939 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			939 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright 2019 Google LLC
 | |
|  *
 | |
|  * Use of this source code is governed by a BSD-style license that can be
 | |
|  * found in the LICENSE file.
 | |
|  */
 | |
| 
 | |
| #include "gm/gm.h"
 | |
| #include "include/core/SkCanvas.h"
 | |
| #include "include/core/SkData.h"
 | |
| #include "include/core/SkPaint.h"
 | |
| #include "include/core/SkRRect.h"
 | |
| #include "include/core/SkSize.h"
 | |
| #include "include/core/SkString.h"
 | |
| #include "include/core/SkSurface.h"
 | |
| #include "include/effects/SkGradientShader.h"
 | |
| #include "include/effects/SkImageFilters.h"
 | |
| #include "include/effects/SkRuntimeEffect.h"
 | |
| #include "include/utils/SkRandom.h"
 | |
| #include "src/core/SkColorSpacePriv.h"
 | |
| #include "tools/Resources.h"
 | |
| 
 | |
| enum RT_Flags {
 | |
|     kAnimate_RTFlag     = 0x1,
 | |
|     kBench_RTFlag       = 0x2,
 | |
|     kColorFilter_RTFlag = 0x4,
 | |
| };
 | |
| 
 | |
| class RuntimeShaderGM : public skiagm::GM {
 | |
| public:
 | |
|     RuntimeShaderGM(const char* name, SkISize size, const char* sksl, uint32_t flags = 0)
 | |
|             : fName(name), fSize(size), fFlags(flags), fSkSL(sksl) {}
 | |
| 
 | |
|     void onOnceBeforeDraw() override {
 | |
|         auto [effect, error] = (fFlags & kColorFilter_RTFlag)
 | |
|                                        ? SkRuntimeEffect::MakeForColorFilter(fSkSL)
 | |
|                                        : SkRuntimeEffect::MakeForShader(fSkSL);
 | |
|         if (!effect) {
 | |
|             SkDebugf("RuntimeShader error: %s\n", error.c_str());
 | |
|         }
 | |
|         fEffect = std::move(effect);
 | |
|     }
 | |
| 
 | |
|     bool runAsBench() const override { return SkToBool(fFlags & kBench_RTFlag); }
 | |
|     SkString onShortName() override { return fName; }
 | |
|     SkISize onISize() override { return fSize; }
 | |
| 
 | |
|     bool onAnimate(double nanos) override {
 | |
|         fSecs = nanos / (1000 * 1000 * 1000);
 | |
|         return SkToBool(fFlags & kAnimate_RTFlag);
 | |
|     }
 | |
| 
 | |
| protected:
 | |
|     SkString fName;
 | |
|     SkISize  fSize;
 | |
|     uint32_t fFlags;
 | |
|     float    fSecs = 0.0f;
 | |
| 
 | |
|     SkString fSkSL;
 | |
|     sk_sp<SkRuntimeEffect> fEffect;
 | |
| };
 | |
| 
 | |
| class SimpleRT : public RuntimeShaderGM {
 | |
| public:
 | |
|     SimpleRT() : RuntimeShaderGM("runtime_shader", {512, 256}, R"(
 | |
|         uniform half4 gColor;
 | |
| 
 | |
|         half4 main(float2 p) {
 | |
|             return half4(p*(1.0/255), gColor.b, 1);
 | |
|         }
 | |
|     )", kBench_RTFlag) {}
 | |
| 
 | |
|     void onDraw(SkCanvas* canvas) override {
 | |
|         SkRuntimeShaderBuilder builder(fEffect);
 | |
| 
 | |
|         SkMatrix localM;
 | |
|         localM.setRotate(90, 128, 128);
 | |
|         builder.uniform("gColor") = SkColor4f{1, 0, 0, 1};
 | |
| 
 | |
|         SkPaint p;
 | |
|         p.setShader(builder.makeShader(&localM));
 | |
|         canvas->drawRect({0, 0, 256, 256}, p);
 | |
|     }
 | |
| };
 | |
| DEF_GM(return new SimpleRT;)
 | |
| 
 | |
| static sk_sp<SkShader> make_shader(sk_sp<SkImage> img, SkISize size) {
 | |
|     SkMatrix scale = SkMatrix::Scale(size.width()  / (float)img->width(),
 | |
|                                      size.height() / (float)img->height());
 | |
|     return img->makeShader(SkSamplingOptions(), scale);
 | |
| }
 | |
| 
 | |
| static sk_sp<SkShader> make_threshold(SkISize size) {
 | |
|     auto info = SkImageInfo::Make(size.width(), size.height(), kAlpha_8_SkColorType,
 | |
|                                   kPremul_SkAlphaType);
 | |
|     auto surf = SkSurface::MakeRaster(info);
 | |
|     auto canvas = surf->getCanvas();
 | |
| 
 | |
|     const SkScalar rad = 50;
 | |
|     SkColor colors[] = {SK_ColorBLACK, 0};
 | |
|     SkPaint paint;
 | |
|     paint.setAntiAlias(true);
 | |
|     paint.setShader(SkGradientShader::MakeRadial({0,0}, rad, colors, nullptr, 2, SkTileMode::kClamp));
 | |
| 
 | |
|     SkPaint layerPaint;
 | |
|     const SkScalar sigma = 16.0f;
 | |
|     layerPaint.setImageFilter(SkImageFilters::Blur(sigma, sigma, nullptr));
 | |
|     canvas->saveLayer(nullptr, &layerPaint);
 | |
| 
 | |
|     SkRandom rand;
 | |
|     for (int i = 0; i < 25; ++i) {
 | |
|         SkScalar x = rand.nextF() * size.width();
 | |
|         SkScalar y = rand.nextF() * size.height();
 | |
|         canvas->save();
 | |
|         canvas->translate(x, y);
 | |
|         canvas->drawCircle(0, 0, rad, paint);
 | |
|         canvas->restore();
 | |
|     }
 | |
| 
 | |
|     canvas->restore();  // apply the blur
 | |
| 
 | |
|     return surf->makeImageSnapshot()->makeShader(SkSamplingOptions());
 | |
| }
 | |
| 
 | |
| class ThresholdRT : public RuntimeShaderGM {
 | |
| public:
 | |
|     ThresholdRT() : RuntimeShaderGM("threshold_rt", {256, 256}, R"(
 | |
|         uniform shader before_map;
 | |
|         uniform shader after_map;
 | |
|         uniform shader threshold_map;
 | |
| 
 | |
|         uniform float cutoff;
 | |
|         uniform float slope;
 | |
| 
 | |
|         float smooth_cutoff(float x) {
 | |
|             x = x * slope + (0.5 - slope * cutoff);
 | |
|             return clamp(x, 0, 1);
 | |
|         }
 | |
| 
 | |
|         half4 main(float2 xy) {
 | |
|             half4 before = before_map.eval(xy);
 | |
|             half4 after = after_map.eval(xy);
 | |
| 
 | |
|             float m = smooth_cutoff(threshold_map.eval(xy).a);
 | |
|             return mix(before, after, m);
 | |
|         }
 | |
|     )", kAnimate_RTFlag | kBench_RTFlag) {}
 | |
| 
 | |
|     sk_sp<SkShader> fBefore, fAfter, fThreshold;
 | |
| 
 | |
|     void onOnceBeforeDraw() override {
 | |
|         const SkISize size = {256, 256};
 | |
|         fThreshold = make_threshold(size);
 | |
|         fBefore = make_shader(GetResourceAsImage("images/mandrill_256.png"), size);
 | |
|         fAfter = make_shader(GetResourceAsImage("images/dog.jpg"), size);
 | |
| 
 | |
|         this->RuntimeShaderGM::onOnceBeforeDraw();
 | |
|     }
 | |
| 
 | |
|     void onDraw(SkCanvas* canvas) override {
 | |
|         SkRuntimeShaderBuilder builder(fEffect);
 | |
| 
 | |
|         builder.uniform("cutoff") = sin(fSecs) * 0.55f + 0.5f;
 | |
|         builder.uniform("slope")  = 10.0f;
 | |
| 
 | |
|         builder.child("before_map")    = fBefore;
 | |
|         builder.child("after_map")     = fAfter;
 | |
|         builder.child("threshold_map") = fThreshold;
 | |
| 
 | |
|         SkPaint paint;
 | |
|         paint.setShader(builder.makeShader());
 | |
|         canvas->drawRect({0, 0, 256, 256}, paint);
 | |
| 
 | |
|         auto draw = [&](SkScalar x, SkScalar y, sk_sp<SkShader> shader) {
 | |
|             paint.setShader(shader);
 | |
|             canvas->save();
 | |
|             canvas->translate(x, y);
 | |
|             canvas->drawRect({0, 0, 256, 256}, paint);
 | |
|             canvas->restore();
 | |
|         };
 | |
|         draw(256,   0, fThreshold);
 | |
|         draw(  0, 256, fBefore);
 | |
|         draw(256, 256, fAfter);
 | |
|     }
 | |
| };
 | |
| DEF_GM(return new ThresholdRT;)
 | |
| 
 | |
| class SpiralRT : public RuntimeShaderGM {
 | |
| public:
 | |
|     SpiralRT() : RuntimeShaderGM("spiral_rt", {512, 512}, R"(
 | |
|         uniform float rad_scale;
 | |
|         uniform float2 in_center;
 | |
|         layout(color) uniform float4 in_colors0;
 | |
|         layout(color) uniform float4 in_colors1;
 | |
| 
 | |
|         half4 main(float2 p) {
 | |
|             float2 pp = p - in_center;
 | |
|             float radius = length(pp);
 | |
|             radius = sqrt(radius);
 | |
|             float angle = atan(pp.y / pp.x);
 | |
|             float t = (angle + 3.1415926/2) / (3.1415926);
 | |
|             t += radius * rad_scale;
 | |
|             t = fract(t);
 | |
|             return in_colors0 * (1-t) + in_colors1 * t;
 | |
|         }
 | |
|     )", kAnimate_RTFlag | kBench_RTFlag) {}
 | |
| 
 | |
|     void onDraw(SkCanvas* canvas) override {
 | |
|         SkRuntimeShaderBuilder builder(fEffect);
 | |
| 
 | |
|         builder.uniform("rad_scale")  = std::sin(fSecs * 0.5f + 2.0f) / 5;
 | |
|         builder.uniform("in_center")  = SkV2{256, 256};
 | |
|         builder.uniform("in_colors0") = SkColors::kRed;
 | |
|         builder.uniform("in_colors1") = SkColors::kGreen;
 | |
| 
 | |
|         SkPaint paint;
 | |
|         paint.setShader(builder.makeShader());
 | |
|         canvas->drawRect({0, 0, 512, 512}, paint);
 | |
|     }
 | |
| };
 | |
| DEF_GM(return new SpiralRT;)
 | |
| 
 | |
| // Test case for sampling with both unmodified input coordinates, and explicit coordinates.
 | |
| // The first version of skbug.com/11869 suffered a bug where all samples of a child were treated
 | |
| // as pass-through if *at least one* used the unmodified coordinates. This was detected & tracked
 | |
| // in b/181092919. This GM is similar, and demonstrates the bug before the fix was applied.
 | |
| class UnsharpRT : public RuntimeShaderGM {
 | |
| public:
 | |
|     UnsharpRT() : RuntimeShaderGM("unsharp_rt", {512, 256}, R"(
 | |
|         uniform shader child;
 | |
|         half4 main(float2 xy) {
 | |
|             half4 c = child.eval(xy) * 5;
 | |
|             c -= child.eval(xy + float2( 1,  0));
 | |
|             c -= child.eval(xy + float2(-1,  0));
 | |
|             c -= child.eval(xy + float2( 0,  1));
 | |
|             c -= child.eval(xy + float2( 0, -1));
 | |
|             return c;
 | |
|         }
 | |
|     )") {}
 | |
| 
 | |
|     sk_sp<SkImage> fMandrill;
 | |
| 
 | |
|     void onOnceBeforeDraw() override {
 | |
|         fMandrill      = GetResourceAsImage("images/mandrill_256.png");
 | |
|         this->RuntimeShaderGM::onOnceBeforeDraw();
 | |
|     }
 | |
| 
 | |
|     void onDraw(SkCanvas* canvas) override {
 | |
|         // First we draw the unmodified image
 | |
|         canvas->drawImage(fMandrill,      0,   0);
 | |
| 
 | |
|         // Now draw the image with our unsharp mask applied
 | |
|         SkRuntimeShaderBuilder builder(fEffect);
 | |
|         const SkSamplingOptions sampling(SkFilterMode::kNearest);
 | |
|         builder.child("child") = fMandrill->makeShader(sampling);
 | |
| 
 | |
|         SkPaint paint;
 | |
|         paint.setShader(builder.makeShader());
 | |
|         canvas->translate(256, 0);
 | |
|         canvas->drawRect({ 0, 0, 256, 256 }, paint);
 | |
|     }
 | |
| };
 | |
| DEF_GM(return new UnsharpRT;)
 | |
| 
 | |
| class ColorCubeRT : public RuntimeShaderGM {
 | |
| public:
 | |
|     ColorCubeRT() : RuntimeShaderGM("color_cube_rt", {512, 512}, R"(
 | |
|         uniform shader child;
 | |
|         uniform shader color_cube;
 | |
| 
 | |
|         uniform float rg_scale;
 | |
|         uniform float rg_bias;
 | |
|         uniform float b_scale;
 | |
|         uniform float inv_size;
 | |
| 
 | |
|         half4 main(float2 xy) {
 | |
|             float4 c = unpremul(child.eval(xy));
 | |
| 
 | |
|             // Map to cube coords:
 | |
|             float3 cubeCoords = float3(c.rg * rg_scale + rg_bias, c.b * b_scale);
 | |
| 
 | |
|             // Compute slice coordinate
 | |
|             float2 coords1 = float2((floor(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g);
 | |
|             float2 coords2 = float2(( ceil(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g);
 | |
| 
 | |
|             // Two bilinear fetches, plus a manual lerp for the third axis:
 | |
|             half4 color = mix(color_cube.eval(coords1), color_cube.eval(coords2),
 | |
|                               fract(cubeCoords.b));
 | |
| 
 | |
|             // Premul again
 | |
|             color.rgb *= color.a;
 | |
| 
 | |
|             return color;
 | |
|         }
 | |
|     )") {}
 | |
| 
 | |
|     sk_sp<SkImage> fMandrill, fMandrillSepia, fIdentityCube, fSepiaCube;
 | |
| 
 | |
|     void onOnceBeforeDraw() override {
 | |
|         fMandrill      = GetResourceAsImage("images/mandrill_256.png");
 | |
|         fMandrillSepia = GetResourceAsImage("images/mandrill_sepia.png");
 | |
|         fIdentityCube  = GetResourceAsImage("images/lut_identity.png");
 | |
|         fSepiaCube     = GetResourceAsImage("images/lut_sepia.png");
 | |
| 
 | |
|         this->RuntimeShaderGM::onOnceBeforeDraw();
 | |
|     }
 | |
| 
 | |
|     void onDraw(SkCanvas* canvas) override {
 | |
|         SkRuntimeShaderBuilder builder(fEffect);
 | |
| 
 | |
|         // First we draw the unmodified image, and a copy that was sepia-toned in Photoshop:
 | |
|         canvas->drawImage(fMandrill,      0,   0);
 | |
|         canvas->drawImage(fMandrillSepia, 0, 256);
 | |
| 
 | |
|         // LUT dimensions should be (kSize^2, kSize)
 | |
|         constexpr float kSize = 16.0f;
 | |
| 
 | |
|         const SkSamplingOptions sampling(SkFilterMode::kLinear);
 | |
| 
 | |
|         builder.uniform("rg_scale")     = (kSize - 1) / kSize;
 | |
|         builder.uniform("rg_bias")      = 0.5f / kSize;
 | |
|         builder.uniform("b_scale")      = kSize - 1;
 | |
|         builder.uniform("inv_size")     = 1.0f / kSize;
 | |
| 
 | |
|         builder.child("child")        = fMandrill->makeShader(sampling);
 | |
| 
 | |
|         SkPaint paint;
 | |
| 
 | |
|         // TODO: Should we add SkImage::makeNormalizedShader() to handle this automatically?
 | |
|         SkMatrix normalize = SkMatrix::Scale(1.0f / (kSize * kSize), 1.0f / kSize);
 | |
| 
 | |
|         // Now draw the image with an identity color cube - it should look like the original
 | |
|         builder.child("color_cube") = fIdentityCube->makeShader(sampling, normalize);
 | |
|         paint.setShader(builder.makeShader());
 | |
|         canvas->translate(256, 0);
 | |
|         canvas->drawRect({ 0, 0, 256, 256 }, paint);
 | |
| 
 | |
|         // ... and with a sepia-tone color cube. This should match the sepia-toned image.
 | |
|         builder.child("color_cube") = fSepiaCube->makeShader(sampling, normalize);
 | |
|         paint.setShader(builder.makeShader());
 | |
|         canvas->translate(0, 256);
 | |
|         canvas->drawRect({ 0, 0, 256, 256 }, paint);
 | |
|     }
 | |
| };
 | |
| DEF_GM(return new ColorCubeRT;)
 | |
| 
 | |
| // Same as above, but demonstrating how to implement this as a runtime color filter (that samples
 | |
| // a shader child for the LUT).
 | |
| class ColorCubeColorFilterRT : public RuntimeShaderGM {
 | |
| public:
 | |
|     ColorCubeColorFilterRT() : RuntimeShaderGM("color_cube_cf_rt", {512, 512}, R"(
 | |
|         uniform shader color_cube;
 | |
| 
 | |
|         uniform float rg_scale;
 | |
|         uniform float rg_bias;
 | |
|         uniform float b_scale;
 | |
|         uniform float inv_size;
 | |
| 
 | |
|         half4 main(half4 inColor) {
 | |
|             float4 c = unpremul(inColor);
 | |
| 
 | |
|             // Map to cube coords:
 | |
|             float3 cubeCoords = float3(c.rg * rg_scale + rg_bias, c.b * b_scale);
 | |
| 
 | |
|             // Compute slice coordinate
 | |
|             float2 coords1 = float2((floor(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g);
 | |
|             float2 coords2 = float2(( ceil(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g);
 | |
| 
 | |
|             // Two bilinear fetches, plus a manual lerp for the third axis:
 | |
|             half4 color = mix(color_cube.eval(coords1), color_cube.eval(coords2),
 | |
|                               fract(cubeCoords.b));
 | |
| 
 | |
|             // Premul again
 | |
|             color.rgb *= color.a;
 | |
| 
 | |
|             return color;
 | |
|         }
 | |
|     )", kColorFilter_RTFlag) {}
 | |
| 
 | |
|     sk_sp<SkImage> fMandrill, fMandrillSepia, fIdentityCube, fSepiaCube;
 | |
| 
 | |
|     void onOnceBeforeDraw() override {
 | |
|         fMandrill      = GetResourceAsImage("images/mandrill_256.png");
 | |
|         fMandrillSepia = GetResourceAsImage("images/mandrill_sepia.png");
 | |
|         fIdentityCube  = GetResourceAsImage("images/lut_identity.png");
 | |
|         fSepiaCube     = GetResourceAsImage("images/lut_sepia.png");
 | |
| 
 | |
|         this->RuntimeShaderGM::onOnceBeforeDraw();
 | |
|     }
 | |
| 
 | |
|     void onDraw(SkCanvas* canvas) override {
 | |
|         // First we draw the unmodified image, and a copy that was sepia-toned in Photoshop:
 | |
|         canvas->drawImage(fMandrill,      0,   0);
 | |
|         canvas->drawImage(fMandrillSepia, 0, 256);
 | |
| 
 | |
|         // LUT dimensions should be (kSize^2, kSize)
 | |
|         constexpr float kSize = 16.0f;
 | |
| 
 | |
|         const SkSamplingOptions sampling(SkFilterMode::kLinear);
 | |
| 
 | |
|         float uniforms[] = {
 | |
|                 (kSize - 1) / kSize,  // rg_scale
 | |
|                 0.5f / kSize,         // rg_bias
 | |
|                 kSize - 1,            // b_scale
 | |
|                 1.0f / kSize,         // inv_size
 | |
|         };
 | |
| 
 | |
|         SkPaint paint;
 | |
| 
 | |
|         // TODO: Should we add SkImage::makeNormalizedShader() to handle this automatically?
 | |
|         SkMatrix normalize = SkMatrix::Scale(1.0f / (kSize * kSize), 1.0f / kSize);
 | |
| 
 | |
|         // Now draw the image with an identity color cube - it should look like the original
 | |
|         SkRuntimeEffect::ChildPtr children[] = {fIdentityCube->makeShader(sampling, normalize)};
 | |
|         paint.setColorFilter(fEffect->makeColorFilter(
 | |
|                 SkData::MakeWithCopy(uniforms, sizeof(uniforms)), SkMakeSpan(children)));
 | |
|         canvas->drawImage(fMandrill, 256, 0, sampling, &paint);
 | |
| 
 | |
|         // ... and with a sepia-tone color cube. This should match the sepia-toned image.
 | |
|         children[0] = fSepiaCube->makeShader(sampling, normalize);
 | |
|         paint.setColorFilter(fEffect->makeColorFilter(
 | |
|                 SkData::MakeWithCopy(uniforms, sizeof(uniforms)), SkMakeSpan(children)));
 | |
|         canvas->drawImage(fMandrill, 256, 256, sampling, &paint);
 | |
|     }
 | |
| };
 | |
| DEF_GM(return new ColorCubeColorFilterRT;)
 | |
| 
 | |
| class DefaultColorRT : public RuntimeShaderGM {
 | |
| public:
 | |
|     DefaultColorRT() : RuntimeShaderGM("default_color_rt", {512, 256}, R"(
 | |
|         uniform shader child;
 | |
|         half4 main(float2 xy) {
 | |
|             return child.eval(xy);
 | |
|         }
 | |
|     )") {}
 | |
| 
 | |
|     sk_sp<SkImage> fMandrill;
 | |
| 
 | |
|     void onOnceBeforeDraw() override {
 | |
|         fMandrill      = GetResourceAsImage("images/mandrill_256.png");
 | |
|         this->RuntimeShaderGM::onOnceBeforeDraw();
 | |
|     }
 | |
| 
 | |
|     void onDraw(SkCanvas* canvas) override {
 | |
|         SkRuntimeShaderBuilder builder(fEffect);
 | |
| 
 | |
|         // First, we leave the child as null, so sampling it returns the default (paint) color
 | |
|         SkPaint paint;
 | |
|         paint.setColor4f({ 0.25f, 0.75f, 0.75f, 1.0f });
 | |
|         paint.setShader(builder.makeShader());
 | |
|         canvas->drawRect({ 0, 0, 256, 256 }, paint);
 | |
| 
 | |
|         // Now we bind an image shader as the child. This (by convention) scales by the paint alpha
 | |
|         builder.child("child") = fMandrill->makeShader(SkSamplingOptions());
 | |
|         paint.setColor4f({ 1.0f, 1.0f, 1.0f, 0.5f });
 | |
|         paint.setShader(builder.makeShader());
 | |
|         canvas->translate(256, 0);
 | |
|         canvas->drawRect({ 0, 0, 256, 256 }, paint);
 | |
| 
 | |
|     }
 | |
| };
 | |
| DEF_GM(return new DefaultColorRT;)
 | |
| 
 | |
| // Emits coverage for a rounded rectangle whose corners are superellipses defined by the boundary:
 | |
| //
 | |
| //   x^n + y^n == 1
 | |
| //
 | |
| // Where x and y are normalized, clamped coordinates ranging from 0..1 inside the nearest corner's
 | |
| // bounding box.
 | |
| //
 | |
| // See: https://en.wikipedia.org/wiki/Superellipse
 | |
| class ClipSuperRRect : public RuntimeShaderGM {
 | |
| public:
 | |
|     ClipSuperRRect(const char* name, float power) : RuntimeShaderGM(name, {500, 500}, R"(
 | |
|         uniform float power_minus1;
 | |
|         uniform float2 stretch_factor;
 | |
|         uniform float2x2 derivatives;
 | |
|         half4 main(float2 xy) {
 | |
|             xy = max(abs(xy) + stretch_factor, 0);
 | |
|             float2 exp_minus1 = pow(xy, power_minus1.xx);  // If power == 3.5: xy * xy * sqrt(xy)
 | |
|             float f = dot(exp_minus1, xy) - 1;  // f = x^n + y^n - 1
 | |
|             float2 grad = exp_minus1 * derivatives;
 | |
|             float fwidth = abs(grad.x) + abs(grad.y) + 1e-12;  // 1e-12 to avoid a divide by zero.
 | |
|             return half4(saturate(.5 - f/fwidth)); // Approx coverage by riding the gradient to f=0.
 | |
|         }
 | |
|     )"), fPower(power) {}
 | |
| 
 | |
|     void drawSuperRRect(SkCanvas* canvas, const SkRect& superRRect, float radX, float radY,
 | |
|                         SkColor color) {
 | |
|         SkPaint paint;
 | |
|         paint.setColor(color);
 | |
| 
 | |
|         if (fPower == 2) {
 | |
|             // Draw a normal round rect for the sake of testing.
 | |
|             SkRRect rrect = SkRRect::MakeRectXY(superRRect, radX, radY);
 | |
|             paint.setAntiAlias(true);
 | |
|             canvas->drawRRect(rrect, paint);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         SkRuntimeShaderBuilder builder(fEffect);
 | |
|         builder.uniform("power_minus1") = fPower - 1;
 | |
| 
 | |
|         // Size the corners such that the "apex" of our "super" rounded corner is in the same
 | |
|         // location that the apex of a circular rounded corner would be with the given radii. We
 | |
|         // define the apex as the point on the rounded corner that is 45 degrees between the
 | |
|         // horizontal and vertical edges.
 | |
|         float scale = (1 - SK_ScalarRoot2Over2) / (1 - exp2f(-1/fPower));
 | |
|         float cornerWidth = radX * scale;
 | |
|         float cornerHeight = radY * scale;
 | |
|         cornerWidth = std::min(cornerWidth, superRRect.width() * .5f);
 | |
|         cornerHeight = std::min(cornerHeight, superRRect.height() * .5f);
 | |
|         // The stretch factor controls how long the flat edge should be between rounded corners.
 | |
|         builder.uniform("stretch_factor") = SkV2{1 - superRRect.width()*.5f / cornerWidth,
 | |
|                                                  1 - superRRect.height()*.5f / cornerHeight};
 | |
| 
 | |
|         // Calculate a 2x2 "derivatives" matrix that the shader will use to find the gradient.
 | |
|         //
 | |
|         //     f = s^n + t^n - 1   [s,t are "super" rounded corner coords in normalized 0..1 space]
 | |
|         //
 | |
|         //     gradient = [df/dx  df/dy] = [ns^(n-1)  nt^(n-1)] * |ds/dx  ds/dy|
 | |
|         //                                                        |dt/dx  dt/dy|
 | |
|         //
 | |
|         //              = [s^(n-1)  t^(n-1)] * |n  0| * |ds/dx  ds/dy|
 | |
|         //                                     |0  n|   |dt/dx  dt/dy|
 | |
|         //
 | |
|         //              = [s^(n-1)  t^(n-1)] * |2n/cornerWidth   0| * mat2x2(canvasMatrix)^-1
 | |
|         //                                     |0  2n/cornerHeight|
 | |
|         //
 | |
|         //              = [s^(n-1)  t^(n-1)] * "derivatives"
 | |
|         //
 | |
|         const SkMatrix& M = canvas->getTotalMatrix();
 | |
|         float a=M.getScaleX(), b=M.getSkewX(), c=M.getSkewY(), d=M.getScaleY();
 | |
|         float determinant = a*d - b*c;
 | |
|         float dx = fPower / (cornerWidth * determinant);
 | |
|         float dy = fPower / (cornerHeight * determinant);
 | |
|         builder.uniform("derivatives") = SkV4{d*dx, -c*dy, -b*dx, a*dy};
 | |
| 
 | |
|         // This matrix will be inverted by the effect system, giving a matrix that converts local
 | |
|         // coordinates to (almost) coner coordinates. To get the rest of the way to the nearest
 | |
|         // corner's space, the shader will have to take the absolute value, add the stretch_factor,
 | |
|         // then clamp above zero.
 | |
|         SkMatrix cornerToLocal;
 | |
|         cornerToLocal.setScaleTranslate(cornerWidth, cornerHeight, superRRect.centerX(),
 | |
|                                         superRRect.centerY());
 | |
|         canvas->clipShader(builder.makeShader(&cornerToLocal));
 | |
| 
 | |
|         // Bloat the outer edges of the rect we will draw so it contains all the antialiased pixels.
 | |
|         // Bloat by a full pixel instead of half in case Skia is in a mode that draws this rect with
 | |
|         // unexpected AA of its own.
 | |
|         float inverseDet = 1 / fabsf(determinant);
 | |
|         float bloatX = (fabsf(d) + fabsf(c)) * inverseDet;
 | |
|         float bloatY = (fabsf(b) + fabsf(a)) * inverseDet;
 | |
|         canvas->drawRect(superRRect.makeOutset(bloatX, bloatY), paint);
 | |
|     }
 | |
| 
 | |
|     void onDraw(SkCanvas* canvas) override {
 | |
|         SkRandom rand(2);
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->translate(canvas->imageInfo().width() / 2.f, canvas->imageInfo().height() / 2.f);
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->rotate(21);
 | |
|         this->drawSuperRRect(canvas, SkRect::MakeXYWH(-5, 25, 175, 100), 50, 30,
 | |
|                              rand.nextU() | 0xff808080);
 | |
|         canvas->restore();
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->rotate(94);
 | |
|         this->drawSuperRRect(canvas, SkRect::MakeXYWH(95, 75, 125, 100), 30, 30,
 | |
|                              rand.nextU() | 0xff808080);
 | |
|         canvas->restore();
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->rotate(132);
 | |
|         this->drawSuperRRect(canvas, SkRect::MakeXYWH(0, 75, 150, 100), 40, 30,
 | |
|                              rand.nextU() | 0xff808080);
 | |
|         canvas->restore();
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->rotate(282);
 | |
|         this->drawSuperRRect(canvas, SkRect::MakeXYWH(15, -20, 100, 100), 20, 20,
 | |
|                              rand.nextU() | 0xff808080);
 | |
|         canvas->restore();
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->rotate(0);
 | |
|         this->drawSuperRRect(canvas, SkRect::MakeXYWH(140, -50, 90, 110), 25, 25,
 | |
|                              rand.nextU() | 0xff808080);
 | |
|         canvas->restore();
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->rotate(-35);
 | |
|         this->drawSuperRRect(canvas, SkRect::MakeXYWH(160, -60, 60, 90), 18, 18,
 | |
|                              rand.nextU() | 0xff808080);
 | |
|         canvas->restore();
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->rotate(65);
 | |
|         this->drawSuperRRect(canvas, SkRect::MakeXYWH(220, -120, 60, 90), 18, 18,
 | |
|                              rand.nextU() | 0xff808080);
 | |
|         canvas->restore();
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->rotate(265);
 | |
|         this->drawSuperRRect(canvas, SkRect::MakeXYWH(150, -129, 80, 160), 24, 39,
 | |
|                              rand.nextU() | 0xff808080);
 | |
|         canvas->restore();
 | |
| 
 | |
|         canvas->restore();
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     const float fPower;
 | |
| };
 | |
| DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow2", 2);)
 | |
| // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow3", 3);)
 | |
| DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow3.5", 3.5);)
 | |
| // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow4", 4);)
 | |
| // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow4.5", 4.5);)
 | |
| // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow5", 5);)
 | |
| 
 | |
| class LinearGradientRT : public RuntimeShaderGM {
 | |
| public:
 | |
|     LinearGradientRT() : RuntimeShaderGM("linear_gradient_rt", {256 + 10, 128 + 15}, R"(
 | |
|         layout(color) uniform vec4 in_colors0;
 | |
|         layout(color) uniform vec4 in_colors1;
 | |
| 
 | |
|         vec4 main(vec2 p) {
 | |
|             float t = p.x / 256;
 | |
|             if (p.y < 32) {
 | |
|                 return mix(in_colors0, in_colors1, t);
 | |
|             } else {
 | |
|                 vec3 linColor0 = toLinearSrgb(in_colors0.rgb);
 | |
|                 vec3 linColor1 = toLinearSrgb(in_colors1.rgb);
 | |
|                 vec3 linColor = mix(linColor0, linColor1, t);
 | |
|                 return fromLinearSrgb(linColor).rgb1;
 | |
|             }
 | |
|         }
 | |
|     )") {}
 | |
| 
 | |
|     void onDraw(SkCanvas* canvas) override {
 | |
|         // Colors chosen to use values other than 0 and 1 - so that it's obvious if the conversion
 | |
|         // intrinsics are doing anything. (Most transfer functions map 0 -> 0 and 1 -> 1).
 | |
|         SkRuntimeShaderBuilder builder(fEffect);
 | |
|         builder.uniform("in_colors0") = SkColor4f{0.75f, 0.25f, 0.0f, 1.0f};
 | |
|         builder.uniform("in_colors1") = SkColor4f{0.0f, 0.75f, 0.25f, 1.0f};
 | |
|         SkPaint paint;
 | |
|         paint.setShader(builder.makeShader());
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->clear(SK_ColorWHITE);
 | |
|         canvas->translate(5, 5);
 | |
| 
 | |
|         // We draw everything twice. First to a surface with no color management, where the
 | |
|         // intrinsics should do nothing (eg, the top bar should look the same in the top and bottom
 | |
|         // halves). Then to an sRGB surface, where they should produce linearly interpolated
 | |
|         // gradients (the bottom half of the second bar should be brighter than the top half).
 | |
|         for (auto cs : {static_cast<SkColorSpace*>(nullptr), sk_srgb_singleton()}) {
 | |
|             SkImageInfo info = SkImageInfo::Make(
 | |
|                     256, 64, kN32_SkColorType, kPremul_SkAlphaType, sk_ref_sp(cs));
 | |
|             auto surface = canvas->makeSurface(info);
 | |
|             if (!surface) {
 | |
|                 surface = SkSurface::MakeRaster(info);
 | |
|             }
 | |
| 
 | |
|             surface->getCanvas()->drawRect({0, 0, 256, 64}, paint);
 | |
|             canvas->drawImage(surface->makeImageSnapshot(), 0, 0);
 | |
|             canvas->translate(0, 64 + 5);
 | |
|         }
 | |
| 
 | |
|         canvas->restore();
 | |
|     }
 | |
| };
 | |
| DEF_GM(return new LinearGradientRT;)
 | |
| 
 | |
| DEF_SIMPLE_GM(child_sampling_rt, canvas, 256,256) {
 | |
|     static constexpr char scale[] =
 | |
|         "uniform shader child;"
 | |
|         "half4 main(float2 xy) {"
 | |
|         "    return child.eval(xy*0.1);"
 | |
|         "}";
 | |
| 
 | |
|     SkPaint p;
 | |
|     p.setColor(SK_ColorRED);
 | |
|     p.setAntiAlias(true);
 | |
|     p.setStyle(SkPaint::kStroke_Style);
 | |
|     p.setStrokeWidth(1);
 | |
| 
 | |
|     auto surf = SkSurface::MakeRasterN32Premul(100,100);
 | |
|     surf->getCanvas()->drawLine(0, 0, 100, 100, p);
 | |
|     auto shader = surf->makeImageSnapshot()->makeShader(SkSamplingOptions(SkFilterMode::kLinear));
 | |
| 
 | |
|     SkRuntimeShaderBuilder builder(SkRuntimeEffect::MakeForShader(SkString(scale)).effect);
 | |
|     builder.child("child") = shader;
 | |
|     p.setShader(builder.makeShader());
 | |
| 
 | |
|     canvas->drawPaint(p);
 | |
| }
 | |
| 
 | |
| static sk_sp<SkShader> normal_map_shader() {
 | |
|     // Produces a hemispherical normal:
 | |
|     static const char* kSrc = R"(
 | |
|         half4 main(vec2 p) {
 | |
|             p = (p / 256) * 2 - 1;
 | |
|             float p2 = dot(p, p);
 | |
|             vec3 v = (p2 > 1) ? vec3(0, 0, 1) : vec3(p, sqrt(1 - p2));
 | |
|             return (v * 0.5 + 0.5).xyz1;
 | |
|         }
 | |
|     )";
 | |
|     auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect;
 | |
|     return effect->makeShader(nullptr, {});
 | |
| }
 | |
| 
 | |
| static sk_sp<SkImage> normal_map_image() {
 | |
|     // Above, baked into an image:
 | |
|     auto info = SkImageInfo::Make(256, 256, kN32_SkColorType, kPremul_SkAlphaType);
 | |
|     auto surface = SkSurface::MakeRaster(info);
 | |
|     SkPaint p;
 | |
|     p.setShader(normal_map_shader());
 | |
|     surface->getCanvas()->drawPaint(p);
 | |
|     return surface->makeImageSnapshot();
 | |
| }
 | |
| 
 | |
| static sk_sp<SkShader> normal_map_image_shader() {
 | |
|     return normal_map_image()->makeShader(SkSamplingOptions{});
 | |
| }
 | |
| 
 | |
| static sk_sp<SkShader> normal_map_raw_image_shader() {
 | |
|     return normal_map_image()->makeRawShader(SkSamplingOptions{});
 | |
| }
 | |
| 
 | |
| static sk_sp<SkImage> normal_map_unpremul_image() {
 | |
|     auto image = normal_map_image();
 | |
|     SkPixmap pm;
 | |
|     SkAssertResult(image->peekPixels(&pm));
 | |
|     SkBitmap bmp;
 | |
|     bmp.allocPixels(image->imageInfo().makeAlphaType(kUnpremul_SkAlphaType));
 | |
|     // Copy all pixels over, but set alpha to 0
 | |
|     for (int y = 0; y < pm.height(); y++) {
 | |
|         for (int x = 0; x < pm.width(); x++) {
 | |
|             *bmp.getAddr32(x, y) = *pm.addr32(x, y) & 0x00FFFFFF;
 | |
|         }
 | |
|     }
 | |
|     return bmp.asImage();
 | |
| }
 | |
| 
 | |
| static sk_sp<SkShader> normal_map_unpremul_image_shader() {
 | |
|     return normal_map_unpremul_image()->makeShader(SkSamplingOptions{});
 | |
| }
 | |
| 
 | |
| static sk_sp<SkShader> normal_map_raw_unpremul_image_shader() {
 | |
|     return normal_map_unpremul_image()->makeRawShader(SkSamplingOptions{});
 | |
| }
 | |
| 
 | |
| static sk_sp<SkShader> lit_shader(sk_sp<SkShader> normals) {
 | |
|     // Simple N-dot-L against a fixed, directional light:
 | |
|     static const char* kSrc = R"(
 | |
|         uniform shader normals;
 | |
|         half4 main(vec2 p) {
 | |
|             vec3 n = normalize(normals.eval(p).xyz * 2 - 1);
 | |
|             vec3 l = normalize(vec3(1, -1, 1));
 | |
|             return saturate(dot(n, l)).xxx1;
 | |
|         }
 | |
|     )";
 | |
|     auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect;
 | |
|     return effect->makeShader(nullptr, &normals, 1);
 | |
| }
 | |
| 
 | |
| static sk_sp<SkShader> lit_shader_linear(sk_sp<SkShader> normals) {
 | |
|     // Simple N-dot-L against a fixed, directional light, done in linear space:
 | |
|     static const char* kSrc = R"(
 | |
|         uniform shader normals;
 | |
|         half4 main(vec2 p) {
 | |
|             vec3 n = normalize(normals.eval(p).xyz * 2 - 1);
 | |
|             vec3 l = normalize(vec3(1, -1, 1));
 | |
|             return fromLinearSrgb(saturate(dot(n, l)).xxx).xxx1;
 | |
|         }
 | |
|     )";
 | |
|     auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect;
 | |
|     return effect->makeShader(nullptr, &normals, 1);
 | |
| }
 | |
| 
 | |
| DEF_SIMPLE_GM(paint_alpha_normals_rt, canvas, 512,512) {
 | |
|     // Various draws, with non-opaque paint alpha. This demonstrates several issues around how
 | |
|     // paint alpha is applied differently on CPU (globally, after all shaders) and GPU (per shader,
 | |
|     // inconsistently). See: skbug.com/11942
 | |
|     //
 | |
|     // When this works, it will be a demo of applying paint alpha to fade out a complex effect.
 | |
|     auto draw_shader = [=](int x, int y, sk_sp<SkShader> shader) {
 | |
|         SkPaint p;
 | |
|         p.setAlpha(164);
 | |
|         p.setShader(shader);
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->translate(x, y);
 | |
|         canvas->clipRect({0, 0, 256, 256});
 | |
|         canvas->drawPaint(p);
 | |
|         canvas->restore();
 | |
|     };
 | |
| 
 | |
|     draw_shader(0, 0, normal_map_shader());
 | |
|     draw_shader(0, 256, normal_map_image_shader());
 | |
| 
 | |
|     draw_shader(256, 0, lit_shader(normal_map_shader()));
 | |
|     draw_shader(256, 256, lit_shader(normal_map_image_shader()));
 | |
| }
 | |
| 
 | |
| DEF_SIMPLE_GM(raw_image_shader_normals_rt, canvas, 768, 512) {
 | |
|     // Demonstrates the utility of SkImage::makeRawShader, for non-color child shaders.
 | |
| 
 | |
|     // First, make an offscreen surface, so we can control the destination color space:
 | |
|     auto surfInfo = SkImageInfo::Make(512, 512,
 | |
|                                       kN32_SkColorType,
 | |
|                                       kPremul_SkAlphaType,
 | |
|                                       SkColorSpace::MakeSRGB()->makeColorSpin());
 | |
|     auto surface = canvas->makeSurface(surfInfo);
 | |
|     if (!surface) {
 | |
|         surface = SkSurface::MakeRaster(surfInfo);
 | |
|     }
 | |
| 
 | |
|     auto draw_shader = [](int x, int y, sk_sp<SkShader> shader, SkCanvas* canvas) {
 | |
|         SkPaint p;
 | |
|         p.setShader(shader);
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->translate(x, y);
 | |
|         canvas->clipRect({0, 0, 256, 256});
 | |
|         canvas->drawPaint(p);
 | |
|         canvas->restore();
 | |
|     };
 | |
| 
 | |
|     sk_sp<SkShader> colorNormals = normal_map_image_shader(),
 | |
|                     rawNormals = normal_map_raw_image_shader();
 | |
| 
 | |
|     // Draw our normal map as colors (will be color-rotated), and raw (untransformed)
 | |
|     draw_shader(0, 0, colorNormals, surface->getCanvas());
 | |
|     draw_shader(0, 256, rawNormals, surface->getCanvas());
 | |
| 
 | |
|     // Now draw our lighting shader using the normal and raw versions of the normals as children.
 | |
|     // The top image will have the normals rotated (incorrectly), so the lighting is very dark.
 | |
|     draw_shader(256, 0, lit_shader(colorNormals), surface->getCanvas());
 | |
|     draw_shader(256, 256, lit_shader(rawNormals), surface->getCanvas());
 | |
| 
 | |
|     // Now draw the offscreen surface back to our original canvas. If we do this naively, the image
 | |
|     // will be un-transformed back to the canvas' color space. That will have the effect of undoing
 | |
|     // the color spin on the upper-left, and APPLYING a color-spin on the bottom left. To preserve
 | |
|     // the intent of this GM (and make it draw consistently whether or not the original surface has
 | |
|     // a color space attached), we reinterpret the offscreen image as being in sRGB:
 | |
|     canvas->drawImage(
 | |
|             surface->makeImageSnapshot()->reinterpretColorSpace(SkColorSpace::MakeSRGB()), 0, 0);
 | |
| 
 | |
|     // Finally, to demonstrate that raw unpremul image shaders don't premul, draw lighting two more
 | |
|     // times, with an unpremul normal map (containing ZERO in the alpha channel). THe top will
 | |
|     // premultiply the normals, resulting in totally dark lighting. The bottom will retain the RGB
 | |
|     // encoded normals, even with zero alpha:
 | |
|     draw_shader(512, 0, lit_shader(normal_map_unpremul_image_shader()), canvas);
 | |
|     draw_shader(512, 256, lit_shader(normal_map_raw_unpremul_image_shader()), canvas);
 | |
| }
 | |
| 
 | |
| DEF_SIMPLE_GM(lit_shader_linear_rt, canvas, 512, 256) {
 | |
|     // First, make an offscreen surface, so we can control the destination color space:
 | |
|     auto surfInfo = SkImageInfo::Make(512, 256,
 | |
|                                       kN32_SkColorType,
 | |
|                                       kPremul_SkAlphaType,
 | |
|                                       SkColorSpace::MakeSRGB());
 | |
|     auto surface = canvas->makeSurface(surfInfo);
 | |
|     if (!surface) {
 | |
|         surface = SkSurface::MakeRaster(surfInfo);
 | |
|     }
 | |
| 
 | |
|     auto draw_shader = [](int x, int y, sk_sp<SkShader> shader, SkCanvas* canvas) {
 | |
|         SkPaint p;
 | |
|         p.setShader(shader);
 | |
| 
 | |
|         canvas->save();
 | |
|         canvas->translate(x, y);
 | |
|         canvas->clipRect({0, 0, 256, 256});
 | |
|         canvas->drawPaint(p);
 | |
|         canvas->restore();
 | |
|     };
 | |
| 
 | |
|     // We draw two lit spheres - one does math in the working space (so gamma-encoded). The second
 | |
|     // works in linear space, then converts to sRGB. This produces (more accurate) sharp falloff:
 | |
|     draw_shader(0, 0, lit_shader(normal_map_shader()), surface->getCanvas());
 | |
|     draw_shader(256, 0, lit_shader_linear(normal_map_shader()), surface->getCanvas());
 | |
| 
 | |
|     // Now draw the offscreen surface back to our original canvas:
 | |
|     canvas->drawImage(surface->makeImageSnapshot(), 0, 0);
 | |
| }
 | |
| 
 | |
| // skbug.com/13598 GPU was double applying the local matrix.
 | |
| DEF_SIMPLE_GM(local_matrix_shader_rt, canvas, 256, 256) {
 | |
|     SkString passthrough(R"(
 | |
|         uniform shader s;
 | |
|         half4 main(float2 p) { return s.eval(p); }
 | |
|     )");
 | |
|     auto [rte, error] = SkRuntimeEffect::MakeForShader(passthrough, {});
 | |
|     if (!rte) {
 | |
|         SkDebugf("%s\n", error.c_str());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     auto image     = GetResourceAsImage("images/mandrill_128.png");
 | |
|     auto imgShader = image->makeShader(SkSamplingOptions{});
 | |
| 
 | |
|     auto r = SkRect::MakeWH(image->width(), image->height());
 | |
| 
 | |
|     auto lm = SkMatrix::RotateDeg(90.f, {image->width()/2.f, image->height()/2.f});
 | |
| 
 | |
|     SkPaint paint;
 | |
| 
 | |
|     // image
 | |
|     paint.setShader(imgShader);
 | |
|     canvas->drawRect(r, paint);
 | |
| 
 | |
|     // passthrough(image)
 | |
|     canvas->save();
 | |
|     canvas->translate(image->width(), 0);
 | |
|     paint.setShader(rte->makeShader(nullptr, &imgShader, 1));
 | |
|     canvas->drawRect(r, paint);
 | |
|     canvas->restore();
 | |
| 
 | |
|     // localmatrix(image)
 | |
|     canvas->save();
 | |
|     canvas->translate(0, image->height());
 | |
|     paint.setShader(imgShader->makeWithLocalMatrix(lm));
 | |
|     canvas->drawRect(r, paint);
 | |
|     canvas->restore();
 | |
| 
 | |
|     // localmatrix(passthrough(image)) This was the bug.
 | |
|     canvas->save();
 | |
|     canvas->translate(image->width(), image->height());
 | |
|     paint.setShader(rte->makeShader(nullptr, &imgShader, 1)->makeWithLocalMatrix(lm));
 | |
|     canvas->drawRect(r, paint);
 | |
|     canvas->restore();
 | |
| }
 |