attribute::SanitizeAddress:
 | |
|     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
 | |
|   case Attribute::SanitizeThread:
 | |
|     return bitc::ATTR_KIND_SANITIZE_THREAD;
 | |
|   case Attribute::SanitizeMemory:
 | |
|     return bitc::ATTR_KIND_SANITIZE_MEMORY;
 | |
|   case Attribute::SwiftError:
 | |
|     return bitc::ATTR_KIND_SWIFT_ERROR;
 | |
|   case Attribute::SwiftSelf:
 | |
|     return bitc::ATTR_KIND_SWIFT_SELF;
 | |
|   case Attribute::UWTable:
 | |
|     return bitc::ATTR_KIND_UW_TABLE;
 | |
|   case Attribute::WriteOnly:
 | |
|     return bitc::ATTR_KIND_WRITEONLY;
 | |
|   case Attribute::ZExt:
 | |
|     return bitc::ATTR_KIND_Z_EXT;
 | |
|   case Attribute::EndAttrKinds:
 | |
|     llvm_unreachable("Can not encode end-attribute kinds marker.");
 | |
|   case Attribute::None:
 | |
|     llvm_unreachable("Can not encode none-attribute.");
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Trying to encode unknown attribute");
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeAttributeGroupTable() {
 | |
|   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
 | |
|   if (AttrGrps.empty()) return;
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
 | |
| 
 | |
|   SmallVector<uint64_t, 64> Record;
 | |
|   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
 | |
|     AttributeSet AS = AttrGrps[i];
 | |
|     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
 | |
|       AttributeSet A = AS.getSlotAttributes(i);
 | |
| 
 | |
|       Record.push_back(VE.getAttributeGroupID(A));
 | |
|       Record.push_back(AS.getSlotIndex(i));
 | |
| 
 | |
|       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
 | |
|            I != E; ++I) {
 | |
|         Attribute Attr = *I;
 | |
|         if (Attr.isEnumAttribute()) {
 | |
|           Record.push_back(0);
 | |
|           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
 | |
|         } else if (Attr.isIntAttribute()) {
 | |
|           Record.push_back(1);
 | |
|           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
 | |
|           Record.push_back(Attr.getValueAsInt());
 | |
|         } else {
 | |
|           StringRef Kind = Attr.getKindAsString();
 | |
|           StringRef Val = Attr.getValueAsString();
 | |
| 
 | |
|           Record.push_back(Val.empty() ? 3 : 4);
 | |
|           Record.append(Kind.begin(), Kind.end());
 | |
|           Record.push_back(0);
 | |
|           if (!Val.empty()) {
 | |
|             Record.append(Val.begin(), Val.end());
 | |
|             Record.push_back(0);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
 | |
|       Record.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeAttributeTable() {
 | |
|   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
 | |
|   if (Attrs.empty()) return;
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
 | |
| 
 | |
|   SmallVector<uint64_t, 64> Record;
 | |
|   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
 | |
|     const AttributeSet &A = Attrs[i];
 | |
|     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
 | |
|       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
 | |
| 
 | |
|     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
 | |
|     Record.clear();
 | |
|   }
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| /// WriteTypeTable - Write out the type table for a module.
 | |
| void ModuleBitcodeWriter::writeTypeTable() {
 | |
|   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
 | |
|   SmallVector<uint64_t, 64> TypeVals;
 | |
| 
 | |
|   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
 | |
| 
 | |
|   // Abbrev for TYPE_CODE_POINTER.
 | |
|   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
 | |
|   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
 | |
|   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Abbrev for TYPE_CODE_FUNCTION.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
 | |
| 
 | |
|   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Abbrev for TYPE_CODE_STRUCT_ANON.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
 | |
| 
 | |
|   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Abbrev for TYPE_CODE_STRUCT_NAME.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
 | |
|   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Abbrev for TYPE_CODE_STRUCT_NAMED.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
 | |
| 
 | |
|   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Abbrev for TYPE_CODE_ARRAY.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
 | |
| 
 | |
|   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Emit an entry count so the reader can reserve space.
 | |
|   TypeVals.push_back(TypeList.size());
 | |
|   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
 | |
|   TypeVals.clear();
 | |
| 
 | |
|   // Loop over all of the types, emitting each in turn.
 | |
|   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
 | |
|     Type *T = TypeList[i];
 | |
|     int AbbrevToUse = 0;
 | |
|     unsigned Code = 0;
 | |
| 
 | |
|     switch (T->getTypeID()) {
 | |
|     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
 | |
|     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
 | |
|     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
 | |
|     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
 | |
|     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
 | |
|     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
 | |
|     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
 | |
|     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
 | |
|     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
 | |
|     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
 | |
|     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
 | |
|     case Type::IntegerTyID:
 | |
|       // INTEGER: [width]
 | |
|       Code = bitc::TYPE_CODE_INTEGER;
 | |
|       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
 | |
|       break;
 | |
|     case Type::PointerTyID: {
 | |
|       PointerType *PTy = cast<PointerType>(T);
 | |
|       // POINTER: [pointee type, address space]
 | |
|       Code = bitc::TYPE_CODE_POINTER;
 | |
|       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
 | |
|       unsigned AddressSpace = PTy->getAddressSpace();
 | |
|       TypeVals.push_back(AddressSpace);
 | |
|       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
 | |
|       break;
 | |
|     }
 | |
|     case Type::FunctionTyID: {
 | |
|       FunctionType *FT = cast<FunctionType>(T);
 | |
|       // FUNCTION: [isvararg, retty, paramty x N]
 | |
|       Code = bitc::TYPE_CODE_FUNCTION;
 | |
|       TypeVals.push_back(FT->isVarArg());
 | |
|       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
 | |
|       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
 | |
|         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
 | |
|       AbbrevToUse = FunctionAbbrev;
 | |
|       break;
 | |
|     }
 | |
|     case Type::StructTyID: {
 | |
|       StructType *ST = cast<StructType>(T);
 | |
|       // STRUCT: [ispacked, eltty x N]
 | |
|       TypeVals.push_back(ST->isPacked());
 | |
|       // Output all of the element types.
 | |
|       for (StructType::element_iterator I = ST->element_begin(),
 | |
|            E = ST->element_end(); I != E; ++I)
 | |
|         TypeVals.push_back(VE.getTypeID(*I));
 | |
| 
 | |
|       if (ST->isLiteral()) {
 | |
|         Code = bitc::TYPE_CODE_STRUCT_ANON;
 | |
|         AbbrevToUse = StructAnonAbbrev;
 | |
|       } else {
 | |
|         if (ST->isOpaque()) {
 | |
|           Code = bitc::TYPE_CODE_OPAQUE;
 | |
|         } else {
 | |
|           Code = bitc::TYPE_CODE_STRUCT_NAMED;
 | |
|           AbbrevToUse = StructNamedAbbrev;
 | |
|         }
 | |
| 
 | |
|         // Emit the name if it is present.
 | |
|         if (!ST->getName().empty())
 | |
|           writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
 | |
|                             StructNameAbbrev);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case Type::ArrayTyID: {
 | |
|       ArrayType *AT = cast<ArrayType>(T);
 | |
|       // ARRAY: [numelts, eltty]
 | |
|       Code = bitc::TYPE_CODE_ARRAY;
 | |
|       TypeVals.push_back(AT->getNumElements());
 | |
|       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
 | |
|       AbbrevToUse = ArrayAbbrev;
 | |
|       break;
 | |
|     }
 | |
|     case Type::VectorTyID: {
 | |
|       VectorType *VT = cast<VectorType>(T);
 | |
|       // VECTOR [numelts, eltty]
 | |
|       Code = bitc::TYPE_CODE_VECTOR;
 | |
|       TypeVals.push_back(VT->getNumElements());
 | |
|       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     // Emit the finished record.
 | |
|     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
 | |
|     TypeVals.clear();
 | |
|   }
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
 | |
|   switch (Linkage) {
 | |
|   case GlobalValue::ExternalLinkage:
 | |
|     return 0;
 | |
|   case GlobalValue::WeakAnyLinkage:
 | |
|     return 16;
 | |
|   case GlobalValue::AppendingLinkage:
 | |
|     return 2;
 | |
|   case GlobalValue::InternalLinkage:
 | |
|     return 3;
 | |
|   case GlobalValue::LinkOnceAnyLinkage:
 | |
|     return 18;
 | |
|   case GlobalValue::ExternalWeakLinkage:
 | |
|     return 7;
 | |
|   case GlobalValue::CommonLinkage:
 | |
|     return 8;
 | |
|   case GlobalValue::PrivateLinkage:
 | |
|     return 9;
 | |
|   case GlobalValue::WeakODRLinkage:
 | |
|     return 17;
 | |
|   case GlobalValue::LinkOnceODRLinkage:
 | |
|     return 19;
 | |
|   case GlobalValue::AvailableExternallyLinkage:
 | |
|     return 12;
 | |
|   }
 | |
|   llvm_unreachable("Invalid linkage");
 | |
| }
 | |
| 
 | |
| static unsigned getEncodedLinkage(const GlobalValue &GV) {
 | |
|   return getEncodedLinkage(GV.getLinkage());
 | |
| }
 | |
| 
 | |
| // Decode the flags for GlobalValue in the summary
 | |
| static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
 | |
|   uint64_t RawFlags = 0;
 | |
| 
 | |
|   RawFlags |= Flags.HasSection; // bool
 | |
| 
 | |
|   // Linkage don't need to be remapped at that time for the summary. Any future
 | |
|   // change to the getEncodedLinkage() function will need to be taken into
 | |
|   // account here as well.
 | |
|   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
 | |
| 
 | |
|   return RawFlags;
 | |
| }
 | |
| 
 | |
| static unsigned getEncodedVisibility(const GlobalValue &GV) {
 | |
|   switch (GV.getVisibility()) {
 | |
|   case GlobalValue::DefaultVisibility:   return 0;
 | |
|   case GlobalValue::HiddenVisibility:    return 1;
 | |
|   case GlobalValue::ProtectedVisibility: return 2;
 | |
|   }
 | |
|   llvm_unreachable("Invalid visibility");
 | |
| }
 | |
| 
 | |
| static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
 | |
|   switch (GV.getDLLStorageClass()) {
 | |
|   case GlobalValue::DefaultStorageClass:   return 0;
 | |
|   case GlobalValue::DLLImportStorageClass: return 1;
 | |
|   case GlobalValue::DLLExportStorageClass: return 2;
 | |
|   }
 | |
|   llvm_unreachable("Invalid DLL storage class");
 | |
| }
 | |
| 
 | |
| static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
 | |
|   switch (GV.getThreadLocalMode()) {
 | |
|     case GlobalVariable::NotThreadLocal:         return 0;
 | |
|     case GlobalVariable::GeneralDynamicTLSModel: return 1;
 | |
|     case GlobalVariable::LocalDynamicTLSModel:   return 2;
 | |
|     case GlobalVariable::InitialExecTLSModel:    return 3;
 | |
|     case GlobalVariable::LocalExecTLSModel:      return 4;
 | |
|   }
 | |
|   llvm_unreachable("Invalid TLS model");
 | |
| }
 | |
| 
 | |
| static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
 | |
|   switch (C.getSelectionKind()) {
 | |
|   case Comdat::Any:
 | |
|     return bitc::COMDAT_SELECTION_KIND_ANY;
 | |
|   case Comdat::ExactMatch:
 | |
|     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
 | |
|   case Comdat::Largest:
 | |
|     return bitc::COMDAT_SELECTION_KIND_LARGEST;
 | |
|   case Comdat::NoDuplicates:
 | |
|     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
 | |
|   case Comdat::SameSize:
 | |
|     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
 | |
|   }
 | |
|   llvm_unreachable("Invalid selection kind");
 | |
| }
 | |
| 
 | |
| static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
 | |
|   switch (GV.getUnnamedAddr()) {
 | |
|   case GlobalValue::UnnamedAddr::None:   return 0;
 | |
|   case GlobalValue::UnnamedAddr::Local:  return 2;
 | |
|   case GlobalValue::UnnamedAddr::Global: return 1;
 | |
|   }
 | |
|   llvm_unreachable("Invalid unnamed_addr");
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeComdats() {
 | |
|   SmallVector<unsigned, 64> Vals;
 | |
|   for (const Comdat *C : VE.getComdats()) {
 | |
|     // COMDAT: [selection_kind, name]
 | |
|     Vals.push_back(getEncodedComdatSelectionKind(*C));
 | |
|     size_t Size = C->getName().size();
 | |
|     assert(isUInt<32>(Size));
 | |
|     Vals.push_back(Size);
 | |
|     for (char Chr : C->getName())
 | |
|       Vals.push_back((unsigned char)Chr);
 | |
|     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
 | |
|     Vals.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Write a record that will eventually hold the word offset of the
 | |
| /// module-level VST. For now the offset is 0, which will be backpatched
 | |
| /// after the real VST is written. Saves the bit offset to backpatch.
 | |
| void BitcodeWriter::writeValueSymbolTableForwardDecl() {
 | |
|   // Write a placeholder value in for the offset of the real VST,
 | |
|   // which is written after the function blocks so that it can include
 | |
|   // the offset of each function. The placeholder offset will be
 | |
|   // updated when the real VST is written.
 | |
|   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
 | |
|   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
 | |
|   // hold the real VST offset. Must use fixed instead of VBR as we don't
 | |
|   // know how many VBR chunks to reserve ahead of time.
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
 | |
|   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Emit the placeholder
 | |
|   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
 | |
|   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
 | |
| 
 | |
|   // Compute and save the bit offset to the placeholder, which will be
 | |
|   // patched when the real VST is written. We can simply subtract the 32-bit
 | |
|   // fixed size from the current bit number to get the location to backpatch.
 | |
|   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
 | |
| }
 | |
| 
 | |
| enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
 | |
| 
 | |
| /// Determine the encoding to use for the given string name and length.
 | |
| static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
 | |
|   bool isChar6 = true;
 | |
|   for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
 | |
|     if (isChar6)
 | |
|       isChar6 = BitCodeAbbrevOp::isChar6(*C);
 | |
|     if ((unsigned char)*C & 128)
 | |
|       // don't bother scanning the rest.
 | |
|       return SE_Fixed8;
 | |
|   }
 | |
|   if (isChar6)
 | |
|     return SE_Char6;
 | |
|   else
 | |
|     return SE_Fixed7;
 | |
| }
 | |
| 
 | |
| /// Emit top-level description of module, including target triple, inline asm,
 | |
| /// descriptors for global variables, and function prototype info.
 | |
| /// Returns the bit offset to backpatch with the location of the real VST.
 | |
| void ModuleBitcodeWriter::writeModuleInfo() {
 | |
|   // Emit various pieces of data attached to a module.
 | |
|   if (!M.getTargetTriple().empty())
 | |
|     writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
 | |
|                       0 /*TODO*/);
 | |
|   const std::string &DL = M.getDataLayoutStr();
 | |
|   if (!DL.empty())
 | |
|     writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
 | |
|   if (!M.getModuleInlineAsm().empty())
 | |
|     writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
 | |
|                       0 /*TODO*/);
 | |
| 
 | |
|   // Emit information about sections and GC, computing how many there are. Also
 | |
|   // compute the maximum alignment value.
 | |
|   std::map<std::string, unsigned> SectionMap;
 | |
|   std::map<std::string, unsigned> GCMap;
 | |
|   unsigned MaxAlignment = 0;
 | |
|   unsigned MaxGlobalType = 0;
 | |
|   for (const GlobalValue &GV : M.globals()) {
 | |
|     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
 | |
|     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
 | |
|     if (GV.hasSection()) {
 | |
|       // Give section names unique ID's.
 | |
|       unsigned &Entry = SectionMap[GV.getSection()];
 | |
|       if (!Entry) {
 | |
|         writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
 | |
|                           0 /*TODO*/);
 | |
|         Entry = SectionMap.size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   for (const Function &F : M) {
 | |
|     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
 | |
|     if (F.hasSection()) {
 | |
|       // Give section names unique ID's.
 | |
|       unsigned &Entry = SectionMap[F.getSection()];
 | |
|       if (!Entry) {
 | |
|         writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
 | |
|                           0 /*TODO*/);
 | |
|         Entry = SectionMap.size();
 | |
|       }
 | |
|     }
 | |
|     if (F.hasGC()) {
 | |
|       // Same for GC names.
 | |
|       unsigned &Entry = GCMap[F.getGC()];
 | |
|       if (!Entry) {
 | |
|         writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/);
 | |
|         Entry = GCMap.size();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Emit abbrev for globals, now that we know # sections and max alignment.
 | |
|   unsigned SimpleGVarAbbrev = 0;
 | |
|   if (!M.global_empty()) {
 | |
|     // Add an abbrev for common globals with no visibility or thread localness.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | |
|                               Log2_32_Ceil(MaxGlobalType+1)));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
 | |
|                                                            //| explicitType << 1
 | |
|                                                            //| constant
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
 | |
|     if (MaxAlignment == 0)                                 // Alignment.
 | |
|       Abbv->Add(BitCodeAbbrevOp(0));
 | |
|     else {
 | |
|       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
 | |
|       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | |
|                                Log2_32_Ceil(MaxEncAlignment+1)));
 | |
|     }
 | |
|     if (SectionMap.empty())                                    // Section.
 | |
|       Abbv->Add(BitCodeAbbrevOp(0));
 | |
|     else
 | |
|       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | |
|                                Log2_32_Ceil(SectionMap.size()+1)));
 | |
|     // Don't bother emitting vis + thread local.
 | |
|     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
 | |
|   }
 | |
| 
 | |
|   // Emit the global variable information.
 | |
|   SmallVector<unsigned, 64> Vals;
 | |
|   for (const GlobalVariable &GV : M.globals()) {
 | |
|     unsigned AbbrevToUse = 0;
 | |
| 
 | |
|     // GLOBALVAR: [type, isconst, initid,
 | |
|     //             linkage, alignment, section, visibility, threadlocal,
 | |
|     //             unnamed_addr, externally_initialized, dllstorageclass,
 | |
|     //             comdat]
 | |
|     Vals.push_back(VE.getTypeID(GV.getValueType()));
 | |
|     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
 | |
|     Vals.push_back(GV.isDeclaration() ? 0 :
 | |
|                    (VE.getValueID(GV.getInitializer()) + 1));
 | |
|     Vals.push_back(getEncodedLinkage(GV));
 | |
|     Vals.push_back(Log2_32(GV.getAlignment())+1);
 | |
|     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
 | |
|     if (GV.isThreadLocal() ||
 | |
|         GV.getVisibility() != GlobalValue::DefaultVisibility ||
 | |
|         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
 | |
|         GV.isExternallyInitialized() ||
 | |
|         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
 | |
|         GV.hasComdat()) {
 | |
|       Vals.push_back(getEncodedVisibility(GV));
 | |
|       Vals.push_back(getEncodedThreadLocalMode(GV));
 | |
|       Vals.push_back(getEncodedUnnamedAddr(GV));
 | |
|       Vals.push_back(GV.isExternallyInitialized());
 | |
|       Vals.push_back(getEncodedDLLStorageClass(GV));
 | |
|       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
 | |
|     } else {
 | |
|       AbbrevToUse = SimpleGVarAbbrev;
 | |
|     }
 | |
| 
 | |
|     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
 | |
|     Vals.clear();
 | |
|   }
 | |
| 
 | |
|   // Emit the function proto information.
 | |
|   for (const Function &F : M) {
 | |
|     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
 | |
|     //             section, visibility, gc, unnamed_addr, prologuedata,
 | |
|     //             dllstorageclass, comdat, prefixdata, personalityfn]
 | |
|     Vals.push_back(VE.getTypeID(F.getFunctionType()));
 | |
|     Vals.push_back(F.getCallingConv());
 | |
|     Vals.push_back(F.isDeclaration());
 | |
|     Vals.push_back(getEncodedLinkage(F));
 | |
|     Vals.push_back(VE.getAttributeID(F.getAttributes()));
 | |
|     Vals.push_back(Log2_32(F.getAlignment())+1);
 | |
|     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
 | |
|     Vals.push_back(getEncodedVisibility(F));
 | |
|     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
 | |
|     Vals.push_back(getEncodedUnnamedAddr(F));
 | |
|     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
 | |
|                                        : 0);
 | |
|     Vals.push_back(getEncodedDLLStorageClass(F));
 | |
|     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
 | |
|     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
 | |
|                                      : 0);
 | |
|     Vals.push_back(
 | |
|         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
 | |
| 
 | |
|     unsigned AbbrevToUse = 0;
 | |
|     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
 | |
|     Vals.clear();
 | |
|   }
 | |
| 
 | |
|   // Emit the alias information.
 | |
|   for (const GlobalAlias &A : M.aliases()) {
 | |
|     // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass,
 | |
|     //         threadlocal, unnamed_addr]
 | |
|     Vals.push_back(VE.getTypeID(A.getValueType()));
 | |
|     Vals.push_back(A.getType()->getAddressSpace());
 | |
|     Vals.push_back(VE.getValueID(A.getAliasee()));
 | |
|     Vals.push_back(getEncodedLinkage(A));
 | |
|     Vals.push_back(getEncodedVisibility(A));
 | |
|     Vals.push_back(getEncodedDLLStorageClass(A));
 | |
|     Vals.push_back(getEncodedThreadLocalMode(A));
 | |
|     Vals.push_back(getEncodedUnnamedAddr(A));
 | |
|     unsigned AbbrevToUse = 0;
 | |
|     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
 | |
|     Vals.clear();
 | |
|   }
 | |
| 
 | |
|   // Emit the ifunc information.
 | |
|   for (const GlobalIFunc &I : M.ifuncs()) {
 | |
|     // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility]
 | |
|     Vals.push_back(VE.getTypeID(I.getValueType()));
 | |
|     Vals.push_back(I.getType()->getAddressSpace());
 | |
|     Vals.push_back(VE.getValueID(I.getResolver()));
 | |
|     Vals.push_back(getEncodedLinkage(I));
 | |
|     Vals.push_back(getEncodedVisibility(I));
 | |
|     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
 | |
|     Vals.clear();
 | |
|   }
 | |
| 
 | |
|   // Emit the module's source file name.
 | |
|   {
 | |
|     StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
 | |
|                                             M.getSourceFileName().size());
 | |
|     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
 | |
|     if (Bits == SE_Char6)
 | |
|       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
 | |
|     else if (Bits == SE_Fixed7)
 | |
|       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
 | |
| 
 | |
|     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(AbbrevOpToUse);
 | |
|     unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|     for (const auto P : M.getSourceFileName())
 | |
|       Vals.push_back((unsigned char)P);
 | |
| 
 | |
|     // Emit the finished record.
 | |
|     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
 | |
|     Vals.clear();
 | |
|   }
 | |
| 
 | |
|   // If we have a VST, write the VSTOFFSET record placeholder.
 | |
|   if (M.getValueSymbolTable().empty())
 | |
|     return;
 | |
|   writeValueSymbolTableForwardDecl();
 | |
| }
 | |
| 
 | |
| static uint64_t getOptimizationFlags(const Value *V) {
 | |
|   uint64_t Flags = 0;
 | |
| 
 | |
|   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
 | |
|     if (OBO->hasNoSignedWrap())
 | |
|       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
 | |
|     if (OBO->hasNoUnsignedWrap())
 | |
|       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
 | |
|   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
 | |
|     if (PEO->isExact())
 | |
|       Flags |= 1 << bitc::PEO_EXACT;
 | |
|   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
 | |
|     if (FPMO->hasUnsafeAlgebra())
 | |
|       Flags |= FastMathFlags::UnsafeAlgebra;
 | |
|     if (FPMO->hasNoNaNs())
 | |
|       Flags |= FastMathFlags::NoNaNs;
 | |
|     if (FPMO->hasNoInfs())
 | |
|       Flags |= FastMathFlags::NoInfs;
 | |
|     if (FPMO->hasNoSignedZeros())
 | |
|       Flags |= FastMathFlags::NoSignedZeros;
 | |
|     if (FPMO->hasAllowReciprocal())
 | |
|       Flags |= FastMathFlags::AllowReciprocal;
 | |
|   }
 | |
| 
 | |
|   return Flags;
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeValueAsMetadata(
 | |
|     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
 | |
|   // Mimic an MDNode with a value as one operand.
 | |
|   Value *V = MD->getValue();
 | |
|   Record.push_back(VE.getTypeID(V->getType()));
 | |
|   Record.push_back(VE.getValueID(V));
 | |
|   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
 | |
|                                        SmallVectorImpl<uint64_t> &Record,
 | |
|                                        unsigned Abbrev) {
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     Metadata *MD = N->getOperand(i);
 | |
|     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
 | |
|            "Unexpected function-local metadata");
 | |
|     Record.push_back(VE.getMetadataOrNullID(MD));
 | |
|   }
 | |
|   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
 | |
|                                     : bitc::METADATA_NODE,
 | |
|                     Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
 | |
|   // Assume the column is usually under 128, and always output the inlined-at
 | |
|   // location (it's never more expensive than building an array size 1).
 | |
|   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
 | |
|   return Stream.EmitAbbrev(Abbv);
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
 | |
|                                           SmallVectorImpl<uint64_t> &Record,
 | |
|                                           unsigned &Abbrev) {
 | |
|   if (!Abbrev)
 | |
|     Abbrev = createDILocationAbbrev();
 | |
| 
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(N->getLine());
 | |
|   Record.push_back(N->getColumn());
 | |
|   Record.push_back(VE.getMetadataID(N->getScope()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
 | |
|   // Assume the column is usually under 128, and always output the inlined-at
 | |
|   // location (it's never more expensive than building an array size 1).
 | |
|   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
 | |
|   return Stream.EmitAbbrev(Abbv);
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
 | |
|                                              SmallVectorImpl<uint64_t> &Record,
 | |
|                                              unsigned &Abbrev) {
 | |
|   if (!Abbrev)
 | |
|     Abbrev = createGenericDINodeAbbrev();
 | |
| 
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(N->getTag());
 | |
|   Record.push_back(0); // Per-tag version field; unused for now.
 | |
| 
 | |
|   for (auto &I : N->operands())
 | |
|     Record.push_back(VE.getMetadataOrNullID(I));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| static uint64_t rotateSign(int64_t I) {
 | |
|   uint64_t U = I;
 | |
|   return I < 0 ? ~(U << 1) : U << 1;
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
 | |
|                                           SmallVectorImpl<uint64_t> &Record,
 | |
|                                           unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(N->getCount());
 | |
|   Record.push_back(rotateSign(N->getLowerBound()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
 | |
|                                             SmallVectorImpl<uint64_t> &Record,
 | |
|                                             unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(rotateSign(N->getValue()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
 | |
|                                            SmallVectorImpl<uint64_t> &Record,
 | |
|                                            unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(N->getTag());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
|   Record.push_back(N->getSizeInBits());
 | |
|   Record.push_back(N->getAlignInBits());
 | |
|   Record.push_back(N->getEncoding());
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
 | |
|                                              SmallVectorImpl<uint64_t> &Record,
 | |
|                                              unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(N->getTag());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
 | |
|   Record.push_back(N->getLine());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
 | |
|   Record.push_back(N->getSizeInBits());
 | |
|   Record.push_back(N->getAlignInBits());
 | |
|   Record.push_back(N->getOffsetInBits());
 | |
|   Record.push_back(N->getFlags());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDICompositeType(
 | |
|     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
 | |
|     unsigned Abbrev) {
 | |
|   const unsigned IsNotUsedInOldTypeRef = 0x2;
 | |
|   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
 | |
|   Record.push_back(N->getTag());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
 | |
|   Record.push_back(N->getLine());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
 | |
|   Record.push_back(N->getSizeInBits());
 | |
|   Record.push_back(N->getAlignInBits());
 | |
|   Record.push_back(N->getOffsetInBits());
 | |
|   Record.push_back(N->getFlags());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
 | |
|   Record.push_back(N->getRuntimeLang());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDISubroutineType(
 | |
|     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
 | |
|     unsigned Abbrev) {
 | |
|   const unsigned HasNoOldTypeRefs = 0x2;
 | |
|   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
 | |
|   Record.push_back(N->getFlags());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
 | |
|   Record.push_back(N->getCC());
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
 | |
|                                       SmallVectorImpl<uint64_t> &Record,
 | |
|                                       unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
 | |
|                                              SmallVectorImpl<uint64_t> &Record,
 | |
|                                              unsigned Abbrev) {
 | |
|   assert(N->isDistinct() && "Expected distinct compile units");
 | |
|   Record.push_back(/* IsDistinct */ true);
 | |
|   Record.push_back(N->getSourceLanguage());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
 | |
|   Record.push_back(N->isOptimized());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
 | |
|   Record.push_back(N->getRuntimeVersion());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
 | |
|   Record.push_back(N->getEmissionKind());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
 | |
|   Record.push_back(/* subprograms */ 0);
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
 | |
|   Record.push_back(N->getDWOId());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
 | |
|                                             SmallVectorImpl<uint64_t> &Record,
 | |
|                                             unsigned Abbrev) {
 | |
|   uint64_t HasUnitFlag = 1 << 1;
 | |
|   Record.push_back(N->isDistinct() | HasUnitFlag);
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
 | |
|   Record.push_back(N->getLine());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getType()));
 | |
|   Record.push_back(N->isLocalToUnit());
 | |
|   Record.push_back(N->isDefinition());
 | |
|   Record.push_back(N->getScopeLine());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
 | |
|   Record.push_back(N->getVirtuality());
 | |
|   Record.push_back(N->getVirtualIndex());
 | |
|   Record.push_back(N->getFlags());
 | |
|   Record.push_back(N->isOptimized());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
 | |
|   Record.push_back(N->getThisAdjustment());
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
 | |
|                                               SmallVectorImpl<uint64_t> &Record,
 | |
|                                               unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
 | |
|   Record.push_back(N->getLine());
 | |
|   Record.push_back(N->getColumn());
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDILexicalBlockFile(
 | |
|     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
 | |
|     unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
 | |
|   Record.push_back(N->getDiscriminator());
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
 | |
|                                            SmallVectorImpl<uint64_t> &Record,
 | |
|                                            unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
|   Record.push_back(N->getLine());
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
 | |
|                                        SmallVectorImpl<uint64_t> &Record,
 | |
|                                        unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(N->getMacinfoType());
 | |
|   Record.push_back(N->getLine());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
 | |
|                                            SmallVectorImpl<uint64_t> &Record,
 | |
|                                            unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(N->getMacinfoType());
 | |
|   Record.push_back(N->getLine());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
 | |
|                                         SmallVectorImpl<uint64_t> &Record,
 | |
|                                         unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   for (auto &I : N->operands())
 | |
|     Record.push_back(VE.getMetadataOrNullID(I));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDITemplateTypeParameter(
 | |
|     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
 | |
|     unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getType()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDITemplateValueParameter(
 | |
|     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
 | |
|     unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(N->getTag());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getType()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDIGlobalVariable(
 | |
|     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
 | |
|     unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
 | |
|   Record.push_back(N->getLine());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getType()));
 | |
|   Record.push_back(N->isLocalToUnit());
 | |
|   Record.push_back(N->isDefinition());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDILocalVariable(
 | |
|     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
 | |
|     unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
 | |
|   Record.push_back(N->getLine());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getType()));
 | |
|   Record.push_back(N->getArg());
 | |
|   Record.push_back(N->getFlags());
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
 | |
|                                             SmallVectorImpl<uint64_t> &Record,
 | |
|                                             unsigned Abbrev) {
 | |
|   Record.reserve(N->getElements().size() + 1);
 | |
| 
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.append(N->elements_begin(), N->elements_end());
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
 | |
|                                               SmallVectorImpl<uint64_t> &Record,
 | |
|                                               unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
 | |
|   Record.push_back(N->getLine());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
 | |
|   Record.push_back(N->getAttributes());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getType()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeDIImportedEntity(
 | |
|     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
 | |
|     unsigned Abbrev) {
 | |
|   Record.push_back(N->isDistinct());
 | |
|   Record.push_back(N->getTag());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
 | |
|   Record.push_back(N->getLine());
 | |
|   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
 | |
| 
 | |
|   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
 | |
|   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
 | |
|   return Stream.EmitAbbrev(Abbv);
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeNamedMetadata(
 | |
|     SmallVectorImpl<uint64_t> &Record) {
 | |
|   if (M.named_metadata_empty())
 | |
|     return;
 | |
| 
 | |
|   unsigned Abbrev = createNamedMetadataAbbrev();
 | |
|   for (const NamedMDNode &NMD : M.named_metadata()) {
 | |
|     // Write name.
 | |
|     StringRef Str = NMD.getName();
 | |
|     Record.append(Str.bytes_begin(), Str.bytes_end());
 | |
|     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
 | |
|     Record.clear();
 | |
| 
 | |
|     // Write named metadata operands.
 | |
|     for (const MDNode *N : NMD.operands())
 | |
|       Record.push_back(VE.getMetadataID(N));
 | |
|     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
 | |
|     Record.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
 | |
|   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
 | |
|   return Stream.EmitAbbrev(Abbv);
 | |
| }
 | |
| 
 | |
| /// Write out a record for MDString.
 | |
| ///
 | |
| /// All the metadata strings in a metadata block are emitted in a single
 | |
| /// record.  The sizes and strings themselves are shoved into a blob.
 | |
| void ModuleBitcodeWriter::writeMetadataStrings(
 | |
|     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
 | |
|   if (Strings.empty())
 | |
|     return;
 | |
| 
 | |
|   // Start the record with the number of strings.
 | |
|   Record.push_back(bitc::METADATA_STRINGS);
 | |
|   Record.push_back(Strings.size());
 | |
| 
 | |
|   // Emit the sizes of the strings in the blob.
 | |
|   SmallString<256> Blob;
 | |
|   {
 | |
|     BitstreamWriter W(Blob);
 | |
|     for (const Metadata *MD : Strings)
 | |
|       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
 | |
|     W.FlushToWord();
 | |
|   }
 | |
| 
 | |
|   // Add the offset to the strings to the record.
 | |
|   Record.push_back(Blob.size());
 | |
| 
 | |
|   // Add the strings to the blob.
 | |
|   for (const Metadata *MD : Strings)
 | |
|     Blob.append(cast<MDString>(MD)->getString());
 | |
| 
 | |
|   // Emit the final record.
 | |
|   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
 | |
|   Record.clear();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeMetadataRecords(
 | |
|     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) {
 | |
|   if (MDs.empty())
 | |
|     return;
 | |
| 
 | |
|   // Initialize MDNode abbreviations.
 | |
| #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
 | |
| #include "llvm/IR/Metadata.def"
 | |
| 
 | |
|   for (const Metadata *MD : MDs) {
 | |
|     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
 | |
|       assert(N->isResolved() && "Expected forward references to be resolved");
 | |
| 
 | |
|       switch (N->getMetadataID()) {
 | |
|       default:
 | |
|         llvm_unreachable("Invalid MDNode subclass");
 | |
| #define HANDLE_MDNODE_LEAF(CLASS)                                              \
 | |
|   case Metadata::CLASS##Kind:                                                  \
 | |
|     write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                       \
 | |
|     continue;
 | |
| #include "llvm/IR/Metadata.def"
 | |
|       }
 | |
|     }
 | |
|     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeModuleMetadata() {
 | |
|   if (!VE.hasMDs() && M.named_metadata_empty())
 | |
|     return;
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
 | |
|   SmallVector<uint64_t, 64> Record;
 | |
|   writeMetadataStrings(VE.getMDStrings(), Record);
 | |
|   writeMetadataRecords(VE.getNonMDStrings(), Record);
 | |
|   writeNamedMetadata(Record);
 | |
| 
 | |
|   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
 | |
|     SmallVector<uint64_t, 4> Record;
 | |
|     Record.push_back(VE.getValueID(&GO));
 | |
|     pushGlobalMetadataAttachment(Record, GO);
 | |
|     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
 | |
|   };
 | |
|   for (const Function &F : M)
 | |
|     if (F.isDeclaration() && F.hasMetadata())
 | |
|       AddDeclAttachedMetadata(F);
 | |
|   // FIXME: Only store metadata for declarations here, and move data for global
 | |
|   // variable definitions to a separate block (PR28134).
 | |
|   for (const GlobalVariable &GV : M.globals())
 | |
|     if (GV.hasMetadata())
 | |
|       AddDeclAttachedMetadata(GV);
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
 | |
|   if (!VE.hasMDs())
 | |
|     return;
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
 | |
|   SmallVector<uint64_t, 64> Record;
 | |
|   writeMetadataStrings(VE.getMDStrings(), Record);
 | |
|   writeMetadataRecords(VE.getNonMDStrings(), Record);
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
 | |
|     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
 | |
|   // [n x [id, mdnode]]
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
 | |
|   GO.getAllMetadata(MDs);
 | |
|   for (const auto &I : MDs) {
 | |
|     Record.push_back(I.first);
 | |
|     Record.push_back(VE.getMetadataID(I.second));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
 | |
|   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
 | |
| 
 | |
|   SmallVector<uint64_t, 64> Record;
 | |
| 
 | |
|   if (F.hasMetadata()) {
 | |
|     pushGlobalMetadataAttachment(Record, F);
 | |
|     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
 | |
|     Record.clear();
 | |
|   }
 | |
| 
 | |
|   // Write metadata attachments
 | |
|   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
 | |
|   for (const BasicBlock &BB : F)
 | |
|     for (const Instruction &I : BB) {
 | |
|       MDs.clear();
 | |
|       I.getAllMetadataOtherThanDebugLoc(MDs);
 | |
| 
 | |
|       // If no metadata, ignore instruction.
 | |
|       if (MDs.empty()) continue;
 | |
| 
 | |
|       Record.push_back(VE.getInstructionID(&I));
 | |
| 
 | |
|       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
 | |
|         Record.push_back(MDs[i].first);
 | |
|         Record.push_back(VE.getMetadataID(MDs[i].second));
 | |
|       }
 | |
|       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
 | |
|       Record.clear();
 | |
|     }
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeModuleMetadataKinds() {
 | |
|   SmallVector<uint64_t, 64> Record;
 | |
| 
 | |
|   // Write metadata kinds
 | |
|   // METADATA_KIND - [n x [id, name]]
 | |
|   SmallVector<StringRef, 8> Names;
 | |
|   M.getMDKindNames(Names);
 | |
| 
 | |
|   if (Names.empty()) return;
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
 | |
| 
 | |
|   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
 | |
|     Record.push_back(MDKindID);
 | |
|     StringRef KName = Names[MDKindID];
 | |
|     Record.append(KName.begin(), KName.end());
 | |
| 
 | |
|     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
 | |
|     Record.clear();
 | |
|   }
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeOperandBundleTags() {
 | |
|   // Write metadata kinds
 | |
|   //
 | |
|   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
 | |
|   //
 | |
|   // OPERAND_BUNDLE_TAG - [strchr x N]
 | |
| 
 | |
|   SmallVector<StringRef, 8> Tags;
 | |
|   M.getOperandBundleTags(Tags);
 | |
| 
 | |
|   if (Tags.empty())
 | |
|     return;
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
 | |
| 
 | |
|   SmallVector<uint64_t, 64> Record;
 | |
| 
 | |
|   for (auto Tag : Tags) {
 | |
|     Record.append(Tag.begin(), Tag.end());
 | |
| 
 | |
|     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
 | |
|     Record.clear();
 | |
|   }
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
 | |
|   if ((int64_t)V >= 0)
 | |
|     Vals.push_back(V << 1);
 | |
|   else
 | |
|     Vals.push_back((-V << 1) | 1);
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
 | |
|                                          bool isGlobal) {
 | |
|   if (FirstVal == LastVal) return;
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
 | |
| 
 | |
|   unsigned AggregateAbbrev = 0;
 | |
|   unsigned String8Abbrev = 0;
 | |
|   unsigned CString7Abbrev = 0;
 | |
|   unsigned CString6Abbrev = 0;
 | |
|   // If this is a constant pool for the module, emit module-specific abbrevs.
 | |
|   if (isGlobal) {
 | |
|     // Abbrev for CST_CODE_AGGREGATE.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
 | |
|     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|     // Abbrev for CST_CODE_STRING.
 | |
|     Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
 | |
|     String8Abbrev = Stream.EmitAbbrev(Abbv);
 | |
|     // Abbrev for CST_CODE_CSTRING.
 | |
|     Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
 | |
|     CString7Abbrev = Stream.EmitAbbrev(Abbv);
 | |
|     // Abbrev for CST_CODE_CSTRING.
 | |
|     Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
 | |
|     CString6Abbrev = Stream.EmitAbbrev(Abbv);
 | |
|   }
 | |
| 
 | |
|   SmallVector<uint64_t, 64> Record;
 | |
| 
 | |
|   const ValueEnumerator::ValueList &Vals = VE.getValues();
 | |
|   Type *LastTy = nullptr;
 | |
|   for (unsigned i = FirstVal; i != LastVal; ++i) {
 | |
|     const Value *V = Vals[i].first;
 | |
|     // If we need to switch types, do so now.
 | |
|     if (V->getType() != LastTy) {
 | |
|       LastTy = V->getType();
 | |
|       Record.push_back(VE.getTypeID(LastTy));
 | |
|       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
 | |
|                         CONSTANTS_SETTYPE_ABBREV);
 | |
|       Record.clear();
 | |
|     }
 | |
| 
 | |
|     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
 | |
|       Record.push_back(unsigned(IA->hasSideEffects()) |
 | |
|                        unsigned(IA->isAlignStack()) << 1 |
 | |
|                        unsigned(IA->getDialect()&1) << 2);
 | |
| 
 | |
|       // Add the asm string.
 | |
|       const std::string &AsmStr = IA->getAsmString();
 | |
|       Record.push_back(AsmStr.size());
 | |
|       Record.append(AsmStr.begin(), AsmStr.end());
 | |
| 
 | |
|       // Add the constraint string.
 | |
|       const std::string &ConstraintStr = IA->getConstraintString();
 | |
|       Record.push_back(ConstraintStr.size());
 | |
|       Record.append(ConstraintStr.begin(), ConstraintStr.end());
 | |
|       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
 | |
|       Record.clear();
 | |
|       continue;
 | |
|     }
 | |
|     const Constant *C = cast<Constant>(V);
 | |
|     unsigned Code = -1U;
 | |
|     unsigned AbbrevToUse = 0;
 | |
|     if (C->isNullValue()) {
 | |
|       Code = bitc::CST_CODE_NULL;
 | |
|     } else if (isa<UndefValue>(C)) {
 | |
|       Code = bitc::CST_CODE_UNDEF;
 | |
|     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
 | |
|       if (IV->getBitWidth() <= 64) {
 | |
|         uint64_t V = IV->getSExtValue();
 | |
|         emitSignedInt64(Record, V);
 | |
|         Code = bitc::CST_CODE_INTEGER;
 | |
|         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
 | |
|       } else {                             // Wide integers, > 64 bits in size.
 | |
|         // We have an arbitrary precision integer value to write whose
 | |
|         // bit width is > 64. However, in canonical unsigned integer
 | |
|         // format it is likely that the high bits are going to be zero.
 | |
|         // So, we only write the number of active words.
 | |
|         unsigned NWords = IV->getValue().getActiveWords();
 | |
|         const uint64_t *RawWords = IV->getValue().getRawData();
 | |
|         for (unsigned i = 0; i != NWords; ++i) {
 | |
|           emitSignedInt64(Record, RawWords[i]);
 | |
|         }
 | |
|         Code = bitc::CST_CODE_WIDE_INTEGER;
 | |
|       }
 | |
|     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|       Code = bitc::CST_CODE_FLOAT;
 | |
|       Type *Ty = CFP->getType();
 | |
|       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
 | |
|         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
 | |
|       } else if (Ty->isX86_FP80Ty()) {
 | |
|         // api needed to prevent premature destruction
 | |
|         // bits are not in the same order as a normal i80 APInt, compensate.
 | |
|         APInt api = CFP->getValueAPF().bitcastToAPInt();
 | |
|         const uint64_t *p = api.getRawData();
 | |
|         Record.push_back((p[1] << 48) | (p[0] >> 16));
 | |
|         Record.push_back(p[0] & 0xffffLL);
 | |
|       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
 | |
|         APInt api = CFP->getValueAPF().bitcastToAPInt();
 | |
|         const uint64_t *p = api.getRawData();
 | |
|         Record.push_back(p[0]);
 | |
|         Record.push_back(p[1]);
 | |
|       } else {
 | |
|         assert (0 && "Unknown FP type!");
 | |
|       }
 | |
|     } else if (isa<ConstantDataSequential>(C) &&
 | |
|                cast<ConstantDataSequential>(C)->isString()) {
 | |
|       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
 | |
|       // Emit constant strings specially.
 | |
|       unsigned NumElts = Str->getNumElements();
 | |
|       // If this is a null-terminated string, use the denser CSTRING encoding.
 | |
|       if (Str->isCString()) {
 | |
|         Code = bitc::CST_CODE_CSTRING;
 | |
|         --NumElts;  // Don't encode the null, which isn't allowed by char6.
 | |
|       } else {
 | |
|         Code = bitc::CST_CODE_STRING;
 | |
|         AbbrevToUse = String8Abbrev;
 | |
|       }
 | |
|       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
 | |
|       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
 | |
|       for (unsigned i = 0; i != NumElts; ++i) {
 | |
|         unsigned char V = Str->getElementAsInteger(i);
 | |
|         Record.push_back(V);
 | |
|         isCStr7 &= (V & 128) == 0;
 | |
|         if (isCStrChar6)
 | |
|           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
 | |
|       }
 | |
| 
 | |
|       if (isCStrChar6)
 | |
|         AbbrevToUse = CString6Abbrev;
 | |
|       else if (isCStr7)
 | |
|         AbbrevToUse = CString7Abbrev;
 | |
|     } else if (const ConstantDataSequential *CDS =
 | |
|                   dyn_cast<ConstantDataSequential>(C)) {
 | |
|       Code = bitc::CST_CODE_DATA;
 | |
|       Type *EltTy = CDS->getType()->getElementType();
 | |
|       if (isa<IntegerType>(EltTy)) {
 | |
|         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
 | |
|           Record.push_back(CDS->getElementAsInteger(i));
 | |
|       } else {
 | |
|         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
 | |
|           Record.push_back(
 | |
|               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
 | |
|       }
 | |
|     } else if (isa<ConstantAggregate>(C)) {
 | |
|       Code = bitc::CST_CODE_AGGREGATE;
 | |
|       for (const Value *Op : C->operands())
 | |
|         Record.push_back(VE.getValueID(Op));
 | |
|       AbbrevToUse = AggregateAbbrev;
 | |
|     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|       switch (CE->getOpcode()) {
 | |
|       default:
 | |
|         if (Instruction::isCast(CE->getOpcode())) {
 | |
|           Code = bitc::CST_CODE_CE_CAST;
 | |
|           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
 | |
|           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
 | |
|           Record.push_back(VE.getValueID(C->getOperand(0)));
 | |
|           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
 | |
|         } else {
 | |
|           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
 | |
|           Code = bitc::CST_CODE_CE_BINOP;
 | |
|           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
 | |
|           Record.push_back(VE.getValueID(C->getOperand(0)));
 | |
|           Record.push_back(VE.getValueID(C->getOperand(1)));
 | |
|           uint64_t Flags = getOptimizationFlags(CE);
 | |
|           if (Flags != 0)
 | |
|             Record.push_back(Flags);
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::GetElementPtr: {
 | |
|         Code = bitc::CST_CODE_CE_GEP;
 | |
|         const auto *GO = cast<GEPOperator>(C);
 | |
|         if (GO->isInBounds())
 | |
|           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
 | |
|         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
 | |
|         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
 | |
|           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
 | |
|           Record.push_back(VE.getValueID(C->getOperand(i)));
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::Select:
 | |
|         Code = bitc::CST_CODE_CE_SELECT;
 | |
|         Record.push_back(VE.getValueID(C->getOperand(0)));
 | |
|         Record.push_back(VE.getValueID(C->getOperand(1)));
 | |
|         Record.push_back(VE.getValueID(C->getOperand(2)));
 | |
|         break;
 | |
|       case Instruction::ExtractElement:
 | |
|         Code = bitc::CST_CODE_CE_EXTRACTELT;
 | |
|         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
 | |
|         Record.push_back(VE.getValueID(C->getOperand(0)));
 | |
|         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
 | |
|         Record.push_back(VE.getValueID(C->getOperand(1)));
 | |
|         break;
 | |
|       case Instruction::InsertElement:
 | |
|         Code = bitc::CST_CODE_CE_INSERTELT;
 | |
|         Record.push_back(VE.getValueID(C->getOperand(0)));
 | |
|         Record.push_back(VE.getValueID(C->getOperand(1)));
 | |
|         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
 | |
|         Record.push_back(VE.getValueID(C->getOperand(2)));
 | |
|         break;
 | |
|       case Instruction::ShuffleVector:
 | |
|         // If the return type and argument types are the same, this is a
 | |
|         // standard shufflevector instruction.  If the types are different,
 | |
|         // then the shuffle is widening or truncating the input vectors, and
 | |
|         // the argument type must also be encoded.
 | |
|         if (C->getType() == C->getOperand(0)->getType()) {
 | |
|           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
 | |
|         } else {
 | |
|           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
 | |
|           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
 | |
|         }
 | |
|         Record.push_back(VE.getValueID(C->getOperand(0)));
 | |
|         Record.push_back(VE.getValueID(C->getOperand(1)));
 | |
|         Record.push_back(VE.getValueID(C->getOperand(2)));
 | |
|         break;
 | |
|       case Instruction::ICmp:
 | |
|       case Instruction::FCmp:
 | |
|         Code = bitc::CST_CODE_CE_CMP;
 | |
|         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
 | |
|         Record.push_back(VE.getValueID(C->getOperand(0)));
 | |
|         Record.push_back(VE.getValueID(C->getOperand(1)));
 | |
|         Record.push_back(CE->getPredicate());
 | |
|         break;
 | |
|       }
 | |
|     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
 | |
|       Code = bitc::CST_CODE_BLOCKADDRESS;
 | |
|       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
 | |
|       Record.push_back(VE.getValueID(BA->getFunction()));
 | |
|       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
 | |
|     } else {
 | |
| #ifndef NDEBUG
 | |
|       C->dump();
 | |
| #endif
 | |
|       llvm_unreachable("Unknown constant!");
 | |
|     }
 | |
|     Stream.EmitRecord(Code, Record, AbbrevToUse);
 | |
|     Record.clear();
 | |
|   }
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeModuleConstants() {
 | |
|   const ValueEnumerator::ValueList &Vals = VE.getValues();
 | |
| 
 | |
|   // Find the first constant to emit, which is the first non-globalvalue value.
 | |
|   // We know globalvalues have been emitted by WriteModuleInfo.
 | |
|   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
 | |
|     if (!isa<GlobalValue>(Vals[i].first)) {
 | |
|       writeConstants(i, Vals.size(), true);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// pushValueAndType - The file has to encode both the value and type id for
 | |
| /// many values, because we need to know what type to create for forward
 | |
| /// references.  However, most operands are not forward references, so this type
 | |
| /// field is not needed.
 | |
| ///
 | |
| /// This function adds V's value ID to Vals.  If the value ID is higher than the
 | |
| /// instruction ID, then it is a forward reference, and it also includes the
 | |
| /// type ID.  The value ID that is written is encoded relative to the InstID.
 | |
| bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
 | |
|                                            SmallVectorImpl<unsigned> &Vals) {
 | |
|   unsigned ValID = VE.getValueID(V);
 | |
|   // Make encoding relative to the InstID.
 | |
|   Vals.push_back(InstID - ValID);
 | |
|   if (ValID >= InstID) {
 | |
|     Vals.push_back(VE.getTypeID(V->getType()));
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
 | |
|                                               unsigned InstID) {
 | |
|   SmallVector<unsigned, 64> Record;
 | |
|   LLVMContext &C = CS.getInstruction()->getContext();
 | |
| 
 | |
|   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
 | |
|     const auto &Bundle = CS.getOperandBundleAt(i);
 | |
|     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
 | |
| 
 | |
|     for (auto &Input : Bundle.Inputs)
 | |
|       pushValueAndType(Input, InstID, Record);
 | |
| 
 | |
|     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
 | |
|     Record.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// pushValue - Like pushValueAndType, but where the type of the value is
 | |
| /// omitted (perhaps it was already encoded in an earlier operand).
 | |
| void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
 | |
|                                     SmallVectorImpl<unsigned> &Vals) {
 | |
|   unsigned ValID = VE.getValueID(V);
 | |
|   Vals.push_back(InstID - ValID);
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
 | |
|                                           SmallVectorImpl<uint64_t> &Vals) {
 | |
|   unsigned ValID = VE.getValueID(V);
 | |
|   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
 | |
|   emitSignedInt64(Vals, diff);
 | |
| }
 | |
| 
 | |
| /// WriteInstruction - Emit an instruction to the specified stream.
 | |
| void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
 | |
|                                            unsigned InstID,
 | |
|                                            SmallVectorImpl<unsigned> &Vals) {
 | |
|   unsigned Code = 0;
 | |
|   unsigned AbbrevToUse = 0;
 | |
|   VE.setInstructionID(&I);
 | |
|   switch (I.getOpcode()) {
 | |
|   default:
 | |
|     if (Instruction::isCast(I.getOpcode())) {
 | |
|       Code = bitc::FUNC_CODE_INST_CAST;
 | |
|       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
 | |
|         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
 | |
|       Vals.push_back(VE.getTypeID(I.getType()));
 | |
|       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
 | |
|     } else {
 | |
|       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
 | |
|       Code = bitc::FUNC_CODE_INST_BINOP;
 | |
|       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
 | |
|         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
 | |
|       pushValue(I.getOperand(1), InstID, Vals);
 | |
|       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
 | |
|       uint64_t Flags = getOptimizationFlags(&I);
 | |
|       if (Flags != 0) {
 | |
|         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
 | |
|           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
 | |
|         Vals.push_back(Flags);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::GetElementPtr: {
 | |
|     Code = bitc::FUNC_CODE_INST_GEP;
 | |
|     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
 | |
|     auto &GEPInst = cast<GetElementPtrInst>(I);
 | |
|     Vals.push_back(GEPInst.isInBounds());
 | |
|     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
 | |
|     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | |
|       pushValueAndType(I.getOperand(i), InstID, Vals);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::ExtractValue: {
 | |
|     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
 | |
|     pushValueAndType(I.getOperand(0), InstID, Vals);
 | |
|     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
 | |
|     Vals.append(EVI->idx_begin(), EVI->idx_end());
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::InsertValue: {
 | |
|     Code = bitc::FUNC_CODE_INST_INSERTVAL;
 | |
|     pushValueAndType(I.getOperand(0), InstID, Vals);
 | |
|     pushValueAndType(I.getOperand(1), InstID, Vals);
 | |
|     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
 | |
|     Vals.append(IVI->idx_begin(), IVI->idx_end());
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Select:
 | |
|     Code = bitc::FUNC_CODE_INST_VSELECT;
 | |
|     pushValueAndType(I.getOperand(1), InstID, Vals);
 | |
|     pushValue(I.getOperand(2), InstID, Vals);
 | |
|     pushValueAndType(I.getOperand(0), InstID, Vals);
 | |
|     break;
 | |
|   case Instruction::ExtractElement:
 | |
|     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
 | |
|     pushValueAndType(I.getOperand(0), InstID, Vals);
 | |
|     pushValueAndType(I.getOperand(1), InstID, Vals);
 | |
|     break;
 | |
|   case Instruction::InsertElement:
 | |
|     Code = bitc::FUNC_CODE_INST_INSERTELT;
 | |
|     pushValueAndType(I.getOperand(0), InstID, Vals);
 | |
|     pushValue(I.getOperand(1), InstID, Vals);
 | |
|     pushValueAndType(I.getOperand(2), InstID, Vals);
 | |
|     break;
 | |
|   case Instruction::ShuffleVector:
 | |
|     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
 | |
|     pushValueAndType(I.getOperand(0), InstID, Vals);
 | |
|     pushValue(I.getOperand(1), InstID, Vals);
 | |
|     pushValue(I.getOperand(2), InstID, Vals);
 | |
|     break;
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp: {
 | |
|     // compare returning Int1Ty or vector of Int1Ty
 | |
|     Code = bitc::FUNC_CODE_INST_CMP2;
 | |
|     pushValueAndType(I.getOperand(0), InstID, Vals);
 | |
|     pushValue(I.getOperand(1), InstID, Vals);
 | |
|     Vals.push_back(cast<CmpInst>(I).getPredicate());
 | |
|     uint64_t Flags = getOptimizationFlags(&I);
 | |
|     if (Flags != 0)
 | |
|       Vals.push_back(Flags);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Ret:
 | |
|     {
 | |
|       Code = bitc::FUNC_CODE_INST_RET;
 | |
|       unsigned NumOperands = I.getNumOperands();
 | |
|       if (NumOperands == 0)
 | |
|         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
 | |
|       else if (NumOperands == 1) {
 | |
|         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
 | |
|           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
 | |
|       } else {
 | |
|         for (unsigned i = 0, e = NumOperands; i != e; ++i)
 | |
|           pushValueAndType(I.getOperand(i), InstID, Vals);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Br:
 | |
|     {
 | |
|       Code = bitc::FUNC_CODE_INST_BR;
 | |
|       const BranchInst &II = cast<BranchInst>(I);
 | |
|       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
 | |
|       if (II.isConditional()) {
 | |
|         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
 | |
|         pushValue(II.getCondition(), InstID, Vals);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Switch:
 | |
|     {
 | |
|       Code = bitc::FUNC_CODE_INST_SWITCH;
 | |
|       const SwitchInst &SI = cast<SwitchInst>(I);
 | |
|       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
 | |
|       pushValue(SI.getCondition(), InstID, Vals);
 | |
|       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
 | |
|       for (SwitchInst::ConstCaseIt Case : SI.cases()) {
 | |
|         Vals.push_back(VE.getValueID(Case.getCaseValue()));
 | |
|         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::IndirectBr:
 | |
|     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
 | |
|     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
 | |
|     // Encode the address operand as relative, but not the basic blocks.
 | |
|     pushValue(I.getOperand(0), InstID, Vals);
 | |
|     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
 | |
|       Vals.push_back(VE.getValueID(I.getOperand(i)));
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Invoke: {
 | |
|     const InvokeInst *II = cast<InvokeInst>(&I);
 | |
|     const Value *Callee = II->getCalledValue();
 | |
|     FunctionType *FTy = II->getFunctionType();
 | |
| 
 | |
|     if (II->hasOperandBundles())
 | |
|       writeOperandBundles(II, InstID);
 | |
| 
 | |
|     Code = bitc::FUNC_CODE_INST_INVOKE;
 | |
| 
 | |
|     Vals.push_back(VE.getAttributeID(II->getAttributes()));
 | |
|     Vals.push_back(II->getCallingConv() | 1 << 13);
 | |
|     Vals.push_back(VE.getValueID(II->getNormalDest()));
 | |
|     Vals.push_back(VE.getValueID(II->getUnwindDest()));
 | |
|     Vals.push_back(VE.getTypeID(FTy));
 | |
|     pushValueAndType(Callee, InstID, Vals);
 | |
| 
 | |
|     // Emit value #'s for the fixed parameters.
 | |
|     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | |
|       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
 | |
| 
 | |
|     // Emit type/value pairs for varargs params.
 | |
|     if (FTy->isVarArg()) {
 | |
|       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
 | |
|            i != e; ++i)
 | |
|         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Resume:
 | |
|     Code = bitc::FUNC_CODE_INST_RESUME;
 | |
|     pushValueAndType(I.getOperand(0), InstID, Vals);
 | |
|     break;
 | |
|   case Instruction::CleanupRet: {
 | |
|     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
 | |
|     const auto &CRI = cast<CleanupReturnInst>(I);
 | |
|     pushValue(CRI.getCleanupPad(), InstID, Vals);
 | |
|     if (CRI.hasUnwindDest())
 | |
|       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::CatchRet: {
 | |
|     Code = bitc::FUNC_CODE_INST_CATCHRET;
 | |
|     const auto &CRI = cast<CatchReturnInst>(I);
 | |
|     pushValue(CRI.getCatchPad(), InstID, Vals);
 | |
|     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::CleanupPad:
 | |
|   case Instruction::CatchPad: {
 | |
|     const auto &FuncletPad = cast<FuncletPadInst>(I);
 | |
|     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
 | |
|                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
 | |
|     pushValue(FuncletPad.getParentPad(), InstID, Vals);
 | |
| 
 | |
|     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
 | |
|     Vals.push_back(NumArgOperands);
 | |
|     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
 | |
|       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::CatchSwitch: {
 | |
|     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
 | |
|     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
 | |
| 
 | |
|     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
 | |
| 
 | |
|     unsigned NumHandlers = CatchSwitch.getNumHandlers();
 | |
|     Vals.push_back(NumHandlers);
 | |
|     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
 | |
|       Vals.push_back(VE.getValueID(CatchPadBB));
 | |
| 
 | |
|     if (CatchSwitch.hasUnwindDest())
 | |
|       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Unreachable:
 | |
|     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
 | |
|     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::PHI: {
 | |
|     const PHINode &PN = cast<PHINode>(I);
 | |
|     Code = bitc::FUNC_CODE_INST_PHI;
 | |
|     // With the newer instruction encoding, forward references could give
 | |
|     // negative valued IDs.  This is most common for PHIs, so we use
 | |
|     // signed VBRs.
 | |
|     SmallVector<uint64_t, 128> Vals64;
 | |
|     Vals64.push_back(VE.getTypeID(PN.getType()));
 | |
|     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
 | |
|       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
 | |
|     }
 | |
|     // Emit a Vals64 vector and exit.
 | |
|     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
 | |
|     Vals64.clear();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Instruction::LandingPad: {
 | |
|     const LandingPadInst &LP = cast<LandingPadInst>(I);
 | |
|     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
 | |
|     Vals.push_back(VE.getTypeID(LP.getType()));
 | |
|     Vals.push_back(LP.isCleanup());
 | |
|     Vals.push_back(LP.getNumClauses());
 | |
|     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
 | |
|       if (LP.isCatch(I))
 | |
|         Vals.push_back(LandingPadInst::Catch);
 | |
|       else
 | |
|         Vals.push_back(LandingPadInst::Filter);
 | |
|       pushValueAndType(LP.getClause(I), InstID, Vals);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Alloca: {
 | |
|     Code = bitc::FUNC_CODE_INST_ALLOCA;
 | |
|     const AllocaInst &AI = cast<AllocaInst>(I);
 | |
|     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
 | |
|     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
 | |
|     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
 | |
|     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
 | |
|     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
 | |
|            "not enough bits for maximum alignment");
 | |
|     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
 | |
|     AlignRecord |= AI.isUsedWithInAlloca() << 5;
 | |
|     AlignRecord |= 1 << 6;
 | |
|     AlignRecord |= AI.isSwiftError() << 7;
 | |
|     Vals.push_back(AlignRecord);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Load:
 | |
|     if (cast<LoadInst>(I).isAtomic()) {
 | |
|       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
 | |
|       pushValueAndType(I.getOperand(0), InstID, Vals);
 | |
|     } else {
 | |
|       Code = bitc::FUNC_CODE_INST_LOAD;
 | |
|       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
 | |
|         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
 | |
|     }
 | |
|     Vals.push_back(VE.getTypeID(I.getType()));
 | |
|     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
 | |
|     Vals.push_back(cast<LoadInst>(I).isVolatile());
 | |
|     if (cast<LoadInst>(I).isAtomic()) {
 | |
|       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
 | |
|       Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Store:
 | |
|     if (cast<StoreInst>(I).isAtomic())
 | |
|       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
 | |
|     else
 | |
|       Code = bitc::FUNC_CODE_INST_STORE;
 | |
|     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
 | |
|     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
 | |
|     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
 | |
|     Vals.push_back(cast<StoreInst>(I).isVolatile());
 | |
|     if (cast<StoreInst>(I).isAtomic()) {
 | |
|       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
 | |
|       Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::AtomicCmpXchg:
 | |
|     Code = bitc::FUNC_CODE_INST_CMPXCHG;
 | |
|     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
 | |
|     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
 | |
|     pushValue(I.getOperand(2), InstID, Vals);        // newval.
 | |
|     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
 | |
|     Vals.push_back(
 | |
|         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
 | |
|     Vals.push_back(
 | |
|         getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
 | |
|     Vals.push_back(
 | |
|         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
 | |
|     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
 | |
|     break;
 | |
|   case Instruction::AtomicRMW:
 | |
|     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
 | |
|     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
 | |
|     pushValue(I.getOperand(1), InstID, Vals);        // val.
 | |
|     Vals.push_back(
 | |
|         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
 | |
|     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
 | |
|     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
 | |
|     Vals.push_back(
 | |
|         getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
 | |
|     break;
 | |
|   case Instruction::Fence:
 | |
|     Code = bitc::FUNC_CODE_INST_FENCE;
 | |
|     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
 | |
|     Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
 | |
|     break;
 | |
|   case Instruction::Call: {
 | |
|     const CallInst &CI = cast<CallInst>(I);
 | |
|     FunctionType *FTy = CI.getFunctionType();
 | |
| 
 | |
|     if (CI.hasOperandBundles())
 | |
|       writeOperandBundles(&CI, InstID);
 | |
| 
 | |
|     Code = bitc::FUNC_CODE_INST_CALL;
 | |
| 
 | |
|     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
 | |
| 
 | |
|     unsigned Flags = getOptimizationFlags(&I);
 | |
|     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
 | |
|                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
 | |
|                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
 | |
|                    1 << bitc::CALL_EXPLICIT_TYPE |
 | |
|                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
 | |
|                    unsigned(Flags != 0) << bitc::CALL_FMF);
 | |
|     if (Flags != 0)
 | |
|       Vals.push_back(Flags);
 | |
| 
 | |
|     Vals.push_back(VE.getTypeID(FTy));
 | |
|     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
 | |
| 
 | |
|     // Emit value #'s for the fixed parameters.
 | |
|     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
 | |
|       // Check for labels (can happen with asm labels).
 | |
|       if (FTy->getParamType(i)->isLabelTy())
 | |
|         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
 | |
|       else
 | |
|         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
 | |
|     }
 | |
| 
 | |
|     // Emit type/value pairs for varargs params.
 | |
|     if (FTy->isVarArg()) {
 | |
|       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
 | |
|            i != e; ++i)
 | |
|         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::VAArg:
 | |
|     Code = bitc::FUNC_CODE_INST_VAARG;
 | |
|     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
 | |
|     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
 | |
|     Vals.push_back(VE.getTypeID(I.getType())); // restype.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   Stream.EmitRecord(Code, Vals, AbbrevToUse);
 | |
|   Vals.clear();
 | |
| }
 | |
| 
 | |
| /// Emit names for globals/functions etc. \p IsModuleLevel is true when
 | |
| /// we are writing the module-level VST, where we are including a function
 | |
| /// bitcode index and need to backpatch the VST forward declaration record.
 | |
| void ModuleBitcodeWriter::writeValueSymbolTable(
 | |
|     const ValueSymbolTable &VST, bool IsModuleLevel,
 | |
|     DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) {
 | |
|   if (VST.empty()) {
 | |
|     // writeValueSymbolTableForwardDecl should have returned early as
 | |
|     // well. Ensure this handling remains in sync by asserting that
 | |
|     // the placeholder offset is not set.
 | |
|     assert(!IsModuleLevel || !hasVSTOffsetPlaceholder());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
 | |
|     // Get the offset of the VST we are writing, and backpatch it into
 | |
|     // the VST forward declaration record.
 | |
|     uint64_t VSTOffset = Stream.GetCurrentBitNo();
 | |
|     // The BitcodeStartBit was the stream offset of the actual bitcode
 | |
|     // (e.g. excluding any initial darwin header).
 | |
|     VSTOffset -= bitcodeStartBit();
 | |
|     assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
 | |
|     Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
 | |
|   }
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
 | |
| 
 | |
|   // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
 | |
|   // records, which are not used in the per-function VSTs.
 | |
|   unsigned FnEntry8BitAbbrev;
 | |
|   unsigned FnEntry7BitAbbrev;
 | |
|   unsigned FnEntry6BitAbbrev;
 | |
|   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
 | |
|     // 8-bit fixed-width VST_CODE_FNENTRY function strings.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
 | |
|     FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|     // 7-bit fixed width VST_CODE_FNENTRY function strings.
 | |
|     Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
 | |
|     FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|     // 6-bit char6 VST_CODE_FNENTRY function strings.
 | |
|     Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
 | |
|     FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
 | |
|   }
 | |
| 
 | |
|   // FIXME: Set up the abbrev, we know how many values there are!
 | |
|   // FIXME: We know if the type names can use 7-bit ascii.
 | |
|   SmallVector<unsigned, 64> NameVals;
 | |
| 
 | |
|   for (const ValueName &Name : VST) {
 | |
|     // Figure out the encoding to use for the name.
 | |
|     StringEncoding Bits =
 | |
|         getStringEncoding(Name.getKeyData(), Name.getKeyLength());
 | |
| 
 | |
|     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
 | |
|     NameVals.push_back(VE.getValueID(Name.getValue()));
 | |
| 
 | |
|     Function *F = dyn_cast<Function>(Name.getValue());
 | |
|     if (!F) {
 | |
|       // If value is an alias, need to get the aliased base object to
 | |
|       // see if it is a function.
 | |
|       auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
 | |
|       if (GA && GA->getBaseObject())
 | |
|         F = dyn_cast<Function>(GA->getBaseObject());
 | |
|     }
 | |
| 
 | |
|     // VST_CODE_ENTRY:   [valueid, namechar x N]
 | |
|     // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
 | |
|     // VST_CODE_BBENTRY: [bbid, namechar x N]
 | |
|     unsigned Code;
 | |
|     if (isa<BasicBlock>(Name.getValue())) {
 | |
|       Code = bitc::VST_CODE_BBENTRY;
 | |
|       if (Bits == SE_Char6)
 | |
|         AbbrevToUse = VST_BBENTRY_6_ABBREV;
 | |
|     } else if (F && !F->isDeclaration()) {
 | |
|       // Must be the module-level VST, where we pass in the Index and
 | |
|       // have a VSTOffsetPlaceholder. The function-level VST should not
 | |
|       // contain any Function symbols.
 | |
|       assert(FunctionToBitcodeIndex);
 | |
|       assert(hasVSTOffsetPlaceholder());
 | |
| 
 | |
|       // Save the word offset of the function (from the start of the
 | |
|       // actual bitcode written to the stream).
 | |
|       uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit();
 | |
|       assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
 | |
|       NameVals.push_back(BitcodeIndex / 32);
 | |
| 
 | |
|       Code = bitc::VST_CODE_FNENTRY;
 | |
|       AbbrevToUse = FnEntry8BitAbbrev;
 | |
|       if (Bits == SE_Char6)
 | |
|         AbbrevToUse = FnEntry6BitAbbrev;
 | |
|       else if (Bits == SE_Fixed7)
 | |
|         AbbrevToUse = FnEntry7BitAbbrev;
 | |
|     } else {
 | |
|       Code = bitc::VST_CODE_ENTRY;
 | |
|       if (Bits == SE_Char6)
 | |
|         AbbrevToUse = VST_ENTRY_6_ABBREV;
 | |
|       else if (Bits == SE_Fixed7)
 | |
|         AbbrevToUse = VST_ENTRY_7_ABBREV;
 | |
|     }
 | |
| 
 | |
|     for (const auto P : Name.getKey())
 | |
|       NameVals.push_back((unsigned char)P);
 | |
| 
 | |
|     // Emit the finished record.
 | |
|     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
 | |
|     NameVals.clear();
 | |
|   }
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| /// Emit function names and summary offsets for the combined index
 | |
| /// used by ThinLTO.
 | |
| void IndexBitcodeWriter::writeCombinedValueSymbolTable() {
 | |
|   assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder");
 | |
|   // Get the offset of the VST we are writing, and backpatch it into
 | |
|   // the VST forward declaration record.
 | |
|   uint64_t VSTOffset = Stream.GetCurrentBitNo();
 | |
|   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
 | |
|   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
 | |
| 
 | |
|   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
 | |
|   unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   SmallVector<uint64_t, 64> NameVals;
 | |
|   for (const auto &GVI : valueIds()) {
 | |
|     // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
 | |
|     NameVals.push_back(GVI.second);
 | |
|     NameVals.push_back(GVI.first);
 | |
| 
 | |
|     // Emit the finished record.
 | |
|     Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
 | |
|     NameVals.clear();
 | |
|   }
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
 | |
|   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
 | |
|   unsigned Code;
 | |
|   if (isa<BasicBlock>(Order.V))
 | |
|     Code = bitc::USELIST_CODE_BB;
 | |
|   else
 | |
|     Code = bitc::USELIST_CODE_DEFAULT;
 | |
| 
 | |
|   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
 | |
|   Record.push_back(VE.getValueID(Order.V));
 | |
|   Stream.EmitRecord(Code, Record);
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
 | |
|   assert(VE.shouldPreserveUseListOrder() &&
 | |
|          "Expected to be preserving use-list order");
 | |
| 
 | |
|   auto hasMore = [&]() {
 | |
|     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
 | |
|   };
 | |
|   if (!hasMore())
 | |
|     // Nothing to do.
 | |
|     return;
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
 | |
|   while (hasMore()) {
 | |
|     writeUseList(std::move(VE.UseListOrders.back()));
 | |
|     VE.UseListOrders.pop_back();
 | |
|   }
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| /// Emit a function body to the module stream.
 | |
| void ModuleBitcodeWriter::writeFunction(
 | |
|     const Function &F,
 | |
|     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
 | |
|   // Save the bitcode index of the start of this function block for recording
 | |
|   // in the VST.
 | |
|   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
 | |
|   VE.incorporateFunction(F);
 | |
| 
 | |
|   SmallVector<unsigned, 64> Vals;
 | |
| 
 | |
|   // Emit the number of basic blocks, so the reader can create them ahead of
 | |
|   // time.
 | |
|   Vals.push_back(VE.getBasicBlocks().size());
 | |
|   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
 | |
|   Vals.clear();
 | |
| 
 | |
|   // If there are function-local constants, emit them now.
 | |
|   unsigned CstStart, CstEnd;
 | |
|   VE.getFunctionConstantRange(CstStart, CstEnd);
 | |
|   writeConstants(CstStart, CstEnd, false);
 | |
| 
 | |
|   // If there is function-local metadata, emit it now.
 | |
|   writeFunctionMetadata(F);
 | |
| 
 | |
|   // Keep a running idea of what the instruction ID is.
 | |
|   unsigned InstID = CstEnd;
 | |
| 
 | |
|   bool NeedsMetadataAttachment = F.hasMetadata();
 | |
| 
 | |
|   DILocation *LastDL = nullptr;
 | |
|   // Finally, emit all the instructions, in order.
 | |
|   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
 | |
|          I != E; ++I) {
 | |
|       writeInstruction(*I, InstID, Vals);
 | |
| 
 | |
|       if (!I->getType()->isVoidTy())
 | |
|         ++InstID;
 | |
| 
 | |
|       // If the instruction has metadata, write a metadata attachment later.
 | |
|       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
 | |
| 
 | |
|       // If the instruction has a debug location, emit it.
 | |
|       DILocation *DL = I->getDebugLoc();
 | |
|       if (!DL)
 | |
|         continue;
 | |
| 
 | |
|       if (DL == LastDL) {
 | |
|         // Just repeat the same debug loc as last time.
 | |
|         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Vals.push_back(DL->getLine());
 | |
|       Vals.push_back(DL->getColumn());
 | |
|       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
 | |
|       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
 | |
|       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
 | |
|       Vals.clear();
 | |
| 
 | |
|       LastDL = DL;
 | |
|     }
 | |
| 
 | |
|   // Emit names for all the instructions etc.
 | |
|   writeValueSymbolTable(F.getValueSymbolTable());
 | |
| 
 | |
|   if (NeedsMetadataAttachment)
 | |
|     writeFunctionMetadataAttachment(F);
 | |
|   if (VE.shouldPreserveUseListOrder())
 | |
|     writeUseListBlock(&F);
 | |
|   VE.purgeFunction();
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| // Emit blockinfo, which defines the standard abbreviations etc.
 | |
| void ModuleBitcodeWriter::writeBlockInfo() {
 | |
|   // We only want to emit block info records for blocks that have multiple
 | |
|   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
 | |
|   // Other blocks can define their abbrevs inline.
 | |
|   Stream.EnterBlockInfoBlock(2);
 | |
| 
 | |
|   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
 | |
|         VST_ENTRY_8_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
| 
 | |
|   { // 7-bit fixed width VST_CODE_ENTRY strings.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
 | |
|         VST_ENTRY_7_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
|   { // 6-bit char6 VST_CODE_ENTRY strings.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
 | |
|         VST_ENTRY_6_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
|   { // 6-bit char6 VST_CODE_BBENTRY strings.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
 | |
|         VST_BBENTRY_6_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
| 
 | |
| 
 | |
| 
 | |
|   { // SETTYPE abbrev for CONSTANTS_BLOCK.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
 | |
|                               VE.computeBitsRequiredForTypeIndicies()));
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
 | |
|         CONSTANTS_SETTYPE_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
| 
 | |
|   { // INTEGER abbrev for CONSTANTS_BLOCK.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
 | |
|         CONSTANTS_INTEGER_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
| 
 | |
|   { // CE_CAST abbrev for CONSTANTS_BLOCK.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
 | |
|                               VE.computeBitsRequiredForTypeIndicies()));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
 | |
| 
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
 | |
|         CONSTANTS_CE_CAST_Abbrev)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
|   { // NULL abbrev for CONSTANTS_BLOCK.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
 | |
|         CONSTANTS_NULL_Abbrev)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
| 
 | |
|   // FIXME: This should only use space for first class types!
 | |
| 
 | |
|   { // INST_LOAD abbrev for FUNCTION_BLOCK.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
 | |
|                               VE.computeBitsRequiredForTypeIndicies()));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
 | |
|         FUNCTION_INST_LOAD_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
|   { // INST_BINOP abbrev for FUNCTION_BLOCK.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
 | |
|         FUNCTION_INST_BINOP_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
|   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
 | |
|         FUNCTION_INST_BINOP_FLAGS_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
|   { // INST_CAST abbrev for FUNCTION_BLOCK.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
 | |
|                               VE.computeBitsRequiredForTypeIndicies()));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
 | |
|         FUNCTION_INST_CAST_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
| 
 | |
|   { // INST_RET abbrev for FUNCTION_BLOCK.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
 | |
|         FUNCTION_INST_RET_VOID_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
|   { // INST_RET abbrev for FUNCTION_BLOCK.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
 | |
|         FUNCTION_INST_RET_VAL_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
|   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
 | |
|         FUNCTION_INST_UNREACHABLE_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
|   {
 | |
|     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
 | |
|                               Log2_32_Ceil(VE.getTypes().size() + 1)));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
 | |
|     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
 | |
|         FUNCTION_INST_GEP_ABBREV)
 | |
|       llvm_unreachable("Unexpected abbrev ordering!");
 | |
|   }
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| /// Write the module path strings, currently only used when generating
 | |
| /// a combined index file.
 | |
| void IndexBitcodeWriter::writeModStrings() {
 | |
|   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
 | |
| 
 | |
|   // TODO: See which abbrev sizes we actually need to emit
 | |
| 
 | |
|   // 8-bit fixed-width MST_ENTRY strings.
 | |
|   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
 | |
|   unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // 7-bit fixed width MST_ENTRY strings.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
 | |
|   unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // 6-bit char6 MST_ENTRY strings.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
 | |
|   unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
 | |
|   unsigned AbbrevHash = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   SmallVector<unsigned, 64> Vals;
 | |
|   for (const auto &MPSE : Index.modulePaths()) {
 | |
|     if (!doIncludeModule(MPSE.getKey()))
 | |
|       continue;
 | |
|     StringEncoding Bits =
 | |
|         getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
 | |
|     unsigned AbbrevToUse = Abbrev8Bit;
 | |
|     if (Bits == SE_Char6)
 | |
|       AbbrevToUse = Abbrev6Bit;
 | |
|     else if (Bits == SE_Fixed7)
 | |
|       AbbrevToUse = Abbrev7Bit;
 | |
| 
 | |
|     Vals.push_back(MPSE.getValue().first);
 | |
| 
 | |
|     for (const auto P : MPSE.getKey())
 | |
|       Vals.push_back((unsigned char)P);
 | |
| 
 | |
|     // Emit the finished record.
 | |
|     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
 | |
| 
 | |
|     Vals.clear();
 | |
|     // Emit an optional hash for the module now
 | |
|     auto &Hash = MPSE.getValue().second;
 | |
|     bool AllZero = true; // Detect if the hash is empty, and do not generate it
 | |
|     for (auto Val : Hash) {
 | |
|       if (Val)
 | |
|         AllZero = false;
 | |
|       Vals.push_back(Val);
 | |
|     }
 | |
|     if (!AllZero) {
 | |
|       // Emit the hash record.
 | |
|       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
 | |
|     }
 | |
| 
 | |
|     Vals.clear();
 | |
|   }
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| // Helper to emit a single function summary record.
 | |
| void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
 | |
|     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
 | |
|     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
 | |
|     const Function &F) {
 | |
|   NameVals.push_back(ValueID);
 | |
| 
 | |
|   FunctionSummary *FS = cast<FunctionSummary>(Summary);
 | |
|   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
 | |
|   NameVals.push_back(FS->instCount());
 | |
|   NameVals.push_back(FS->refs().size());
 | |
| 
 | |
|   unsigned SizeBeforeRefs = NameVals.size();
 | |
|   for (auto &RI : FS->refs())
 | |
|     NameVals.push_back(VE.getValueID(RI.getValue()));
 | |
|   // Sort the refs for determinism output, the vector returned by FS->refs() has
 | |
|   // been initialized from a DenseSet.
 | |
|   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
 | |
| 
 | |
|   std::vector<FunctionSummary::EdgeTy> Calls = FS->calls();
 | |
|   std::sort(Calls.begin(), Calls.end(),
 | |
|             [this](const FunctionSummary::EdgeTy &L,
 | |
|                    const FunctionSummary::EdgeTy &R) {
 | |
|               return VE.getValueID(L.first.getValue()) <
 | |
|                      VE.getValueID(R.first.getValue());
 | |
|             });
 | |
|   bool HasProfileData = F.getEntryCount().hasValue();
 | |
|   for (auto &ECI : Calls) {
 | |
|     NameVals.push_back(VE.getValueID(ECI.first.getValue()));
 | |
|     assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite");
 | |
|     NameVals.push_back(ECI.second.CallsiteCount);
 | |
|     if (HasProfileData)
 | |
|       NameVals.push_back(ECI.second.ProfileCount);
 | |
|   }
 | |
| 
 | |
|   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
 | |
|   unsigned Code =
 | |
|       (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
 | |
| 
 | |
|   // Emit the finished record.
 | |
|   Stream.EmitRecord(Code, NameVals, FSAbbrev);
 | |
|   NameVals.clear();
 | |
| }
 | |
| 
 | |
| // Collect the global value references in the given variable's initializer,
 | |
| // and emit them in a summary record.
 | |
| void ModuleBitcodeWriter::writeModuleLevelReferences(
 | |
|     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
 | |
|     unsigned FSModRefsAbbrev) {
 | |
|   // Only interested in recording variable defs in the summary.
 | |
|   if (V.isDeclaration())
 | |
|     return;
 | |
|   NameVals.push_back(VE.getValueID(&V));
 | |
|   NameVals.push_back(getEncodedGVSummaryFlags(V));
 | |
|   auto *Summary = Index->getGlobalValueSummary(V);
 | |
|   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
 | |
| 
 | |
|   unsigned SizeBeforeRefs = NameVals.size();
 | |
|   for (auto &RI : VS->refs())
 | |
|     NameVals.push_back(VE.getValueID(RI.getValue()));
 | |
|   // Sort the refs for determinism output, the vector returned by FS->refs() has
 | |
|   // been initialized from a DenseSet.
 | |
|   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
 | |
| 
 | |
|   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
 | |
|                     FSModRefsAbbrev);
 | |
|   NameVals.clear();
 | |
| }
 | |
| 
 | |
| // Current version for the summary.
 | |
| // This is bumped whenever we introduce changes in the way some record are
 | |
| // interpreted, like flags for instance.
 | |
| static const uint64_t INDEX_VERSION = 1;
 | |
| 
 | |
| /// Emit the per-module summary section alongside the rest of
 | |
| /// the module's bitcode.
 | |
| void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
 | |
|   if (Index->begin() == Index->end())
 | |
|     return;
 | |
| 
 | |
|   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
 | |
| 
 | |
|   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
 | |
| 
 | |
|   // Abbrev for FS_PERMODULE.
 | |
|   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
 | |
|   // numrefs x valueid, n x (valueid, callsitecount)
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Abbrev for FS_PERMODULE_PROFILE.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
 | |
|   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Abbrev for FS_ALIAS.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
 | |
|   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   SmallVector<uint64_t, 64> NameVals;
 | |
|   // Iterate over the list of functions instead of the Index to
 | |
|   // ensure the ordering is stable.
 | |
|   for (const Function &F : M) {
 | |
|     if (F.isDeclaration())
 | |
|       continue;
 | |
|     // Summary emission does not support anonymous functions, they have to
 | |
|     // renamed using the anonymous function renaming pass.
 | |
|     if (!F.hasName())
 | |
|       report_fatal_error("Unexpected anonymous function when writing summary");
 | |
| 
 | |
|     auto *Summary = Index->getGlobalValueSummary(F);
 | |
|     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
 | |
|                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
 | |
|   }
 | |
| 
 | |
|   // Capture references from GlobalVariable initializers, which are outside
 | |
|   // of a function scope.
 | |
|   for (const GlobalVariable &G : M.globals())
 | |
|     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
 | |
| 
 | |
|   for (const GlobalAlias &A : M.aliases()) {
 | |
|     auto *Aliasee = A.getBaseObject();
 | |
|     if (!Aliasee->hasName())
 | |
|       // Nameless function don't have an entry in the summary, skip it.
 | |
|       continue;
 | |
|     auto AliasId = VE.getValueID(&A);
 | |
|     auto AliaseeId = VE.getValueID(Aliasee);
 | |
|     NameVals.push_back(AliasId);
 | |
|     NameVals.push_back(getEncodedGVSummaryFlags(A));
 | |
|     NameVals.push_back(AliaseeId);
 | |
|     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
 | |
|     NameVals.clear();
 | |
|   }
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| /// Emit the combined summary section into the combined index file.
 | |
| void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
 | |
|   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
 | |
|   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
 | |
| 
 | |
|   // Abbrev for FS_COMBINED.
 | |
|   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
 | |
|   // numrefs x valueid, n x (valueid, callsitecount)
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Abbrev for FS_COMBINED_PROFILE.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
 | |
|   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
 | |
|   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // Abbrev for FS_COMBINED_ALIAS.
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
 | |
|   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
 | |
| 
 | |
|   // The aliases are emitted as a post-pass, and will point to the value
 | |
|   // id of the aliasee. Save them in a vector for post-processing.
 | |
|   SmallVector<AliasSummary *, 64> Aliases;
 | |
| 
 | |
|   // Save the value id for each summary for alias emission.
 | |
|   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
 | |
| 
 | |
|   SmallVector<uint64_t, 64> NameVals;
 | |
| 
 | |
|   // For local linkage, we also emit the original name separately
 | |
|   // immediately after the record.
 | |
|   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
 | |
|     if (!GlobalValue::isLocalLinkage(S.linkage()))
 | |
|       return;
 | |
|     NameVals.push_back(S.getOriginalName());
 | |
|     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
 | |
|     NameVals.clear();
 | |
|   };
 | |
| 
 | |
|   for (const auto &I : *this) {
 | |
|     GlobalValueSummary *S = I.second;
 | |
|     assert(S);
 | |
| 
 | |
|     assert(hasValueId(I.first));
 | |
|     unsigned ValueId = getValueId(I.first);
 | |
|     SummaryToValueIdMap[S] = ValueId;
 | |
| 
 | |
|     if (auto *AS = dyn_cast<AliasSummary>(S)) {
 | |
|       // Will process aliases as a post-pass because the reader wants all
 | |
|       // global to be loaded first.
 | |
|       Aliases.push_back(AS);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
 | |
|       NameVals.push_back(ValueId);
 | |
|       NameVals.push_back(Index.getModuleId(VS->modulePath()));
 | |
|       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
 | |
|       for (auto &RI : VS->refs()) {
 | |
|         NameVals.push_back(getValueId(RI.getGUID()));
 | |
|       }
 | |
| 
 | |
|       // Emit the finished record.
 | |
|       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
 | |
|                         FSModRefsAbbrev);
 | |
|       NameVals.clear();
 | |
|       MaybeEmitOriginalName(*S);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto *FS = cast<FunctionSummary>(S);
 | |
|     NameVals.push_back(ValueId);
 | |
|     NameVals.push_back(Index.getModuleId(FS->modulePath()));
 | |
|     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
 | |
|     NameVals.push_back(FS->instCount());
 | |
|     NameVals.push_back(FS->refs().size());
 | |
| 
 | |
|     for (auto &RI : FS->refs()) {
 | |
|       NameVals.push_back(getValueId(RI.getGUID()));
 | |
|     }
 | |
| 
 | |
|     bool HasProfileData = false;
 | |
|     for (auto &EI : FS->calls()) {
 | |
|       HasProfileData |= EI.second.ProfileCount != 0;
 | |
|       if (HasProfileData)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     for (auto &EI : FS->calls()) {
 | |
|       // If this GUID doesn't have a value id, it doesn't have a function
 | |
|       // summary and we don't need to record any calls to it.
 | |
|       if (!hasValueId(EI.first.getGUID()))
 | |
|         continue;
 | |
|       NameVals.push_back(getValueId(EI.first.getGUID()));
 | |
|       assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite");
 | |
|       NameVals.push_back(EI.second.CallsiteCount);
 | |
|       if (HasProfileData)
 | |
|         NameVals.push_back(EI.second.ProfileCount);
 | |
|     }
 | |
| 
 | |
|     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
 | |
|     unsigned Code =
 | |
|         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
 | |
| 
 | |
|     // Emit the finished record.
 | |
|     Stream.EmitRecord(Code, NameVals, FSAbbrev);
 | |
|     NameVals.clear();
 | |
|     MaybeEmitOriginalName(*S);
 | |
|   }
 | |
| 
 | |
|   for (auto *AS : Aliases) {
 | |
|     auto AliasValueId = SummaryToValueIdMap[AS];
 | |
|     assert(AliasValueId);
 | |
|     NameVals.push_back(AliasValueId);
 | |
|     NameVals.push_back(Index.getModuleId(AS->modulePath()));
 | |
|     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
 | |
|     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
 | |
|     assert(AliaseeValueId);
 | |
|     NameVals.push_back(AliaseeValueId);
 | |
| 
 | |
|     // Emit the finished record.
 | |
|     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
 | |
|     NameVals.clear();
 | |
|     MaybeEmitOriginalName(*AS);
 | |
|   }
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeIdentificationBlock() {
 | |
|   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
 | |
| 
 | |
|   // Write the "user readable" string identifying the bitcode producer
 | |
|   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
 | |
|   auto StringAbbrev = Stream.EmitAbbrev(Abbv);
 | |
|   writeStringRecord(bitc::IDENTIFICATION_CODE_STRING,
 | |
|                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
 | |
| 
 | |
|   // Write the epoch version
 | |
|   Abbv = new BitCodeAbbrev();
 | |
|   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
 | |
|   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
 | |
|   auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
 | |
|   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
 | |
|   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
 | |
|   // Emit the module's hash.
 | |
|   // MODULE_CODE_HASH: [5*i32]
 | |
|   SHA1 Hasher;
 | |
|   Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
 | |
|                                   Buffer.size() - BlockStartPos));
 | |
|   auto Hash = Hasher.result();
 | |
|   SmallVector<uint64_t, 20> Vals;
 | |
|   auto LShift = [&](unsigned char Val, unsigned Amount)
 | |
|                     -> uint64_t { return ((uint64_t)Val) << Amount; };
 | |
|   for (int Pos = 0; Pos < 20; Pos += 4) {
 | |
|     uint32_t SubHash = LShift(Hash[Pos + 0], 24);
 | |
|     SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) |
 | |
|                (unsigned)(unsigned char)Hash[Pos + 3];
 | |
|     Vals.push_back(SubHash);
 | |
|   }
 | |
| 
 | |
|   // Emit the finished record.
 | |
|   Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
 | |
| }
 | |
| 
 | |
| void BitcodeWriter::write() {
 | |
|   // Emit the file header first.
 | |
|   writeBitcodeHeader();
 | |
| 
 | |
|   writeBlocks();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeBlocks() {
 | |
|   writeIdentificationBlock();
 | |
|   writeModule();
 | |
| }
 | |
| 
 | |
| void IndexBitcodeWriter::writeBlocks() {
 | |
|   // Index contains only a single outer (module) block.
 | |
|   writeIndex();
 | |
| }
 | |
| 
 | |
| void ModuleBitcodeWriter::writeModule() {
 | |
|   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
 | |
|   size_t BlockStartPos = Buffer.size();
 | |
| 
 | |
|   SmallVector<unsigned, 1> Vals;
 | |
|   unsigned CurVersion = 1;
 | |
|   Vals.push_back(CurVersion);
 | |
|   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
 | |
| 
 | |
|   // Emit blockinfo, which defines the standard abbreviations etc.
 | |
|   writeBlockInfo();
 | |
| 
 | |
|   // Emit information about attribute groups.
 | |
|   writeAttributeGroupTable();
 | |
| 
 | |
|   // Emit information about parameter attributes.
 | |
|   writeAttributeTable();
 | |
| 
 | |
|   // Emit information describing all of the types in the module.
 | |
|   writeTypeTable();
 | |
| 
 | |
|   writeComdats();
 | |
| 
 | |
|   // Emit top-level description of module, including target triple, inline asm,
 | |
|   // descriptors for global variables, and function prototype info.
 | |
|   writeModuleInfo();
 | |
| 
 | |
|   // Emit constants.
 | |
|   writeModuleConstants();
 | |
| 
 | |
|   // Emit metadata kind names.
 | |
|   writeModuleMetadataKinds();
 | |
| 
 | |
|   // Emit metadata.
 | |
|   writeModuleMetadata();
 | |
| 
 | |
|   // Emit module-level use-lists.
 | |
|   if (VE.shouldPreserveUseListOrder())
 | |
|     writeUseListBlock(nullptr);
 | |
| 
 | |
|   writeOperandBundleTags();
 | |
| 
 | |
|   // Emit function bodies.
 | |
|   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
 | |
|   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
 | |
|     if (!F->isDeclaration())
 | |
|       writeFunction(*F, FunctionToBitcodeIndex);
 | |
| 
 | |
|   // Need to write after the above call to WriteFunction which populates
 | |
|   // the summary information in the index.
 | |
|   if (Index)
 | |
|     writePerModuleGlobalValueSummary();
 | |
| 
 | |
|   writeValueSymbolTable(M.getValueSymbolTable(),
 | |
|                         /* IsModuleLevel */ true, &FunctionToBitcodeIndex);
 | |
| 
 | |
|   if (GenerateHash) {
 | |
|     writeModuleHash(BlockStartPos);
 | |
|   }
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
 | |
|                                uint32_t &Position) {
 | |
|   support::endian::write32le(&Buffer[Position], Value);
 | |
|   Position += 4;
 | |
| }
 | |
| 
 | |
| /// If generating a bc file on darwin, we have to emit a
 | |
| /// header and trailer to make it compatible with the system archiver.  To do
 | |
| /// this we emit the following header, and then emit a trailer that pads the
 | |
| /// file out to be a multiple of 16 bytes.
 | |
| ///
 | |
| /// struct bc_header {
 | |
| ///   uint32_t Magic;         // 0x0B17C0DE
 | |
| ///   uint32_t Version;       // Version, currently always 0.
 | |
| ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
 | |
| ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
 | |
| ///   uint32_t CPUType;       // CPU specifier.
 | |
| ///   ... potentially more later ...
 | |
| /// };
 | |
| static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
 | |
|                                          const Triple &TT) {
 | |
|   unsigned CPUType = ~0U;
 | |
| 
 | |
|   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
 | |
|   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
 | |
|   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
 | |
|   // specific constants here because they are implicitly part of the Darwin ABI.
 | |
|   enum {
 | |
|     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
 | |
|     DARWIN_CPU_TYPE_X86        = 7,
 | |
|     DARWIN_CPU_TYPE_ARM        = 12,
 | |
|     DARWIN_CPU_TYPE_POWERPC    = 18
 | |
|   };
 | |
| 
 | |
|   Triple::ArchType Arch = TT.getArch();
 | |
|   if (Arch == Triple::x86_64)
 | |
|     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
 | |
|   else if (Arch == Triple::x86)
 | |
|     CPUType = DARWIN_CPU_TYPE_X86;
 | |
|   else if (Arch == Triple::ppc)
 | |
|     CPUType = DARWIN_CPU_TYPE_POWERPC;
 | |
|   else if (Arch == Triple::ppc64)
 | |
|     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
 | |
|   else if (Arch == Triple::arm || Arch == Triple::thumb)
 | |
|     CPUType = DARWIN_CPU_TYPE_ARM;
 | |
| 
 | |
|   // Traditional Bitcode starts after header.
 | |
|   assert(Buffer.size() >= BWH_HeaderSize &&
 | |
|          "Expected header size to be reserved");
 | |
|   unsigned BCOffset = BWH_HeaderSize;
 | |
|   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
 | |
| 
 | |
|   // Write the magic and version.
 | |
|   unsigned Position = 0;
 | |
|   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
 | |
|   writeInt32ToBuffer(0, Buffer, Position); // Version.
 | |
|   writeInt32ToBuffer(BCOffset, Buffer, Position);
 | |
|   writeInt32ToBuffer(BCSize, Buffer, Position);
 | |
|   writeInt32ToBuffer(CPUType, Buffer, Position);
 | |
| 
 | |
|   // If the file is not a multiple of 16 bytes, insert dummy padding.
 | |
|   while (Buffer.size() & 15)
 | |
|     Buffer.push_back(0);
 | |
| }
 | |
| 
 | |
| /// Helper to write the header common to all bitcode files.
 | |
| void BitcodeWriter::writeBitcodeHeader() {
 | |
|   // Emit the file header.
 | |
|   Stream.Emit((unsigned)'B', 8);
 | |
|   Stream.Emit((unsigned)'C', 8);
 | |
|   Stream.Emit(0x0, 4);
 | |
|   Stream.Emit(0xC, 4);
 | |
|   Stream.Emit(0xE, 4);
 | |
|   Stream.Emit(0xD, 4);
 | |
| }
 | |
| 
 | |
| /// WriteBitcodeToFile - Write the specified module to the specified output
 | |
| /// stream.
 | |
| void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
 | |
|                               bool ShouldPreserveUseListOrder,
 | |
|                               const ModuleSummaryIndex *Index,
 | |
|                               bool GenerateHash) {
 | |
|   SmallVector<char, 0> Buffer;
 | |
|   Buffer.reserve(256*1024);
 | |
| 
 | |
|   // If this is darwin or another generic macho target, reserve space for the
 | |
|   // header.
 | |
|   Triple TT(M->getTargetTriple());
 | |
|   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
 | |
|     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
 | |
| 
 | |
|   // Emit the module into the buffer.
 | |
|   ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index,
 | |
|                                    GenerateHash);
 | |
|   ModuleWriter.write();
 | |
| 
 | |
|   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
 | |
|     emitDarwinBCHeaderAndTrailer(Buffer, TT);
 | |
| 
 | |
|   // Write the generated bitstream to "Out".
 | |
|   Out.write((char*)&Buffer.front(), Buffer.size());
 | |
| }
 | |
| 
 | |
| void IndexBitcodeWriter::writeIndex() {
 | |
|   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
 | |
| 
 | |
|   SmallVector<unsigned, 1> Vals;
 | |
|   unsigned CurVersion = 1;
 | |
|   Vals.push_back(CurVersion);
 | |
|   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
 | |
| 
 | |
|   // If we have a VST, write the VSTOFFSET record placeholder.
 | |
|   writeValueSymbolTableForwardDecl();
 | |
| 
 | |
|   // Write the module paths in the combined index.
 | |
|   writeModStrings();
 | |
| 
 | |
|   // Write the summary combined index records.
 | |
|   writeCombinedGlobalValueSummary();
 | |
| 
 | |
|   // Need a special VST writer for the combined index (we don't have a
 | |
|   // real VST and real values when this is invoked).
 | |
|   writeCombinedValueSymbolTable();
 | |
| 
 | |
|   Stream.ExitBlock();
 | |
| }
 | |
| 
 | |
| // Write the specified module summary index to the given raw output stream,
 | |
| // where it will be written in a new bitcode block. This is used when
 | |
| // writing the combined index file for ThinLTO. When writing a subset of the
 | |
| // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
 | |
| void llvm::WriteIndexToFile(
 | |
|     const ModuleSummaryIndex &Index, raw_ostream &Out,
 | |
|     std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
 | |
|   SmallVector<char, 0> Buffer;
 | |
|   Buffer.reserve(256 * 1024);
 | |
| 
 | |
|   IndexBitcodeWriter IndexWriter(Buffer, Index, ModuleToSummariesForIndex);
 | |
|   IndexWriter.write();
 | |
| 
 | |
|   Out.write((char *)&Buffer.front(), Buffer.size());
 | |
| }
 |