1058 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1058 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright 2019 Google Inc.
 | |
|  *
 | |
|  * Use of this source code is governed by a BSD-style license that can be
 | |
|  * found in the LICENSE file.
 | |
|  */
 | |
| 
 | |
| // This test only works with the GPU backend.
 | |
| 
 | |
| #include "gm/gm.h"
 | |
| #include "include/core/SkBitmap.h"
 | |
| #include "include/core/SkBlendMode.h"
 | |
| #include "include/core/SkCanvas.h"
 | |
| #include "include/core/SkColor.h"
 | |
| #include "include/core/SkColorFilter.h"
 | |
| #include "include/core/SkData.h"
 | |
| #include "include/core/SkFont.h"
 | |
| #include "include/core/SkImage.h"
 | |
| #include "include/core/SkImageFilter.h"
 | |
| #include "include/core/SkImageInfo.h"
 | |
| #include "include/core/SkMaskFilter.h"
 | |
| #include "include/core/SkMatrix.h"
 | |
| #include "include/core/SkPaint.h"
 | |
| #include "include/core/SkPoint.h"
 | |
| #include "include/core/SkRect.h"
 | |
| #include "include/core/SkRefCnt.h"
 | |
| #include "include/core/SkScalar.h"
 | |
| #include "include/core/SkShader.h"
 | |
| #include "include/core/SkSize.h"
 | |
| #include "include/core/SkString.h"
 | |
| #include "include/core/SkTileMode.h"
 | |
| #include "include/core/SkTypeface.h"
 | |
| #include "include/core/SkTypes.h"
 | |
| #include "include/effects/SkColorMatrix.h"
 | |
| #include "include/effects/SkGradientShader.h"
 | |
| #include "include/effects/SkImageFilters.h"
 | |
| #include "include/effects/SkShaderMaskFilter.h"
 | |
| #include "include/private/SkTArray.h"
 | |
| #include "src/core/SkLineClipper.h"
 | |
| #include "tools/Resources.h"
 | |
| #include "tools/ToolUtils.h"
 | |
| #include "tools/gpu/YUVUtils.h"
 | |
| 
 | |
| #include <array>
 | |
| #include <memory>
 | |
| #include <utility>
 | |
| 
 | |
| class ClipTileRenderer;
 | |
| using ClipTileRendererArray = SkTArray<sk_sp<ClipTileRenderer>>;
 | |
| 
 | |
| // This GM mimics the draw calls used by complex compositors that focus on drawing rectangles
 | |
| // and quadrilaterals with per-edge AA, with complex images, effects, and seamless tiling.
 | |
| // It will be updated to reflect the patterns seen in Chromium's SkiaRenderer. It is currently
 | |
| // restricted to adding draw ops directly in Ganesh since there is no fully-specified public API.
 | |
| static constexpr SkScalar kTileWidth = 40;
 | |
| static constexpr SkScalar kTileHeight = 30;
 | |
| 
 | |
| static constexpr int kRowCount = 4;
 | |
| static constexpr int kColCount = 3;
 | |
| 
 | |
| // To mimic Chromium's BSP clipping strategy, a set of three lines formed by triangle edges
 | |
| // of the below points are used to clip against the regular tile grid. The tile grid occupies
 | |
| // a 120 x 120 rectangle (40px * 3 cols by 30px * 4 rows).
 | |
| static constexpr SkPoint kClipP1 = {1.75f * kTileWidth, 0.8f * kTileHeight};
 | |
| static constexpr SkPoint kClipP2 = {0.6f * kTileWidth, 2.f * kTileHeight};
 | |
| static constexpr SkPoint kClipP3 = {2.9f * kTileWidth, 3.5f * kTileHeight};
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // Utilities for operating on lines and tiles
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // p0 and p1 form a segment contained the tile grid, so extends them by a large enough margin
 | |
| // that the output points stored in 'line' are outside the tile grid (thus effectively infinite).
 | |
| static void clipping_line_segment(const SkPoint& p0, const SkPoint& p1, SkPoint line[2]) {
 | |
|     SkVector v = p1 - p0;
 | |
|     // 10f was chosen as a balance between large enough to scale the currently set clip
 | |
|     // points outside of the tile grid, but small enough to preserve precision.
 | |
|     line[0] = p0 - v * 10.f;
 | |
|     line[1] = p1 + v * 10.f;
 | |
| }
 | |
| 
 | |
| // Returns true if line segment (p0-p1) intersects with line segment (l0-l1); if true is returned,
 | |
| // the intersection point is stored in 'intersect'.
 | |
| static bool intersect_line_segments(const SkPoint& p0, const SkPoint& p1,
 | |
|                                     const SkPoint& l0, const SkPoint& l1, SkPoint* intersect) {
 | |
|     static constexpr SkScalar kHorizontalTolerance = 0.01f; // Pretty conservative
 | |
| 
 | |
|     // Use doubles for accuracy, since the clipping strategy used below can create T
 | |
|     // junctions, and lower precision could artificially create gaps
 | |
|     double pY = (double) p1.fY - (double) p0.fY;
 | |
|     double pX = (double) p1.fX - (double) p0.fX;
 | |
|     double lY = (double) l1.fY - (double) l0.fY;
 | |
|     double lX = (double) l1.fX - (double) l0.fX;
 | |
|     double plY = (double) p0.fY - (double) l0.fY;
 | |
|     double plX = (double) p0.fX - (double) l0.fX;
 | |
|     if (SkScalarNearlyZero(pY, kHorizontalTolerance)) {
 | |
|         if (SkScalarNearlyZero(lY, kHorizontalTolerance)) {
 | |
|             // Two horizontal lines
 | |
|             return false;
 | |
|         } else {
 | |
|             // Recalculate but swap p and l
 | |
|             return intersect_line_segments(l0, l1, p0, p1, intersect);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Up to now, the line segments do not form an invalid intersection
 | |
|     double lNumerator = plX * pY - plY * pX;
 | |
|     double lDenom = lX * pY - lY * pX;
 | |
|     if (SkScalarNearlyZero(lDenom)) {
 | |
|         // Parallel or identical
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Calculate alphaL that provides the intersection point along (l0-l1), e.g. l0+alphaL*(l1-l0)
 | |
|     double alphaL = lNumerator / lDenom;
 | |
|     if (alphaL < 0.0 || alphaL > 1.0) {
 | |
|         // Outside of the l segment
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Calculate alphaP from the valid alphaL (since it could be outside p segment)
 | |
|     // double alphaP = (alphaL * l.fY - pl.fY) / p.fY;
 | |
|     double alphaP = (alphaL * lY - plY) / pY;
 | |
|     if (alphaP < 0.0 || alphaP > 1.0) {
 | |
|         // Outside of p segment
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Is valid, so calculate the actual intersection point
 | |
|     *intersect = l1 * SkScalar(alphaL) + l0 * SkScalar(1.0 - alphaL);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // Draw a line through the two points, outset by a fixed length in screen space
 | |
| static void draw_outset_line(SkCanvas* canvas, const SkMatrix& local, const SkPoint pts[2],
 | |
|                              const SkPaint& paint) {
 | |
|     static constexpr SkScalar kLineOutset = 10.f;
 | |
|     SkPoint mapped[2];
 | |
|     local.mapPoints(mapped, pts, 2);
 | |
|     SkVector v = mapped[1] - mapped[0];
 | |
|     v.setLength(v.length() + kLineOutset);
 | |
|     canvas->drawLine(mapped[1] - v, mapped[0] + v, paint);
 | |
| }
 | |
| 
 | |
| // Draw grid of red lines at interior tile boundaries.
 | |
| static void draw_tile_boundaries(SkCanvas* canvas, const SkMatrix& local) {
 | |
|     SkPaint paint;
 | |
|     paint.setAntiAlias(true);
 | |
|     paint.setColor(SK_ColorRED);
 | |
|     paint.setStyle(SkPaint::kStroke_Style);
 | |
|     paint.setStrokeWidth(0.f);
 | |
|     for (int x = 1; x < kColCount; ++x) {
 | |
|         SkPoint pts[] = {{x * kTileWidth, 0}, {x * kTileWidth, kRowCount * kTileHeight}};
 | |
|         draw_outset_line(canvas, local, pts, paint);
 | |
|     }
 | |
|     for (int y = 1; y < kRowCount; ++y) {
 | |
|         SkPoint pts[] = {{0, y * kTileHeight}, {kTileWidth * kColCount, y * kTileHeight}};
 | |
|         draw_outset_line(canvas, local, pts, paint);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Draw the arbitrary clipping/split boundaries that intersect the tile grid as green lines
 | |
| static void draw_clipping_boundaries(SkCanvas* canvas, const SkMatrix& local) {
 | |
|     SkPaint paint;
 | |
|     paint.setAntiAlias(true);
 | |
|     paint.setColor(SK_ColorGREEN);
 | |
|     paint.setStyle(SkPaint::kStroke_Style);
 | |
|     paint.setStrokeWidth(0.f);
 | |
| 
 | |
|     // Clip the "infinite" line segments to a rectangular region outside the tile grid
 | |
|     SkRect border = SkRect::MakeWH(kTileWidth * kColCount, kTileHeight * kRowCount);
 | |
| 
 | |
|     // Draw p1 to p2
 | |
|     SkPoint line[2];
 | |
|     SkPoint clippedLine[2];
 | |
|     clipping_line_segment(kClipP1, kClipP2, line);
 | |
|     SkAssertResult(SkLineClipper::IntersectLine(line, border, clippedLine));
 | |
|     draw_outset_line(canvas, local, clippedLine, paint);
 | |
| 
 | |
|     // Draw p2 to p3
 | |
|     clipping_line_segment(kClipP2, kClipP3, line);
 | |
|     SkAssertResult(SkLineClipper::IntersectLine(line, border, clippedLine));
 | |
|     draw_outset_line(canvas, local, clippedLine, paint);
 | |
| 
 | |
|     // Draw p3 to p1
 | |
|     clipping_line_segment(kClipP3, kClipP1, line);
 | |
|     SkAssertResult(SkLineClipper::IntersectLine(line, border, clippedLine));
 | |
|     draw_outset_line(canvas, local, clippedLine, paint);
 | |
| }
 | |
| 
 | |
| static void draw_text(SkCanvas* canvas, const char* text) {
 | |
|     SkFont font(ToolUtils::create_portable_typeface(), 12);
 | |
|     canvas->drawString(text, 0, 0, font, SkPaint());
 | |
| }
 | |
| 
 | |
| /////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // Abstraction for rendering a possibly clipped tile, that can apply different effects to mimic
 | |
| // the Chromium quad types, and a generic GM template to arrange renderers x transforms in a grid
 | |
| /////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| class ClipTileRenderer : public SkRefCntBase {
 | |
| public:
 | |
|     // Draw the base rect, possibly clipped by 'clip' if that is not null. The edges to antialias
 | |
|     // are specified in 'edgeAA' (to make manipulation easier than an unsigned bitfield). 'tileID'
 | |
|     // represents the location of rect within the tile grid, 'quadID' is the unique ID of the clip
 | |
|     // region within the tile (reset for each tile).
 | |
|     //
 | |
|     // The edgeAA order matches that of clip, so it refers to top, right, bottom, left.
 | |
|     // Return draw count
 | |
|     virtual int drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4],
 | |
|                           const bool edgeAA[4], int tileID, int quadID) = 0;
 | |
| 
 | |
|     virtual void drawBanner(SkCanvas* canvas) = 0;
 | |
| 
 | |
|     // Return draw count
 | |
|     virtual int drawTiles(SkCanvas* canvas) {
 | |
|         // All three lines in a list
 | |
|         SkPoint lines[6];
 | |
|         clipping_line_segment(kClipP1, kClipP2, lines);
 | |
|         clipping_line_segment(kClipP2, kClipP3, lines + 2);
 | |
|         clipping_line_segment(kClipP3, kClipP1, lines + 4);
 | |
| 
 | |
|         bool edgeAA[4];
 | |
|         int tileID = 0;
 | |
|         int drawCount = 0;
 | |
|         for (int i = 0; i < kRowCount; ++i) {
 | |
|             for (int j = 0; j < kColCount; ++j) {
 | |
|                 // The unclipped tile geometry
 | |
|                 SkRect tile = SkRect::MakeXYWH(j * kTileWidth, i * kTileHeight,
 | |
|                                                kTileWidth, kTileHeight);
 | |
|                 // Base edge AA flags if there are no clips; clipped lines will only turn off edges
 | |
|                 edgeAA[0] = i == 0;             // Top
 | |
|                 edgeAA[1] = j == kColCount - 1; // Right
 | |
|                 edgeAA[2] = i == kRowCount - 1; // Bottom
 | |
|                 edgeAA[3] = j == 0;             // Left
 | |
| 
 | |
|                 // Now clip against the 3 lines formed by kClipPx and split into general purpose
 | |
|                 // quads as needed.
 | |
|                 int quadCount = 0;
 | |
|                 drawCount += this->clipTile(canvas, tileID, tile, nullptr, edgeAA, lines, 3,
 | |
|                                             &quadCount);
 | |
|                 tileID++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return drawCount;
 | |
|     }
 | |
| 
 | |
| protected:
 | |
|     SkCanvas::QuadAAFlags maskToFlags(const bool edgeAA[4]) const {
 | |
|         unsigned flags = (edgeAA[0] * SkCanvas::kTop_QuadAAFlag) |
 | |
|                          (edgeAA[1] * SkCanvas::kRight_QuadAAFlag) |
 | |
|                          (edgeAA[2] * SkCanvas::kBottom_QuadAAFlag) |
 | |
|                          (edgeAA[3] * SkCanvas::kLeft_QuadAAFlag);
 | |
|         return static_cast<SkCanvas::QuadAAFlags>(flags);
 | |
|     }
 | |
| 
 | |
|     // Recursively splits the quadrilateral against the segments stored in 'lines', which must be
 | |
|     // 2 * lineCount long. Increments 'quadCount' for each split quadrilateral, and invokes the
 | |
|     // drawTile at leaves.
 | |
|     int clipTile(SkCanvas* canvas, int tileID, const SkRect& baseRect, const SkPoint quad[4],
 | |
|                   const bool edgeAA[4], const SkPoint lines[], int lineCount, int* quadCount) {
 | |
|         if (lineCount == 0) {
 | |
|             // No lines, so end recursion by drawing the tile. If the tile was never split then
 | |
|             // 'quad' remains null so that drawTile() can differentiate how it should draw.
 | |
|             int draws = this->drawTile(canvas, baseRect, quad, edgeAA, tileID, *quadCount);
 | |
|             *quadCount = *quadCount + 1;
 | |
|             return draws;
 | |
|         }
 | |
| 
 | |
|         static constexpr int kTL = 0; // Top-left point index in points array
 | |
|         static constexpr int kTR = 1; // Top-right point index in points array
 | |
|         static constexpr int kBR = 2; // Bottom-right point index in points array
 | |
|         static constexpr int kBL = 3; // Bottom-left point index in points array
 | |
|         static constexpr int kS0 = 4; // First split point index in points array
 | |
|         static constexpr int kS1 = 5; // Second split point index in points array
 | |
| 
 | |
|         SkPoint points[6];
 | |
|         if (quad) {
 | |
|             // Copy the original 4 points into set of points to consider
 | |
|             for (int i = 0; i < 4; ++i) {
 | |
|                 points[i] = quad[i];
 | |
|             }
 | |
|         } else {
 | |
|             //  Haven't been split yet, so fill in based on the rect
 | |
|             baseRect.toQuad(points);
 | |
|         }
 | |
| 
 | |
|         // Consider the first line against the 4 quad edges in tile, which should have 0,1, or 2
 | |
|         // intersection points since the tile is convex.
 | |
|         int splitIndices[2]; // Edge that was intersected
 | |
|         int intersectionCount = 0;
 | |
|         for (int i = 0; i < 4; ++i) {
 | |
|             SkPoint intersect;
 | |
|             if (intersect_line_segments(points[i], points[i == 3 ? 0 : i + 1],
 | |
|                                         lines[0], lines[1], &intersect)) {
 | |
|                 // If the intersected point is the same as the last found intersection, the line
 | |
|                 // runs through a vertex, so don't double count it
 | |
|                 bool duplicate = false;
 | |
|                 for (int j = 0; j < intersectionCount; ++j) {
 | |
|                     if (SkScalarNearlyZero((intersect - points[kS0 + j]).length())) {
 | |
|                         duplicate = true;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if (!duplicate) {
 | |
|                     points[kS0 + intersectionCount] = intersect;
 | |
|                     splitIndices[intersectionCount] = i;
 | |
|                     intersectionCount++;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (intersectionCount < 2) {
 | |
|             // Either the first line never intersected the quad (count == 0), or it intersected at a
 | |
|             // single vertex without going through quad area (count == 1), so check next line
 | |
|             return this->clipTile(
 | |
|                     canvas, tileID, baseRect, quad, edgeAA, lines + 2, lineCount - 1, quadCount);
 | |
|         }
 | |
| 
 | |
|         SkASSERT(intersectionCount == 2);
 | |
|         // Split the tile points into 2+ sub quads and recurse to the next lines, which may or may
 | |
|         // not further split the tile. Since the configurations are relatively simple, the possible
 | |
|         // splits are hardcoded below; subtile quad orderings are such that the sub tiles remain in
 | |
|         // clockwise order and match expected edges for QuadAAFlags. subtile indices refer to the
 | |
|         // 6-element 'points' array.
 | |
|         SkSTArray<3, std::array<int, 4>> subtiles;
 | |
|         int s2 = -1; // Index of an original vertex chosen for a artificial split
 | |
|         if (splitIndices[1] - splitIndices[0] == 2) {
 | |
|             // Opposite edges, so the split trivially forms 2 sub quads
 | |
|             if (splitIndices[0] == 0) {
 | |
|                 subtiles.push_back({{kTL, kS0, kS1, kBL}});
 | |
|                 subtiles.push_back({{kS0, kTR, kBR, kS1}});
 | |
|             } else {
 | |
|                 subtiles.push_back({{kTL, kTR, kS0, kS1}});
 | |
|                 subtiles.push_back({{kS1, kS0, kBR, kBL}});
 | |
|             }
 | |
|         } else {
 | |
|             // Adjacent edges, which makes for a more complicated split, since it forms a degenerate
 | |
|             // quad (triangle) and a pentagon that must be artificially split. The pentagon is split
 | |
|             // using one of the original vertices (remembered in 's2'), which adds an additional
 | |
|             // degenerate quad, but ensures there are no T-junctions.
 | |
|             switch(splitIndices[0]) {
 | |
|                 case 0:
 | |
|                     // Could be connected to edge 1 or edge 3
 | |
|                     if (splitIndices[1] == 1) {
 | |
|                         s2 = kBL;
 | |
|                         subtiles.push_back({{kS0, kTR, kS1, kS0}}); // degenerate
 | |
|                         subtiles.push_back({{kTL, kS0, edgeAA[0] ? kS0 : kBL, kBL}}); // degenerate
 | |
|                         subtiles.push_back({{kS0, kS1, kBR, kBL}});
 | |
|                     } else {
 | |
|                         SkASSERT(splitIndices[1] == 3);
 | |
|                         s2 = kBR;
 | |
|                         subtiles.push_back({{kTL, kS0, kS1, kS1}}); // degenerate
 | |
|                         subtiles.push_back({{kS1, edgeAA[3] ? kS1 : kBR, kBR, kBL}}); // degenerate
 | |
|                         subtiles.push_back({{kS0, kTR, kBR, kS1}});
 | |
|                     }
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     // Edge 0 handled above, should only be connected to edge 2
 | |
|                     SkASSERT(splitIndices[1] == 2);
 | |
|                     s2 = kTL;
 | |
|                     subtiles.push_back({{kS0, kS0, kBR, kS1}}); // degenerate
 | |
|                     subtiles.push_back({{kTL, kTR, kS0, edgeAA[1] ? kS0 : kTL}}); // degenerate
 | |
|                     subtiles.push_back({{kTL, kS0, kS1, kBL}});
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     // Edge 1 handled above, should only be connected to edge 3
 | |
|                     SkASSERT(splitIndices[1] == 3);
 | |
|                     s2 = kTR;
 | |
|                     subtiles.push_back({{kS1, kS0, kS0, kBL}}); // degenerate
 | |
|                     subtiles.push_back({{edgeAA[2] ? kS0 : kTR, kTR, kBR, kS0}}); // degenerate
 | |
|                     subtiles.push_back({{kTL, kTR, kS0, kS1}});
 | |
|                     break;
 | |
|                 case 3:
 | |
|                     // Fall through, an adjacent edge split that hits edge 3 should have first found
 | |
|                     // been found with edge 0 or edge 2 for the other end
 | |
|                 default:
 | |
|                     SkASSERT(false);
 | |
|                     return 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         SkPoint sub[4];
 | |
|         bool subAA[4];
 | |
|         int draws = 0;
 | |
|         for (int i = 0; i < subtiles.count(); ++i) {
 | |
|             // Fill in the quad points and update edge AA rules for new interior edges
 | |
|             for (int j = 0; j < 4; ++j) {
 | |
|                 int p = subtiles[i][j];
 | |
|                 sub[j] = points[p];
 | |
| 
 | |
|                 int np = j == 3 ? subtiles[i][0] : subtiles[i][j + 1];
 | |
|                 // The "new" edges are the edges that connect between the two split points or
 | |
|                 // between a split point and the chosen s2 point. Otherwise the edge remains aligned
 | |
|                 // with the original shape, so should preserve the AA setting.
 | |
|                 if ((p >= kS0 && (np == s2 || np >= kS0)) ||
 | |
|                     ((np >= kS0) && (p == s2 || p >= kS0))) {
 | |
|                     // New edge
 | |
|                     subAA[j] = false;
 | |
|                 } else {
 | |
|                     // The subtiles indices were arranged so that their edge ordering was still top,
 | |
|                     // right, bottom, left so 'j' can be used to access edgeAA
 | |
|                     subAA[j] = edgeAA[j];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Split the sub quad with the next line
 | |
|             draws += this->clipTile(canvas, tileID, baseRect, sub, subAA, lines + 2, lineCount - 1,
 | |
|                                     quadCount);
 | |
|         }
 | |
|         return draws;
 | |
|     }
 | |
| };
 | |
| 
 | |
| static constexpr int kMatrixCount = 5;
 | |
| 
 | |
| class CompositorGM : public skiagm::GM {
 | |
| public:
 | |
|     CompositorGM(const char* name, std::function<ClipTileRendererArray()> makeRendererFn)
 | |
|             : fMakeRendererFn(std::move(makeRendererFn))
 | |
|             , fName(name) {}
 | |
| 
 | |
| protected:
 | |
|     SkISize onISize() override {
 | |
|         // Initialize the array of renderers.
 | |
|         this->onceBeforeDraw();
 | |
| 
 | |
|         // The GM draws a grid of renderers (rows) x transforms (col). Within each cell, the
 | |
|         // renderer draws the transformed tile grid, which is approximately
 | |
|         // (kColCount*kTileWidth, kRowCount*kTileHeight), although it has additional line
 | |
|         // visualizations and can be transformed outside of those rectangular bounds (i.e. persp),
 | |
|         // so pad the cell dimensions to be conservative. Must also account for the banner text.
 | |
|         static constexpr SkScalar kCellWidth = 1.3f * kColCount * kTileWidth;
 | |
|         static constexpr SkScalar kCellHeight = 1.3f * kRowCount * kTileHeight;
 | |
|         return SkISize::Make(SkScalarRoundToInt(kCellWidth * kMatrixCount + 175.f),
 | |
|                              SkScalarRoundToInt(kCellHeight * fRenderers.count() + 75.f));
 | |
|     }
 | |
| 
 | |
|     SkString onShortName() override {
 | |
|         SkString fullName;
 | |
|         fullName.appendf("compositor_quads_%s", fName.c_str());
 | |
|         return fullName;
 | |
|     }
 | |
| 
 | |
|     void onOnceBeforeDraw() override {
 | |
|         fRenderers = fMakeRendererFn();
 | |
|         this->configureMatrices();
 | |
|     }
 | |
| 
 | |
|     void onDraw(SkCanvas* canvas) override {
 | |
|         static constexpr SkScalar kGap = 40.f;
 | |
|         static constexpr SkScalar kBannerWidth = 120.f;
 | |
|         static constexpr SkScalar kOffset = 15.f;
 | |
| 
 | |
|         SkTArray<int> drawCounts(fRenderers.count());
 | |
|         drawCounts.push_back_n(fRenderers.count(), 0);
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->translate(kOffset + kBannerWidth, kOffset);
 | |
|         for (int i = 0; i < fMatrices.count(); ++i) {
 | |
|             canvas->save();
 | |
|             draw_text(canvas, fMatrixNames[i].c_str());
 | |
| 
 | |
|             canvas->translate(0.f, kGap);
 | |
|             for (int j = 0; j < fRenderers.count(); ++j) {
 | |
|                 canvas->save();
 | |
|                 draw_tile_boundaries(canvas, fMatrices[i]);
 | |
|                 draw_clipping_boundaries(canvas, fMatrices[i]);
 | |
| 
 | |
|                 canvas->concat(fMatrices[i]);
 | |
|                 drawCounts[j] += fRenderers[j]->drawTiles(canvas);
 | |
| 
 | |
|                 canvas->restore();
 | |
|                 // And advance to the next row
 | |
|                 canvas->translate(0.f, kGap + kRowCount * kTileHeight);
 | |
|             }
 | |
|             // Reset back to the left edge
 | |
|             canvas->restore();
 | |
|             // And advance to the next column
 | |
|             canvas->translate(kGap + kColCount * kTileWidth, 0.f);
 | |
|         }
 | |
|         canvas->restore();
 | |
| 
 | |
|         // Print a row header, with total draw counts
 | |
|         canvas->save();
 | |
|         canvas->translate(kOffset, kGap + 0.5f * kRowCount * kTileHeight);
 | |
|         for (int j = 0; j < fRenderers.count(); ++j) {
 | |
|             fRenderers[j]->drawBanner(canvas);
 | |
|             canvas->translate(0.f, 15.f);
 | |
|             draw_text(canvas, SkStringPrintf("Draws = %d", drawCounts[j]).c_str());
 | |
|             canvas->translate(0.f, kGap + kRowCount * kTileHeight);
 | |
|         }
 | |
|         canvas->restore();
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     std::function<ClipTileRendererArray()> fMakeRendererFn;
 | |
|     ClipTileRendererArray fRenderers;
 | |
|     SkTArray<SkMatrix> fMatrices;
 | |
|     SkTArray<SkString> fMatrixNames;
 | |
| 
 | |
|     SkString fName;
 | |
| 
 | |
|     void configureMatrices() {
 | |
|         fMatrices.reset();
 | |
|         fMatrixNames.reset();
 | |
|         fMatrices.push_back_n(kMatrixCount);
 | |
| 
 | |
|         // Identity
 | |
|         fMatrices[0].setIdentity();
 | |
|         fMatrixNames.push_back(SkString("Identity"));
 | |
| 
 | |
|         // Translate/scale
 | |
|         fMatrices[1].setTranslate(5.5f, 20.25f);
 | |
|         fMatrices[1].postScale(.9f, .7f);
 | |
|         fMatrixNames.push_back(SkString("T+S"));
 | |
| 
 | |
|         // Rotation
 | |
|         fMatrices[2].setRotate(20.0f);
 | |
|         fMatrices[2].preTranslate(15.f, -20.f);
 | |
|         fMatrixNames.push_back(SkString("Rotate"));
 | |
| 
 | |
|         // Skew
 | |
|         fMatrices[3].setSkew(.5f, .25f);
 | |
|         fMatrices[3].preTranslate(-30.f, 0.f);
 | |
|         fMatrixNames.push_back(SkString("Skew"));
 | |
| 
 | |
|         // Perspective
 | |
|         SkPoint src[4];
 | |
|         SkRect::MakeWH(kColCount * kTileWidth, kRowCount * kTileHeight).toQuad(src);
 | |
|         SkPoint dst[4] = {{0, 0},
 | |
|                           {kColCount * kTileWidth + 10.f, 15.f},
 | |
|                           {kColCount * kTileWidth - 28.f, kRowCount * kTileHeight + 40.f},
 | |
|                           {25.f, kRowCount * kTileHeight - 15.f}};
 | |
|         SkAssertResult(fMatrices[4].setPolyToPoly(src, dst, 4));
 | |
|         fMatrices[4].preTranslate(0.f, 10.f);
 | |
|         fMatrixNames.push_back(SkString("Perspective"));
 | |
| 
 | |
|         SkASSERT(fMatrices.count() == fMatrixNames.count());
 | |
|     }
 | |
| 
 | |
|     using INHERITED = skiagm::GM;
 | |
| };
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // Implementations of TileRenderer that color the clipped tiles in various ways
 | |
| ////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| class DebugTileRenderer : public ClipTileRenderer {
 | |
| public:
 | |
| 
 | |
|     static sk_sp<ClipTileRenderer> Make() {
 | |
|         // Since aa override is disabled, the quad flags arg doesn't matter.
 | |
|         return sk_sp<ClipTileRenderer>(new DebugTileRenderer(SkCanvas::kAll_QuadAAFlags, false));
 | |
|     }
 | |
| 
 | |
|     static sk_sp<ClipTileRenderer> MakeAA() {
 | |
|         return sk_sp<ClipTileRenderer>(new DebugTileRenderer(SkCanvas::kAll_QuadAAFlags, true));
 | |
|     }
 | |
| 
 | |
|     static sk_sp<ClipTileRenderer> MakeNonAA() {
 | |
|         return sk_sp<ClipTileRenderer>(new DebugTileRenderer(SkCanvas::kNone_QuadAAFlags, true));
 | |
|     }
 | |
| 
 | |
|     int drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4],
 | |
|                   int tileID, int quadID) override {
 | |
|         // Colorize the tile based on its grid position and quad ID
 | |
|         int i = tileID / kColCount;
 | |
|         int j = tileID % kColCount;
 | |
| 
 | |
|         SkColor4f c = {(i + 1.f) / kRowCount, (j + 1.f) / kColCount, .4f, 1.f};
 | |
|         float alpha = quadID / 10.f;
 | |
|         c.fR = c.fR * (1 - alpha) + alpha;
 | |
|         c.fG = c.fG * (1 - alpha) + alpha;
 | |
|         c.fB = c.fB * (1 - alpha) + alpha;
 | |
|         c.fA = c.fA * (1 - alpha) + alpha;
 | |
| 
 | |
|         SkCanvas::QuadAAFlags aaFlags = fEnableAAOverride ? fAAOverride : this->maskToFlags(edgeAA);
 | |
|         canvas->experimental_DrawEdgeAAQuad(
 | |
|                 rect, clip, aaFlags, c.toSkColor(), SkBlendMode::kSrcOver);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     void drawBanner(SkCanvas* canvas) override {
 | |
|         draw_text(canvas, "Edge AA");
 | |
|         canvas->translate(0.f, 15.f);
 | |
| 
 | |
|         SkString config;
 | |
|         constexpr char kFormat[] = "Ext(%s) - Int(%s)";
 | |
|         if (fEnableAAOverride) {
 | |
|             SkASSERT(fAAOverride == SkCanvas::kAll_QuadAAFlags ||
 | |
|                      fAAOverride == SkCanvas::kNone_QuadAAFlags);
 | |
|             if (fAAOverride == SkCanvas::kAll_QuadAAFlags) {
 | |
|                 config.appendf(kFormat, "yes", "yes");
 | |
|             } else {
 | |
|                 config.appendf(kFormat, "no", "no");
 | |
|             }
 | |
|         } else {
 | |
|             config.appendf(kFormat, "yes", "no");
 | |
|         }
 | |
|         draw_text(canvas, config.c_str());
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     SkCanvas::QuadAAFlags fAAOverride;
 | |
|     bool fEnableAAOverride;
 | |
| 
 | |
|     DebugTileRenderer(SkCanvas::QuadAAFlags aa, bool enableAAOverrde)
 | |
|             : fAAOverride(aa)
 | |
|             , fEnableAAOverride(enableAAOverrde) {}
 | |
| 
 | |
|     using INHERITED = ClipTileRenderer;
 | |
| };
 | |
| 
 | |
| // Tests tmp_drawEdgeAAQuad
 | |
| class SolidColorRenderer : public ClipTileRenderer {
 | |
| public:
 | |
| 
 | |
|     static sk_sp<ClipTileRenderer> Make(const SkColor4f& color) {
 | |
|         return sk_sp<ClipTileRenderer>(new SolidColorRenderer(color));
 | |
|     }
 | |
| 
 | |
|     int drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4],
 | |
|                   int tileID, int quadID) override {
 | |
|         canvas->experimental_DrawEdgeAAQuad(rect, clip, this->maskToFlags(edgeAA),
 | |
|                                             fColor.toSkColor(), SkBlendMode::kSrcOver);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     void drawBanner(SkCanvas* canvas) override {
 | |
|         draw_text(canvas, "Solid Color");
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     SkColor4f fColor;
 | |
| 
 | |
|     SolidColorRenderer(const SkColor4f& color) : fColor(color) {}
 | |
| 
 | |
|     using INHERITED = ClipTileRenderer;
 | |
| };
 | |
| 
 | |
| // Tests drawEdgeAAImageSet(), but can batch the entries together in different ways
 | |
| class TextureSetRenderer : public ClipTileRenderer {
 | |
| public:
 | |
| 
 | |
|     static sk_sp<ClipTileRenderer> MakeUnbatched(sk_sp<SkImage> image) {
 | |
|         return Make("Texture", "", std::move(image), nullptr, nullptr, nullptr, nullptr,
 | |
|                     1.f, true, 0);
 | |
|     }
 | |
| 
 | |
|     static sk_sp<ClipTileRenderer> MakeBatched(sk_sp<SkImage> image, int transformCount) {
 | |
|         const char* subtitle = transformCount == 0 ? "" : "w/ xforms";
 | |
|         return Make("Texture Set", subtitle, std::move(image), nullptr, nullptr, nullptr, nullptr,
 | |
|                     1.f, false, transformCount);
 | |
|     }
 | |
| 
 | |
|     static sk_sp<ClipTileRenderer> MakeShader(const char* name, sk_sp<SkImage> image,
 | |
|                                               sk_sp<SkShader> shader, bool local) {
 | |
|         return Make("Shader", name, std::move(image), std::move(shader),
 | |
|                     nullptr, nullptr, nullptr, 1.f, local, 0);
 | |
|     }
 | |
| 
 | |
|     static sk_sp<ClipTileRenderer> MakeColorFilter(const char* name, sk_sp<SkImage> image,
 | |
|                                                    sk_sp<SkColorFilter> filter) {
 | |
|         return Make("Color Filter", name, std::move(image), nullptr, std::move(filter), nullptr,
 | |
|                     nullptr, 1.f, false, 0);
 | |
|     }
 | |
| 
 | |
|     static sk_sp<ClipTileRenderer> MakeImageFilter(const char* name, sk_sp<SkImage> image,
 | |
|                                                    sk_sp<SkImageFilter> filter) {
 | |
|         return Make("Image Filter", name, std::move(image), nullptr, nullptr, std::move(filter),
 | |
|                     nullptr, 1.f, false, 0);
 | |
|     }
 | |
| 
 | |
|     static sk_sp<ClipTileRenderer> MakeMaskFilter(const char* name, sk_sp<SkImage> image,
 | |
|                                                   sk_sp<SkMaskFilter> filter) {
 | |
|         return Make("Mask Filter", name, std::move(image), nullptr, nullptr, nullptr,
 | |
|                     std::move(filter), 1.f, false, 0);
 | |
|     }
 | |
| 
 | |
|     static sk_sp<ClipTileRenderer> MakeAlpha(sk_sp<SkImage> image, SkScalar alpha) {
 | |
|         return Make("Alpha", SkStringPrintf("a = %.2f", alpha).c_str(), std::move(image), nullptr,
 | |
|                     nullptr, nullptr, nullptr, alpha, false, 0);
 | |
|     }
 | |
| 
 | |
|     static sk_sp<ClipTileRenderer> Make(const char* topBanner, const char* bottomBanner,
 | |
|                                         sk_sp<SkImage> image, sk_sp<SkShader> shader,
 | |
|                                         sk_sp<SkColorFilter> colorFilter,
 | |
|                                         sk_sp<SkImageFilter> imageFilter,
 | |
|                                         sk_sp<SkMaskFilter> maskFilter, SkScalar paintAlpha,
 | |
|                                         bool resetAfterEachQuad, int transformCount) {
 | |
|         return sk_sp<ClipTileRenderer>(new TextureSetRenderer(topBanner, bottomBanner,
 | |
|                 std::move(image), std::move(shader), std::move(colorFilter), std::move(imageFilter),
 | |
|                 std::move(maskFilter), paintAlpha, resetAfterEachQuad, transformCount));
 | |
|     }
 | |
| 
 | |
|     int drawTiles(SkCanvas* canvas) override {
 | |
|         int draws = this->INHERITED::drawTiles(canvas);
 | |
|         // Push the last tile set
 | |
|         draws += this->drawAndReset(canvas);
 | |
|         return draws;
 | |
|     }
 | |
| 
 | |
|     int drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4],
 | |
|                   int tileID, int quadID) override {
 | |
|         // Now don't actually draw the tile, accumulate it in the growing entry set
 | |
|         bool hasClip = false;
 | |
|         if (clip) {
 | |
|             // Record the four points into fDstClips
 | |
|             fDstClips.push_back_n(4, clip);
 | |
|             hasClip = true;
 | |
|         }
 | |
| 
 | |
|         int matrixIdx = -1;
 | |
|         if (!fResetEachQuad && fTransformBatchCount > 0) {
 | |
|             // Handle transform batching. This works by capturing the CTM of the first tile draw,
 | |
|             // and then calculate the difference between that and future CTMs for later tiles.
 | |
|             if (fPreViewMatrices.count() == 0) {
 | |
|                 fBaseCTM = canvas->getTotalMatrix();
 | |
|                 fPreViewMatrices.push_back(SkMatrix::I());
 | |
|                 matrixIdx = 0;
 | |
|             } else {
 | |
|                 // Calculate matrix s.t. getTotalMatrix() = fBaseCTM * M
 | |
|                 SkMatrix invBase;
 | |
|                 if (!fBaseCTM.invert(&invBase)) {
 | |
|                     SkDebugf("Cannot invert CTM, transform batching will not be correct.\n");
 | |
|                 } else {
 | |
|                     SkMatrix preView = SkMatrix::Concat(invBase, canvas->getTotalMatrix());
 | |
|                     if (preView != fPreViewMatrices[fPreViewMatrices.count() - 1]) {
 | |
|                         // Add the new matrix
 | |
|                         fPreViewMatrices.push_back(preView);
 | |
|                     } // else re-use the last matrix
 | |
|                     matrixIdx = fPreViewMatrices.count() - 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // This acts like the whole image is rendered over the entire tile grid, so derive local
 | |
|         // coordinates from 'rect', based on the grid to image transform.
 | |
|         SkMatrix gridToImage = SkMatrix::RectToRect(SkRect::MakeWH(kColCount * kTileWidth,
 | |
|                                                                    kRowCount * kTileHeight),
 | |
|                                                     SkRect::MakeWH(fImage->width(),
 | |
|                                                                    fImage->height()));
 | |
|         SkRect localRect = gridToImage.mapRect(rect);
 | |
| 
 | |
|         // drawTextureSet automatically derives appropriate local quad from localRect if clipPtr
 | |
|         // is not null.
 | |
|         fSetEntries.push_back(
 | |
|                 {fImage, localRect, rect, matrixIdx, 1.f, this->maskToFlags(edgeAA), hasClip});
 | |
| 
 | |
|         if (fResetEachQuad) {
 | |
|             // Only ever draw one entry at a time
 | |
|             return this->drawAndReset(canvas);
 | |
|         } else {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void drawBanner(SkCanvas* canvas) override {
 | |
|         if (fTopBanner.size() > 0) {
 | |
|             draw_text(canvas, fTopBanner.c_str());
 | |
|         }
 | |
|         canvas->translate(0.f, 15.f);
 | |
|         if (fBottomBanner.size() > 0) {
 | |
|             draw_text(canvas, fBottomBanner.c_str());
 | |
|         }
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     SkString fTopBanner;
 | |
|     SkString fBottomBanner;
 | |
| 
 | |
|     sk_sp<SkImage> fImage;
 | |
|     sk_sp<SkShader> fShader;
 | |
|     sk_sp<SkColorFilter> fColorFilter;
 | |
|     sk_sp<SkImageFilter> fImageFilter;
 | |
|     sk_sp<SkMaskFilter> fMaskFilter;
 | |
|     SkScalar fPaintAlpha;
 | |
| 
 | |
|     // Batching rules
 | |
|     bool fResetEachQuad;
 | |
|     int fTransformBatchCount;
 | |
| 
 | |
|     SkTArray<SkPoint> fDstClips;
 | |
|     SkTArray<SkMatrix> fPreViewMatrices;
 | |
|     SkTArray<SkCanvas::ImageSetEntry> fSetEntries;
 | |
| 
 | |
|     SkMatrix fBaseCTM;
 | |
|     int fBatchCount;
 | |
| 
 | |
|     TextureSetRenderer(const char* topBanner,
 | |
|                        const char* bottomBanner,
 | |
|                        sk_sp<SkImage> image,
 | |
|                        sk_sp<SkShader> shader,
 | |
|                        sk_sp<SkColorFilter> colorFilter,
 | |
|                        sk_sp<SkImageFilter> imageFilter,
 | |
|                        sk_sp<SkMaskFilter> maskFilter,
 | |
|                        SkScalar paintAlpha,
 | |
|                        bool resetEachQuad,
 | |
|                        int transformBatchCount)
 | |
|             : fTopBanner(topBanner)
 | |
|             , fBottomBanner(bottomBanner)
 | |
|             , fImage(std::move(image))
 | |
|             , fShader(std::move(shader))
 | |
|             , fColorFilter(std::move(colorFilter))
 | |
|             , fImageFilter(std::move(imageFilter))
 | |
|             , fMaskFilter(std::move(maskFilter))
 | |
|             , fPaintAlpha(paintAlpha)
 | |
|             , fResetEachQuad(resetEachQuad)
 | |
|             , fTransformBatchCount(transformBatchCount)
 | |
|             , fBatchCount(0) {
 | |
|         SkASSERT(transformBatchCount >= 0 && (!resetEachQuad || transformBatchCount == 0));
 | |
|     }
 | |
| 
 | |
|     void configureTilePaint(const SkRect& rect, SkPaint* paint) const {
 | |
|         paint->setAntiAlias(true);
 | |
|         paint->setBlendMode(SkBlendMode::kSrcOver);
 | |
| 
 | |
|         // Send non-white RGB, that should be ignored
 | |
|         paint->setColor4f({1.f, 0.4f, 0.25f, fPaintAlpha}, nullptr);
 | |
| 
 | |
| 
 | |
|         if (fShader) {
 | |
|             if (fResetEachQuad) {
 | |
|                 // Apply a local transform in the shader to map from the tile rectangle to (0,0,w,h)
 | |
|                 static const SkRect kTarget = SkRect::MakeWH(kTileWidth, kTileHeight);
 | |
|                 SkMatrix local = SkMatrix::RectToRect(kTarget, rect);
 | |
|                 paint->setShader(fShader->makeWithLocalMatrix(local));
 | |
|             } else {
 | |
|                 paint->setShader(fShader);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         paint->setColorFilter(fColorFilter);
 | |
|         paint->setImageFilter(fImageFilter);
 | |
|         paint->setMaskFilter(fMaskFilter);
 | |
|     }
 | |
| 
 | |
|     int drawAndReset(SkCanvas* canvas) {
 | |
|         // Early out if there's nothing to draw
 | |
|         if (fSetEntries.count() == 0) {
 | |
|             SkASSERT(fDstClips.count() == 0 && fPreViewMatrices.count() == 0);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         if (!fResetEachQuad && fTransformBatchCount > 0) {
 | |
|             // A batch is completed
 | |
|             fBatchCount++;
 | |
|             if (fBatchCount < fTransformBatchCount) {
 | |
|                 // Haven't hit the point to submit yet, but end the current tile
 | |
|                 return 0;
 | |
|             }
 | |
| 
 | |
|             // Submitting all tiles back to where fBaseCTM was the canvas' matrix, while the
 | |
|             // canvas currently has the CTM of the last tile batch, so reset it.
 | |
|             canvas->setMatrix(fBaseCTM);
 | |
|         }
 | |
| 
 | |
| #ifdef SK_DEBUG
 | |
|         int expectedDstClipCount = 0;
 | |
|         for (int i = 0; i < fSetEntries.count(); ++i) {
 | |
|             expectedDstClipCount += 4 * fSetEntries[i].fHasClip;
 | |
|             SkASSERT(fSetEntries[i].fMatrixIndex < 0 ||
 | |
|                      fSetEntries[i].fMatrixIndex < fPreViewMatrices.count());
 | |
|         }
 | |
|         SkASSERT(expectedDstClipCount == fDstClips.count());
 | |
| #endif
 | |
| 
 | |
|         SkPaint paint;
 | |
|         SkRect lastTileRect = fSetEntries[fSetEntries.count() - 1].fDstRect;
 | |
|         this->configureTilePaint(lastTileRect, &paint);
 | |
| 
 | |
|         canvas->experimental_DrawEdgeAAImageSet(
 | |
|                 fSetEntries.begin(), fSetEntries.count(), fDstClips.begin(),
 | |
|                 fPreViewMatrices.begin(), SkSamplingOptions(SkFilterMode::kLinear),
 | |
|                 &paint, SkCanvas::kFast_SrcRectConstraint);
 | |
| 
 | |
|         // Reset for next tile
 | |
|         fDstClips.reset();
 | |
|         fPreViewMatrices.reset();
 | |
|         fSetEntries.reset();
 | |
|         fBatchCount = 0;
 | |
| 
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     using INHERITED = ClipTileRenderer;
 | |
| };
 | |
| 
 | |
| class YUVTextureSetRenderer : public ClipTileRenderer {
 | |
| public:
 | |
|     static sk_sp<ClipTileRenderer> MakeFromJPEG(sk_sp<SkData> imageData) {
 | |
|         return sk_sp<ClipTileRenderer>(new YUVTextureSetRenderer(std::move(imageData)));
 | |
|     }
 | |
| 
 | |
|     int drawTiles(SkCanvas* canvas) override {
 | |
|         // Refresh the SkImage at the start, so that it's not attempted for every set entry
 | |
|         if (fYUVData) {
 | |
|             fImage = fYUVData->refImage(canvas->recordingContext(),
 | |
|                                         sk_gpu_test::LazyYUVImage::Type::kFromPixmaps);
 | |
|             if (!fImage) {
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         int draws = this->INHERITED::drawTiles(canvas);
 | |
|         // Push the last tile set
 | |
|         draws += this->drawAndReset(canvas);
 | |
|         return draws;
 | |
|     }
 | |
| 
 | |
|     int drawTile(SkCanvas* canvas, const SkRect& rect, const SkPoint clip[4], const bool edgeAA[4],
 | |
|                   int tileID, int quadID) override {
 | |
|         SkASSERT(fImage);
 | |
|         // Now don't actually draw the tile, accumulate it in the growing entry set
 | |
|         bool hasClip = false;
 | |
|         if (clip) {
 | |
|             // Record the four points into fDstClips
 | |
|             fDstClips.push_back_n(4, clip);
 | |
|             hasClip = true;
 | |
|         }
 | |
| 
 | |
|         // This acts like the whole image is rendered over the entire tile grid, so derive local
 | |
|         // coordinates from 'rect', based on the grid to image transform.
 | |
|         SkMatrix gridToImage = SkMatrix::RectToRect(SkRect::MakeWH(kColCount * kTileWidth,
 | |
|                                                                    kRowCount * kTileHeight),
 | |
|                                                     SkRect::MakeWH(fImage->width(),
 | |
|                                                                    fImage->height()));
 | |
|         SkRect localRect = gridToImage.mapRect(rect);
 | |
| 
 | |
|         // drawTextureSet automatically derives appropriate local quad from localRect if clipPtr
 | |
|         // is not null. Also exercise per-entry alpha combined with YUVA images.
 | |
|         fSetEntries.push_back(
 | |
|                 {fImage, localRect, rect, -1, .5f, this->maskToFlags(edgeAA), hasClip});
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     void drawBanner(SkCanvas* canvas) override {
 | |
|         draw_text(canvas, "Texture");
 | |
|         canvas->translate(0.f, 15.f);
 | |
|         draw_text(canvas, "YUV + alpha - GPU Only");
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     std::unique_ptr<sk_gpu_test::LazyYUVImage> fYUVData;
 | |
|     // The last accessed SkImage from fYUVData, held here for easy access by drawTile
 | |
|     sk_sp<SkImage> fImage;
 | |
| 
 | |
|     SkTArray<SkPoint> fDstClips;
 | |
|     SkTArray<SkCanvas::ImageSetEntry> fSetEntries;
 | |
| 
 | |
|     YUVTextureSetRenderer(sk_sp<SkData> jpegData)
 | |
|             : fYUVData(sk_gpu_test::LazyYUVImage::Make(std::move(jpegData)))
 | |
|             , fImage(nullptr) {}
 | |
| 
 | |
|     int drawAndReset(SkCanvas* canvas) {
 | |
|         // Early out if there's nothing to draw
 | |
|         if (fSetEntries.count() == 0) {
 | |
|             SkASSERT(fDstClips.count() == 0);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
| #ifdef SK_DEBUG
 | |
|         int expectedDstClipCount = 0;
 | |
|         for (int i = 0; i < fSetEntries.count(); ++i) {
 | |
|             expectedDstClipCount += 4 * fSetEntries[i].fHasClip;
 | |
|         }
 | |
|         SkASSERT(expectedDstClipCount == fDstClips.count());
 | |
| #endif
 | |
| 
 | |
|         SkPaint paint;
 | |
|         paint.setAntiAlias(true);
 | |
|         paint.setBlendMode(SkBlendMode::kSrcOver);
 | |
| 
 | |
|         canvas->experimental_DrawEdgeAAImageSet(
 | |
|                 fSetEntries.begin(), fSetEntries.count(), fDstClips.begin(), nullptr,
 | |
|                 SkSamplingOptions(SkFilterMode::kLinear), &paint,
 | |
|                 SkCanvas::kFast_SrcRectConstraint);
 | |
| 
 | |
|         // Reset for next tile
 | |
|         fDstClips.reset();
 | |
|         fSetEntries.reset();
 | |
| 
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     using INHERITED = ClipTileRenderer;
 | |
| };
 | |
| 
 | |
| static ClipTileRendererArray make_debug_renderers() {
 | |
|     return ClipTileRendererArray{DebugTileRenderer::Make(),
 | |
|                                  DebugTileRenderer::MakeAA(),
 | |
|                                  DebugTileRenderer::MakeNonAA()};
 | |
| }
 | |
| 
 | |
| static ClipTileRendererArray make_solid_color_renderers() {
 | |
|     return ClipTileRendererArray{SolidColorRenderer::Make({.2f, .8f, .3f, 1.f})};
 | |
| }
 | |
| 
 | |
| static ClipTileRendererArray make_shader_renderers() {
 | |
|     static constexpr SkPoint kPts[] = { {0.f, 0.f}, {0.25f * kTileWidth, 0.25f * kTileHeight} };
 | |
|     static constexpr SkColor kColors[] = { SK_ColorBLUE, SK_ColorWHITE };
 | |
|     auto gradient = SkGradientShader::MakeLinear(kPts, kColors, nullptr, 2,
 | |
|                                                  SkTileMode::kMirror);
 | |
| 
 | |
|     auto info = SkImageInfo::Make(1, 1, kAlpha_8_SkColorType, kOpaque_SkAlphaType);
 | |
|     SkBitmap bm;
 | |
|     bm.allocPixels(info);
 | |
|     bm.eraseColor(SK_ColorWHITE);
 | |
|     sk_sp<SkImage> image = bm.asImage();
 | |
| 
 | |
|     return ClipTileRendererArray{
 | |
|                TextureSetRenderer::MakeShader("Gradient", image, gradient, false),
 | |
|                TextureSetRenderer::MakeShader("Local Gradient", image, gradient, true)};
 | |
| }
 | |
| 
 | |
| static ClipTileRendererArray make_image_renderers() {
 | |
|     sk_sp<SkImage> mandrill = GetResourceAsImage("images/mandrill_512.png");
 | |
|     sk_sp<SkData> mandrillJpeg = GetResourceAsData("images/mandrill_h1v1.jpg");
 | |
|     return ClipTileRendererArray{TextureSetRenderer::MakeUnbatched(mandrill),
 | |
|                                  TextureSetRenderer::MakeBatched(mandrill, 0),
 | |
|                                  TextureSetRenderer::MakeBatched(mandrill, kMatrixCount),
 | |
|                                  YUVTextureSetRenderer::MakeFromJPEG(mandrillJpeg)};
 | |
| }
 | |
| 
 | |
| static ClipTileRendererArray make_filtered_renderers() {
 | |
|     sk_sp<SkImage> mandrill = GetResourceAsImage("images/mandrill_512.png");
 | |
| 
 | |
|     SkColorMatrix cm;
 | |
|     cm.setSaturation(10);
 | |
|     sk_sp<SkColorFilter> colorFilter = SkColorFilters::Matrix(cm);
 | |
|     sk_sp<SkImageFilter> imageFilter = SkImageFilters::Dilate(8, 8, nullptr);
 | |
| 
 | |
|     static constexpr SkColor kAlphas[] = { SK_ColorTRANSPARENT, SK_ColorBLACK };
 | |
|     auto alphaGradient = SkGradientShader::MakeRadial(
 | |
|             {0.5f * kTileWidth * kColCount, 0.5f * kTileHeight * kRowCount},
 | |
|             0.25f * kTileWidth * kColCount, kAlphas, nullptr, 2, SkTileMode::kClamp);
 | |
|     sk_sp<SkMaskFilter> maskFilter = SkShaderMaskFilter::Make(std::move(alphaGradient));
 | |
| 
 | |
|     return ClipTileRendererArray{
 | |
|                TextureSetRenderer::MakeAlpha(mandrill, 0.5f),
 | |
|                TextureSetRenderer::MakeColorFilter("Saturation", mandrill, std::move(colorFilter)),
 | |
| 
 | |
|     // NOTE: won't draw correctly until SkCanvas' AutoLoopers are used to handle image filters
 | |
|                TextureSetRenderer::MakeImageFilter("Dilate", mandrill, std::move(imageFilter)),
 | |
| 
 | |
|     // NOTE: blur mask filters do work (tested locally), but visually they don't make much
 | |
|     // sense, since each quad is blurred independently
 | |
|                TextureSetRenderer::MakeMaskFilter("Shader", mandrill, std::move(maskFilter))};
 | |
| }
 | |
| 
 | |
| DEF_GM(return new CompositorGM("debug",  make_debug_renderers);)
 | |
| DEF_GM(return new CompositorGM("color",  make_solid_color_renderers);)
 | |
| DEF_GM(return new CompositorGM("shader", make_shader_renderers);)
 | |
| DEF_GM(return new CompositorGM("image",  make_image_renderers);)
 | |
| DEF_GM(return new CompositorGM("filter", make_filtered_renderers);)
 |