380 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
/******************************************************************************
 | 
						|
 *
 | 
						|
 *  Copyright 2014 The Android Open Source Project
 | 
						|
 *  Copyright 2003 - 2004 Open Interface North America, Inc. All rights
 | 
						|
 *                        reserved.
 | 
						|
 *
 | 
						|
 *  Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
 *  you may not use this file except in compliance with the License.
 | 
						|
 *  You may obtain a copy of the License at:
 | 
						|
 *
 | 
						|
 *  http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 *  Unless required by applicable law or agreed to in writing, software
 | 
						|
 *  distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 *  See the License for the specific language governing permissions and
 | 
						|
 *  limitations under the License.
 | 
						|
 *
 | 
						|
 ******************************************************************************/
 | 
						|
 | 
						|
/*******************************************************************************
 | 
						|
  $Revision: #1 $
 | 
						|
 ******************************************************************************/
 | 
						|
 | 
						|
/**
 | 
						|
@file
 | 
						|
 | 
						|
The functions in this file relate to the allocation of available bits to
 | 
						|
subbands within the SBC/eSBC frame, along with support functions for computing
 | 
						|
frame length and bitrate.
 | 
						|
 | 
						|
@ingroup codec_internal
 | 
						|
*/
 | 
						|
 | 
						|
/**
 | 
						|
@addtogroup codec_internal
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
#include <oi_codec_sbc_private.h>
 | 
						|
#include "oi_utils.h"
 | 
						|
 | 
						|
uint32_t OI_SBC_MaxBitpool(OI_CODEC_SBC_FRAME_INFO* frame) {
 | 
						|
  switch (frame->mode) {
 | 
						|
    case SBC_MONO:
 | 
						|
    case SBC_DUAL_CHANNEL:
 | 
						|
      return 16 * frame->nrof_subbands;
 | 
						|
    case SBC_STEREO:
 | 
						|
    case SBC_JOINT_STEREO:
 | 
						|
      return 32 * frame->nrof_subbands;
 | 
						|
  }
 | 
						|
 | 
						|
  ERROR(("Invalid frame mode %d", frame->mode));
 | 
						|
  OI_ASSERT(false);
 | 
						|
  return 0; /* Should never be reached */
 | 
						|
}
 | 
						|
 | 
						|
PRIVATE uint16_t internal_CalculateFramelen(OI_CODEC_SBC_FRAME_INFO* frame) {
 | 
						|
  uint16_t nbits = frame->nrof_blocks * frame->bitpool;
 | 
						|
  uint16_t nrof_subbands = frame->nrof_subbands;
 | 
						|
  uint16_t result = nbits;
 | 
						|
 | 
						|
  if (frame->mode == SBC_JOINT_STEREO) {
 | 
						|
    result += nrof_subbands + (8 * nrof_subbands);
 | 
						|
  } else {
 | 
						|
    if (frame->mode == SBC_DUAL_CHANNEL) {
 | 
						|
      result += nbits;
 | 
						|
    }
 | 
						|
    if (frame->mode == SBC_MONO) {
 | 
						|
      result += 4 * nrof_subbands;
 | 
						|
    } else {
 | 
						|
      result += 8 * nrof_subbands;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SBC_HEADER_LEN + (result + 7) / 8;
 | 
						|
}
 | 
						|
 | 
						|
PRIVATE uint32_t internal_CalculateBitrate(OI_CODEC_SBC_FRAME_INFO* frame) {
 | 
						|
  OI_UINT blocksbands;
 | 
						|
  blocksbands = frame->nrof_subbands * frame->nrof_blocks;
 | 
						|
 | 
						|
  return DIVIDE(8 * internal_CalculateFramelen(frame) * frame->frequency,
 | 
						|
                blocksbands);
 | 
						|
}
 | 
						|
 | 
						|
INLINE uint16_t OI_SBC_CalculateFrameAndHeaderlen(
 | 
						|
    OI_CODEC_SBC_FRAME_INFO* frame, OI_UINT* headerLen_) {
 | 
						|
  OI_UINT headerLen =
 | 
						|
      SBC_HEADER_LEN + frame->nrof_subbands * frame->nrof_channels / 2;
 | 
						|
 | 
						|
  if (frame->mode == SBC_JOINT_STEREO) {
 | 
						|
    headerLen++;
 | 
						|
  }
 | 
						|
 | 
						|
  *headerLen_ = headerLen;
 | 
						|
  return internal_CalculateFramelen(frame);
 | 
						|
}
 | 
						|
 | 
						|
#define MIN(x, y) ((x) < (y) ? (x) : (y))
 | 
						|
 | 
						|
/*
 | 
						|
 * Computes the bit need for each sample and as also returns a counts of bit
 | 
						|
 * needs that are greater than one. This count is used in the first phase of bit
 | 
						|
 * allocation.
 | 
						|
 *
 | 
						|
 * We also compute a preferred bitpool value that this is the minimum bitpool
 | 
						|
 * needed to guarantee lossless representation of the audio data. The preferred
 | 
						|
 * bitpool may be larger than the bits actually required but the only input we
 | 
						|
 * have are the scale factors. For example, it takes 2 bits to represent values
 | 
						|
 * in the range -1 .. +1 but the scale factor is 0. To guarantee lossless
 | 
						|
 * representation we add 2 to each scale factor and sum them to come up with the
 | 
						|
 * preferred bitpool. This is not ideal because 0 requires 0 bits but we
 | 
						|
 * currently have no way of knowing this.
 | 
						|
 *
 | 
						|
 * @param bitneed       Array to return bitneeds for each subband
 | 
						|
 *
 | 
						|
 * @param ch            Channel 0 or 1
 | 
						|
 *
 | 
						|
 * @param preferredBitpool  Returns the number of reserved bits
 | 
						|
 *
 | 
						|
 * @return              The SBC bit need
 | 
						|
 *
 | 
						|
 */
 | 
						|
OI_UINT computeBitneed(OI_CODEC_SBC_COMMON_CONTEXT* common, uint8_t* bitneeds,
 | 
						|
                       OI_UINT ch, OI_UINT* preferredBitpool) {
 | 
						|
  static const int8_t offset4[4][4] = {
 | 
						|
      {-1, 0, 0, 0}, {-2, 0, 0, 1}, {-2, 0, 0, 1}, {-2, 0, 0, 1}};
 | 
						|
 | 
						|
  static const int8_t offset8[4][8] = {{-2, 0, 0, 0, 0, 0, 0, 1},
 | 
						|
                                       {-3, 0, 0, 0, 0, 0, 1, 2},
 | 
						|
                                       {-4, 0, 0, 0, 0, 0, 1, 2},
 | 
						|
                                       {-4, 0, 0, 0, 0, 0, 1, 2}};
 | 
						|
 | 
						|
  const OI_UINT nrof_subbands = common->frameInfo.nrof_subbands;
 | 
						|
  OI_UINT sb;
 | 
						|
  int8_t* scale_factor = &common->scale_factor[ch ? nrof_subbands : 0];
 | 
						|
  OI_UINT bitcount = 0;
 | 
						|
  uint8_t maxBits = 0;
 | 
						|
  uint8_t prefBits = 0;
 | 
						|
 | 
						|
  if (common->frameInfo.alloc == SBC_SNR) {
 | 
						|
    for (sb = 0; sb < nrof_subbands; sb++) {
 | 
						|
      OI_INT bits = scale_factor[sb];
 | 
						|
      if (bits > maxBits) {
 | 
						|
        maxBits = bits;
 | 
						|
      }
 | 
						|
      bitneeds[sb] = bits;
 | 
						|
      if (bitneeds[sb] > 1) {
 | 
						|
        bitcount += bits;
 | 
						|
      }
 | 
						|
      prefBits += 2 + bits;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    const int8_t* offset;
 | 
						|
    if (nrof_subbands == 4) {
 | 
						|
      offset = offset4[common->frameInfo.freqIndex];
 | 
						|
    } else {
 | 
						|
      offset = offset8[common->frameInfo.freqIndex];
 | 
						|
    }
 | 
						|
    for (sb = 0; sb < nrof_subbands; sb++) {
 | 
						|
      OI_INT bits = scale_factor[sb];
 | 
						|
      if (bits > maxBits) {
 | 
						|
        maxBits = bits;
 | 
						|
      }
 | 
						|
      prefBits += 2 + bits;
 | 
						|
      if (bits) {
 | 
						|
        bits -= offset[sb];
 | 
						|
        if (bits > 0) {
 | 
						|
          bits /= 2;
 | 
						|
        }
 | 
						|
        bits += 5;
 | 
						|
      }
 | 
						|
      bitneeds[sb] = bits;
 | 
						|
      if (bitneeds[sb] > 1) {
 | 
						|
        bitcount += bits;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  common->maxBitneed = OI_MAX(maxBits, common->maxBitneed);
 | 
						|
  *preferredBitpool += prefBits;
 | 
						|
  return bitcount;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Explanation of the adjustToFitBitpool inner loop.
 | 
						|
 *
 | 
						|
 * The inner loop computes the effect of adjusting the bit allocation up or
 | 
						|
 * down. Allocations must be 0 or in the range 2..16. This is accomplished by
 | 
						|
 * the following code:
 | 
						|
 *
 | 
						|
 *           for (s = bands - 1; s >= 0; --s) {
 | 
						|
 *              OI_INT bits = bitadjust + bitneeds[s];
 | 
						|
 *              bits = bits < 2 ? 0 : bits;
 | 
						|
 *              bits = bits > 16 ? 16 : bits;
 | 
						|
 *              count += bits;
 | 
						|
 *          }
 | 
						|
 *
 | 
						|
 * This loop can be optimized to perform 4 operations at a time as follows:
 | 
						|
 *
 | 
						|
 * Adjustment is computed as a 7 bit signed value and added to the bitneed.
 | 
						|
 *
 | 
						|
 * Negative allocations are zeroed by masking. (n & 0x40) >> 6 puts the
 | 
						|
 * sign bit into bit 0, adding this to 0x7F give us a mask of 0x80
 | 
						|
 * for -ve values and 0x7F for +ve values.
 | 
						|
 *
 | 
						|
 * n &= 0x7F + (n & 0x40) >> 6)
 | 
						|
 *
 | 
						|
 * Allocations greater than 16 are truncated to 16. Adjusted allocations are in
 | 
						|
 * the range 0..31 so we know that bit 4 indicates values >= 16. We use this bit
 | 
						|
 * to create a mask that zeroes bits 0 .. 3 if bit 4 is set.
 | 
						|
 *
 | 
						|
 * n &= (15 + (n >> 4))
 | 
						|
 *
 | 
						|
 * Allocations of 1 are disallowed. Add and shift creates a mask that
 | 
						|
 * eliminates the illegal value
 | 
						|
 *
 | 
						|
 * n &= ((n + 14) >> 4) | 0x1E
 | 
						|
 *
 | 
						|
 * These operations can be performed in 8 bits without overflowing so we can
 | 
						|
 * operate on 4 values at once.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Encoder/Decoder
 | 
						|
 *
 | 
						|
 * Computes adjustment +/- of bitneeds to fill bitpool and returns overall
 | 
						|
 * adjustment and excess bits.
 | 
						|
 *
 | 
						|
 * @param bitpool   The bitpool we have to work within
 | 
						|
 *
 | 
						|
 * @param bitneeds  An array of bit needs (more acturately allocation
 | 
						|
 *                  prioritities) for each subband across all blocks in the SBC
 | 
						|
 *                  frame
 | 
						|
 *
 | 
						|
 * @param subbands  The number of subbands over which the adkustment is
 | 
						|
 *                  calculated. For mono and dual mode this is 4 or 8, for
 | 
						|
 *                  stereo or joint stereo this is 8 or 16.
 | 
						|
 *
 | 
						|
 * @param bitcount  A starting point for the adjustment
 | 
						|
 *
 | 
						|
 * @param excess    Returns the excess bits after the adjustment
 | 
						|
 *
 | 
						|
 * @return   The adjustment.
 | 
						|
 */
 | 
						|
OI_INT adjustToFitBitpool(const OI_UINT bitpool, uint32_t* bitneeds,
 | 
						|
                          const OI_UINT subbands, OI_UINT bitcount,
 | 
						|
                          OI_UINT* excess) {
 | 
						|
  OI_INT maxBitadjust = 0;
 | 
						|
  OI_INT bitadjust = (bitcount > bitpool) ? -8 : 8;
 | 
						|
  OI_INT chop = 8;
 | 
						|
 | 
						|
  /*
 | 
						|
   * This is essentially a binary search for the optimal adjustment value.
 | 
						|
   */
 | 
						|
  while ((bitcount != bitpool) && chop) {
 | 
						|
    uint32_t total = 0;
 | 
						|
    OI_UINT count;
 | 
						|
    uint32_t adjust4;
 | 
						|
    OI_INT i;
 | 
						|
 | 
						|
    adjust4 = bitadjust & 0x7F;
 | 
						|
    adjust4 |= (adjust4 << 8);
 | 
						|
    adjust4 |= (adjust4 << 16);
 | 
						|
 | 
						|
    for (i = (subbands / 4 - 1); i >= 0; --i) {
 | 
						|
      uint32_t mask;
 | 
						|
      uint32_t n = bitneeds[i] + adjust4;
 | 
						|
      mask = 0x7F7F7F7F + ((n & 0x40404040) >> 6);
 | 
						|
      n &= mask;
 | 
						|
      mask = 0x0F0F0F0F + ((n & 0x10101010) >> 4);
 | 
						|
      n &= mask;
 | 
						|
      mask = (((n + 0x0E0E0E0E) >> 4) | 0x1E1E1E1E);
 | 
						|
      n &= mask;
 | 
						|
      total += n;
 | 
						|
    }
 | 
						|
 | 
						|
    count = (total & 0xFFFF) + (total >> 16);
 | 
						|
    count = (count & 0xFF) + (count >> 8);
 | 
						|
 | 
						|
    chop >>= 1;
 | 
						|
    if (count > bitpool) {
 | 
						|
      bitadjust -= chop;
 | 
						|
    } else {
 | 
						|
      maxBitadjust = bitadjust;
 | 
						|
      bitcount = count;
 | 
						|
      bitadjust += chop;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  *excess = bitpool - bitcount;
 | 
						|
 | 
						|
  return maxBitadjust;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The bit allocator trys to avoid single bit allocations except as a last
 | 
						|
 * resort. So in the case where a bitneed of 1 was passed over during the
 | 
						|
 * adsjustment phase 2 bits are now allocated.
 | 
						|
 */
 | 
						|
INLINE OI_INT allocAdjustedBits(uint8_t* dest, OI_INT bits, OI_INT excess) {
 | 
						|
  if (bits < 16) {
 | 
						|
    if (bits > 1) {
 | 
						|
      if (excess) {
 | 
						|
        ++bits;
 | 
						|
        --excess;
 | 
						|
      }
 | 
						|
    } else if ((bits == 1) && (excess > 1)) {
 | 
						|
      bits = 2;
 | 
						|
      excess -= 2;
 | 
						|
    } else {
 | 
						|
      bits = 0;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    bits = 16;
 | 
						|
  }
 | 
						|
  *dest = (uint8_t)bits;
 | 
						|
  return excess;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Excess bits not allocated by allocaAdjustedBits are allocated round-robin.
 | 
						|
 */
 | 
						|
INLINE OI_INT allocExcessBits(uint8_t* dest, OI_INT excess) {
 | 
						|
  if (*dest < 16) {
 | 
						|
    *dest += 1;
 | 
						|
    return excess - 1;
 | 
						|
  } else {
 | 
						|
    return excess;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void oneChannelBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT* common,
 | 
						|
                             BITNEED_UNION1* bitneeds, OI_UINT ch,
 | 
						|
                             OI_UINT bitcount) {
 | 
						|
  const uint8_t nrof_subbands = common->frameInfo.nrof_subbands;
 | 
						|
  OI_UINT excess;
 | 
						|
  OI_UINT sb;
 | 
						|
  OI_INT bitadjust;
 | 
						|
  uint8_t RESTRICT* allocBits;
 | 
						|
 | 
						|
  {
 | 
						|
    OI_UINT ex;
 | 
						|
    bitadjust = adjustToFitBitpool(common->frameInfo.bitpool, bitneeds->uint32,
 | 
						|
                                   nrof_subbands, bitcount, &ex);
 | 
						|
    /* We want the compiler to put excess into a register */
 | 
						|
    excess = ex;
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
   * Allocate adjusted bits
 | 
						|
   */
 | 
						|
  allocBits = &common->bits.uint8[ch ? nrof_subbands : 0];
 | 
						|
 | 
						|
  sb = 0;
 | 
						|
  while (sb < nrof_subbands) {
 | 
						|
    excess = allocAdjustedBits(&allocBits[sb], bitneeds->uint8[sb] + bitadjust,
 | 
						|
                               excess);
 | 
						|
    ++sb;
 | 
						|
  }
 | 
						|
  sb = 0;
 | 
						|
  while (excess) {
 | 
						|
    excess = allocExcessBits(&allocBits[sb], excess);
 | 
						|
    ++sb;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void monoBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT* common) {
 | 
						|
  BITNEED_UNION1 bitneeds;
 | 
						|
  OI_UINT bitcount;
 | 
						|
  OI_UINT bitpoolPreference = 0;
 | 
						|
 | 
						|
  bitcount = computeBitneed(common, bitneeds.uint8, 0, &bitpoolPreference);
 | 
						|
 | 
						|
  oneChannelBitAllocation(common, &bitneeds, 0, bitcount);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
@}
 | 
						|
*/
 |