2088 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2088 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2008 The Android Open Source Project
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *  * Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *  * Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | |
|  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | |
|  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
|  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | |
|  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 | |
|  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 | |
|  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
|  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 | |
|  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #define LOG_TAG "resolv"
 | |
| 
 | |
| #include "resolv_cache.h"
 | |
| 
 | |
| #include <resolv.h>
 | |
| #include <stdarg.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <time.h>
 | |
| #include <algorithm>
 | |
| #include <mutex>
 | |
| #include <set>
 | |
| #include <string>
 | |
| #include <unordered_map>
 | |
| #include <vector>
 | |
| 
 | |
| #include <arpa/inet.h>
 | |
| #include <arpa/nameser.h>
 | |
| #include <errno.h>
 | |
| #include <linux/if.h>
 | |
| #include <net/if.h>
 | |
| #include <netdb.h>
 | |
| 
 | |
| #include <aidl/android/net/IDnsResolver.h>
 | |
| #include <android-base/logging.h>
 | |
| #include <android-base/parseint.h>
 | |
| #include <android-base/strings.h>
 | |
| #include <android-base/thread_annotations.h>
 | |
| #include <android/multinetwork.h>  // ResNsendFlags
 | |
| 
 | |
| #include <server_configurable_flags/get_flags.h>
 | |
| 
 | |
| #include "DnsStats.h"
 | |
| #include "Experiments.h"
 | |
| #include "res_comp.h"
 | |
| #include "res_debug.h"
 | |
| #include "resolv_private.h"
 | |
| #include "util.h"
 | |
| 
 | |
| using aidl::android::net::IDnsResolver;
 | |
| using aidl::android::net::ResolverOptionsParcel;
 | |
| using android::net::DnsQueryEvent;
 | |
| using android::net::DnsStats;
 | |
| using android::net::Experiments;
 | |
| using android::net::PROTO_DOH;
 | |
| using android::net::PROTO_DOT;
 | |
| using android::net::PROTO_MDNS;
 | |
| using android::net::PROTO_TCP;
 | |
| using android::net::PROTO_UDP;
 | |
| using android::net::Protocol;
 | |
| using android::netdutils::DumpWriter;
 | |
| using android::netdutils::IPSockAddr;
 | |
| using std::span;
 | |
| 
 | |
| /* This code implements a small and *simple* DNS resolver cache.
 | |
|  *
 | |
|  * It is only used to cache DNS answers for a time defined by the smallest TTL
 | |
|  * among the answer records in order to reduce DNS traffic. It is not supposed
 | |
|  * to be a full DNS cache, since we plan to implement that in the future in a
 | |
|  * dedicated process running on the system.
 | |
|  *
 | |
|  * Note that its design is kept simple very intentionally, i.e.:
 | |
|  *
 | |
|  *  - it takes raw DNS query packet data as input, and returns raw DNS
 | |
|  *    answer packet data as output
 | |
|  *
 | |
|  *    (this means that two similar queries that encode the DNS name
 | |
|  *     differently will be treated distinctly).
 | |
|  *
 | |
|  *    the smallest TTL value among the answer records are used as the time
 | |
|  *    to keep an answer in the cache.
 | |
|  *
 | |
|  *    this is bad, but we absolutely want to avoid parsing the answer packets
 | |
|  *    (and should be solved by the later full DNS cache process).
 | |
|  *
 | |
|  *  - the implementation is just a (query-data) => (answer-data) hash table
 | |
|  *    with a trivial least-recently-used expiration policy.
 | |
|  *
 | |
|  * Doing this keeps the code simple and avoids to deal with a lot of things
 | |
|  * that a full DNS cache is expected to do.
 | |
|  *
 | |
|  * The API is also very simple:
 | |
|  *
 | |
|  *   - the client calls resolv_cache_lookup() before performing a query
 | |
|  *
 | |
|  *     If the function returns RESOLV_CACHE_FOUND, a copy of the answer data
 | |
|  *     has been copied into the client-provided answer buffer.
 | |
|  *
 | |
|  *     If the function returns RESOLV_CACHE_NOTFOUND, the client should perform
 | |
|  *     a request normally, *then* call resolv_cache_add() to add the received
 | |
|  *     answer to the cache.
 | |
|  *
 | |
|  *     If the function returns RESOLV_CACHE_UNSUPPORTED, the client should
 | |
|  *     perform a request normally, and *not* call resolv_cache_add()
 | |
|  *
 | |
|  *     Note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
 | |
|  *     is too short to accomodate the cached result.
 | |
|  */
 | |
| 
 | |
| /* Default number of entries kept in the cache. This value has been
 | |
|  * determined by browsing through various sites and counting the number
 | |
|  * of corresponding requests. Keep in mind that our framework is currently
 | |
|  * performing two requests per name lookup (one for IPv4, the other for IPv6)
 | |
|  *
 | |
|  *    www.google.com      4
 | |
|  *    www.ysearch.com     6
 | |
|  *    www.amazon.com      8
 | |
|  *    www.nytimes.com     22
 | |
|  *    www.espn.com        28
 | |
|  *    www.msn.com         28
 | |
|  *    www.lemonde.fr      35
 | |
|  *
 | |
|  * (determined in 2009-2-17 from Paris, France, results may vary depending
 | |
|  *  on location)
 | |
|  *
 | |
|  * most high-level websites use lots of media/ad servers with different names
 | |
|  * but these are generally reused when browsing through the site.
 | |
|  *
 | |
|  * As such, a value of 64 should be relatively comfortable at the moment.
 | |
|  *
 | |
|  * ******************************************
 | |
|  * * NOTE - this has changed.
 | |
|  * * 1) we've added IPv6 support so each dns query results in 2 responses
 | |
|  * * 2) we've made this a system-wide cache, so the cost is less (it's not
 | |
|  * *    duplicated in each process) and the need is greater (more processes
 | |
|  * *    making different requests).
 | |
|  * * Upping by 2x for IPv6
 | |
|  * * Upping by another 5x for the centralized nature
 | |
|  * *****************************************
 | |
|  */
 | |
| const int CONFIG_MAX_ENTRIES = 64 * 2 * 5;
 | |
| constexpr int DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY = -1;
 | |
| 
 | |
| static time_t _time_now(void) {
 | |
|     struct timeval tv;
 | |
| 
 | |
|     gettimeofday(&tv, NULL);
 | |
|     return tv.tv_sec;
 | |
| }
 | |
| 
 | |
| /* reminder: the general format of a DNS packet is the following:
 | |
|  *
 | |
|  *    HEADER  (12 bytes)
 | |
|  *    QUESTION  (variable)
 | |
|  *    ANSWER (variable)
 | |
|  *    AUTHORITY (variable)
 | |
|  *    ADDITIONNAL (variable)
 | |
|  *
 | |
|  * the HEADER is made of:
 | |
|  *
 | |
|  *   ID     : 16 : 16-bit unique query identification field
 | |
|  *
 | |
|  *   QR     :  1 : set to 0 for queries, and 1 for responses
 | |
|  *   Opcode :  4 : set to 0 for queries
 | |
|  *   AA     :  1 : set to 0 for queries
 | |
|  *   TC     :  1 : truncation flag, will be set to 0 in queries
 | |
|  *   RD     :  1 : recursion desired
 | |
|  *
 | |
|  *   RA     :  1 : recursion available (0 in queries)
 | |
|  *   Z      :  3 : three reserved zero bits
 | |
|  *   RCODE  :  4 : response code (always 0=NOERROR in queries)
 | |
|  *
 | |
|  *   QDCount: 16 : question count
 | |
|  *   ANCount: 16 : Answer count (0 in queries)
 | |
|  *   NSCount: 16: Authority Record count (0 in queries)
 | |
|  *   ARCount: 16: Additionnal Record count (0 in queries)
 | |
|  *
 | |
|  * the QUESTION is made of QDCount Question Record (QRs)
 | |
|  * the ANSWER is made of ANCount RRs
 | |
|  * the AUTHORITY is made of NSCount RRs
 | |
|  * the ADDITIONNAL is made of ARCount RRs
 | |
|  *
 | |
|  * Each Question Record (QR) is made of:
 | |
|  *
 | |
|  *   QNAME   : variable : Query DNS NAME
 | |
|  *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
 | |
|  *   CLASS   : 16       : class of query (IN=1)
 | |
|  *
 | |
|  * Each Resource Record (RR) is made of:
 | |
|  *
 | |
|  *   NAME    : variable : DNS NAME
 | |
|  *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
 | |
|  *   CLASS   : 16       : class of query (IN=1)
 | |
|  *   TTL     : 32       : seconds to cache this RR (0=none)
 | |
|  *   RDLENGTH: 16       : size of RDDATA in bytes
 | |
|  *   RDDATA  : variable : RR data (depends on TYPE)
 | |
|  *
 | |
|  * Each QNAME contains a domain name encoded as a sequence of 'labels'
 | |
|  * terminated by a zero. Each label has the following format:
 | |
|  *
 | |
|  *    LEN  : 8     : lenght of label (MUST be < 64)
 | |
|  *    NAME : 8*LEN : label length (must exclude dots)
 | |
|  *
 | |
|  * A value of 0 in the encoding is interpreted as the 'root' domain and
 | |
|  * terminates the encoding. So 'www.android.com' will be encoded as:
 | |
|  *
 | |
|  *   <3>www<7>android<3>com<0>
 | |
|  *
 | |
|  * Where <n> represents the byte with value 'n'
 | |
|  *
 | |
|  * Each NAME reflects the QNAME of the question, but has a slightly more
 | |
|  * complex encoding in order to provide message compression. This is achieved
 | |
|  * by using a 2-byte pointer, with format:
 | |
|  *
 | |
|  *    TYPE   : 2  : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
 | |
|  *    OFFSET : 14 : offset to another part of the DNS packet
 | |
|  *
 | |
|  * The offset is relative to the start of the DNS packet and must point
 | |
|  * A pointer terminates the encoding.
 | |
|  *
 | |
|  * The NAME can be encoded in one of the following formats:
 | |
|  *
 | |
|  *   - a sequence of simple labels terminated by 0 (like QNAMEs)
 | |
|  *   - a single pointer
 | |
|  *   - a sequence of simple labels terminated by a pointer
 | |
|  *
 | |
|  * A pointer shall always point to either a pointer of a sequence of
 | |
|  * labels (which can themselves be terminated by either a 0 or a pointer)
 | |
|  *
 | |
|  * The expanded length of a given domain name should not exceed 255 bytes.
 | |
|  *
 | |
|  * NOTE: we don't parse the answer packets, so don't need to deal with NAME
 | |
|  *       records, only QNAMEs.
 | |
|  */
 | |
| 
 | |
| #define DNS_HEADER_SIZE 12
 | |
| 
 | |
| #define DNS_TYPE_A "\00\01"     /* big-endian decimal 1 */
 | |
| #define DNS_TYPE_PTR "\00\014"  /* big-endian decimal 12 */
 | |
| #define DNS_TYPE_MX "\00\017"   /* big-endian decimal 15 */
 | |
| #define DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
 | |
| #define DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
 | |
| 
 | |
| #define DNS_CLASS_IN "\00\01" /* big-endian decimal 1 */
 | |
| 
 | |
| struct DnsPacket {
 | |
|     const uint8_t* base;
 | |
|     const uint8_t* end;
 | |
|     const uint8_t* cursor;
 | |
| };
 | |
| 
 | |
| static uint8_t res_tolower(uint8_t c) {
 | |
|     return (c >= 'A' && c <= 'Z') ? (c | 0x20) : c;
 | |
| }
 | |
| 
 | |
| static int res_memcasecmp(const unsigned char *s1, const unsigned char *s2, size_t len) {
 | |
|     for (size_t i = 0; i < len; i++) {
 | |
|         int ch1 = *s1++;
 | |
|         int ch2 = *s2++;
 | |
|         int d = res_tolower(ch1) - res_tolower(ch2);
 | |
|         if (d != 0) {
 | |
|             return d;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void _dnsPacket_init(DnsPacket* packet, const uint8_t* buff, int bufflen) {
 | |
|     packet->base = buff;
 | |
|     packet->end = buff + bufflen;
 | |
|     packet->cursor = buff;
 | |
| }
 | |
| 
 | |
| static void _dnsPacket_rewind(DnsPacket* packet) {
 | |
|     packet->cursor = packet->base;
 | |
| }
 | |
| 
 | |
| static void _dnsPacket_skip(DnsPacket* packet, int count) {
 | |
|     const uint8_t* p = packet->cursor + count;
 | |
| 
 | |
|     if (p > packet->end) p = packet->end;
 | |
| 
 | |
|     packet->cursor = p;
 | |
| }
 | |
| 
 | |
| static int _dnsPacket_readInt16(DnsPacket* packet) {
 | |
|     const uint8_t* p = packet->cursor;
 | |
| 
 | |
|     if (p + 2 > packet->end) return -1;
 | |
| 
 | |
|     packet->cursor = p + 2;
 | |
|     return (p[0] << 8) | p[1];
 | |
| }
 | |
| 
 | |
| /** QUERY CHECKING **/
 | |
| 
 | |
| /* check bytes in a dns packet. returns 1 on success, 0 on failure.
 | |
|  * the cursor is only advanced in the case of success
 | |
|  */
 | |
| static int _dnsPacket_checkBytes(DnsPacket* packet, int numBytes, const void* bytes) {
 | |
|     const uint8_t* p = packet->cursor;
 | |
| 
 | |
|     if (p + numBytes > packet->end) return 0;
 | |
| 
 | |
|     if (memcmp(p, bytes, numBytes) != 0) return 0;
 | |
| 
 | |
|     packet->cursor = p + numBytes;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* parse and skip a given QNAME stored in a query packet,
 | |
|  * from the current cursor position. returns 1 on success,
 | |
|  * or 0 for malformed data.
 | |
|  */
 | |
| static int _dnsPacket_checkQName(DnsPacket* packet) {
 | |
|     const uint8_t* p = packet->cursor;
 | |
|     const uint8_t* end = packet->end;
 | |
| 
 | |
|     for (;;) {
 | |
|         int c;
 | |
| 
 | |
|         if (p >= end) break;
 | |
| 
 | |
|         c = *p++;
 | |
| 
 | |
|         if (c == 0) {
 | |
|             packet->cursor = p;
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         /* we don't expect label compression in QNAMEs */
 | |
|         if (c >= 64) break;
 | |
| 
 | |
|         p += c;
 | |
|         /* we rely on the bound check at the start
 | |
|          * of the loop here */
 | |
|     }
 | |
|     /* malformed data */
 | |
|     LOG(INFO) << __func__ << ": malformed QNAME";
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* parse and skip a given QR stored in a packet.
 | |
|  * returns 1 on success, and 0 on failure
 | |
|  */
 | |
| static int _dnsPacket_checkQR(DnsPacket* packet) {
 | |
|     if (!_dnsPacket_checkQName(packet)) return 0;
 | |
| 
 | |
|     /* TYPE must be one of the things we support */
 | |
|     if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
 | |
|         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
 | |
|         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
 | |
|         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
 | |
|         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL)) {
 | |
|         LOG(INFO) << __func__ << ": unsupported TYPE";
 | |
|         return 0;
 | |
|     }
 | |
|     /* CLASS must be IN */
 | |
|     if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
 | |
|         LOG(INFO) << __func__ << ": unsupported CLASS";
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* check the header of a DNS Query packet, return 1 if it is one
 | |
|  * type of query we can cache, or 0 otherwise
 | |
|  */
 | |
| static int _dnsPacket_checkQuery(DnsPacket* packet) {
 | |
|     const uint8_t* p = packet->base;
 | |
|     int qdCount, anCount, dnCount, arCount;
 | |
| 
 | |
|     if (p + DNS_HEADER_SIZE > packet->end) {
 | |
|         LOG(INFO) << __func__ << ": query packet too small";
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* QR must be set to 0, opcode must be 0 and AA must be 0 */
 | |
|     /* RA, Z, and RCODE must be 0 */
 | |
|     if ((p[2] & 0xFC) != 0 || (p[3] & 0xCF) != 0) {
 | |
|         LOG(INFO) << __func__ << ": query packet flags unsupported";
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Note that we ignore the TC, RD, CD, and AD bits here for the
 | |
|      * following reasons:
 | |
|      *
 | |
|      * - there is no point for a query packet sent to a server
 | |
|      *   to have the TC bit set, but the implementation might
 | |
|      *   set the bit in the query buffer for its own needs
 | |
|      *   between a resolv_cache_lookup and a resolv_cache_add.
 | |
|      *   We should not freak out if this is the case.
 | |
|      *
 | |
|      * - we consider that the result from a query might depend on
 | |
|      *   the RD, AD, and CD bits, so these bits
 | |
|      *   should be used to differentiate cached result.
 | |
|      *
 | |
|      *   this implies that these bits are checked when hashing or
 | |
|      *   comparing query packets, but not TC
 | |
|      */
 | |
| 
 | |
|     /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
 | |
|     qdCount = (p[4] << 8) | p[5];
 | |
|     anCount = (p[6] << 8) | p[7];
 | |
|     dnCount = (p[8] << 8) | p[9];
 | |
|     arCount = (p[10] << 8) | p[11];
 | |
| 
 | |
|     if (anCount != 0 || dnCount != 0 || arCount > 1) {
 | |
|         LOG(INFO) << __func__ << ": query packet contains non-query records";
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (qdCount == 0) {
 | |
|         LOG(INFO) << __func__ << ": query packet doesn't contain query record";
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Check QDCOUNT QRs */
 | |
|     packet->cursor = p + DNS_HEADER_SIZE;
 | |
| 
 | |
|     for (; qdCount > 0; qdCount--)
 | |
|         if (!_dnsPacket_checkQR(packet)) return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /** QUERY HASHING SUPPORT
 | |
|  **
 | |
|  ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
 | |
|  ** BEEN SUCCESFULLY CHECKED.
 | |
|  **/
 | |
| 
 | |
| /* use 32-bit FNV hash function */
 | |
| #define FNV_MULT 16777619U
 | |
| #define FNV_BASIS 2166136261U
 | |
| 
 | |
| static unsigned _dnsPacket_hashBytes(DnsPacket* packet, int numBytes, unsigned hash) {
 | |
|     const uint8_t* p = packet->cursor;
 | |
|     const uint8_t* end = packet->end;
 | |
| 
 | |
|     while (numBytes > 0 && p < end) {
 | |
|         hash = hash * FNV_MULT ^ *p++;
 | |
|         numBytes--;
 | |
|     }
 | |
|     packet->cursor = p;
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static unsigned _dnsPacket_hashQName(DnsPacket* packet, unsigned hash) {
 | |
|     const uint8_t* p = packet->cursor;
 | |
|     const uint8_t* end = packet->end;
 | |
| 
 | |
|     for (;;) {
 | |
|         if (p >= end) { /* should not happen */
 | |
|             LOG(INFO) << __func__ << ": INTERNAL_ERROR: read-overflow";
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         int c = *p++;
 | |
| 
 | |
|         if (c == 0) break;
 | |
| 
 | |
|         if (c >= 64) {
 | |
|             LOG(INFO) << __func__ << ": INTERNAL_ERROR: malformed domain";
 | |
|             break;
 | |
|         }
 | |
|         if (p + c >= end) {
 | |
|             LOG(INFO) << __func__ << ": INTERNAL_ERROR: simple label read-overflow";
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         while (c > 0) {
 | |
|             uint8_t ch = *p++;
 | |
|             ch = res_tolower(ch);
 | |
|             hash = hash * FNV_MULT ^ ch;
 | |
|             c--;
 | |
|         }
 | |
|     }
 | |
|     packet->cursor = p;
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static unsigned _dnsPacket_hashQR(DnsPacket* packet, unsigned hash) {
 | |
|     hash = _dnsPacket_hashQName(packet, hash);
 | |
|     hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static unsigned _dnsPacket_hashRR(DnsPacket* packet, unsigned hash) {
 | |
|     int rdlength;
 | |
|     hash = _dnsPacket_hashQR(packet, hash);
 | |
|     hash = _dnsPacket_hashBytes(packet, 4, hash); /* TTL */
 | |
|     rdlength = _dnsPacket_readInt16(packet);
 | |
|     hash = _dnsPacket_hashBytes(packet, rdlength, hash); /* RDATA */
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static unsigned _dnsPacket_hashQuery(DnsPacket* packet) {
 | |
|     unsigned hash = FNV_BASIS;
 | |
|     int count, arcount;
 | |
|     _dnsPacket_rewind(packet);
 | |
| 
 | |
|     /* ignore the ID */
 | |
|     _dnsPacket_skip(packet, 2);
 | |
| 
 | |
|     /* we ignore the TC bit for reasons explained in
 | |
|      * _dnsPacket_checkQuery().
 | |
|      *
 | |
|      * however we hash the RD bit to differentiate
 | |
|      * between answers for recursive and non-recursive
 | |
|      * queries.
 | |
|      */
 | |
|     hash = hash * FNV_MULT ^ (packet->base[2] & 1);
 | |
| 
 | |
|     /* mark the first header byte as processed */
 | |
|     _dnsPacket_skip(packet, 1);
 | |
| 
 | |
|     /* process the second header byte */
 | |
|     hash = _dnsPacket_hashBytes(packet, 1, hash);
 | |
| 
 | |
|     /* read QDCOUNT */
 | |
|     count = _dnsPacket_readInt16(packet);
 | |
| 
 | |
|     /* assume: ANcount and NScount are 0 */
 | |
|     _dnsPacket_skip(packet, 4);
 | |
| 
 | |
|     /* read ARCOUNT */
 | |
|     arcount = _dnsPacket_readInt16(packet);
 | |
| 
 | |
|     /* hash QDCOUNT QRs */
 | |
|     for (; count > 0; count--) hash = _dnsPacket_hashQR(packet, hash);
 | |
| 
 | |
|     /* hash ARCOUNT RRs */
 | |
|     for (; arcount > 0; arcount--) hash = _dnsPacket_hashRR(packet, hash);
 | |
| 
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| /** QUERY COMPARISON
 | |
|  **
 | |
|  ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
 | |
|  ** BEEN SUCCESSFULLY CHECKED.
 | |
|  **/
 | |
| 
 | |
| static int _dnsPacket_isEqualDomainName(DnsPacket* pack1, DnsPacket* pack2) {
 | |
|     const uint8_t* p1 = pack1->cursor;
 | |
|     const uint8_t* end1 = pack1->end;
 | |
|     const uint8_t* p2 = pack2->cursor;
 | |
|     const uint8_t* end2 = pack2->end;
 | |
| 
 | |
|     for (;;) {
 | |
|         if (p1 >= end1 || p2 >= end2) {
 | |
|             LOG(INFO) << __func__ << ": INTERNAL_ERROR: read-overflow";
 | |
|             break;
 | |
|         }
 | |
|         int c1 = *p1++;
 | |
|         int c2 = *p2++;
 | |
|         if (c1 != c2) break;
 | |
| 
 | |
|         if (c1 == 0) {
 | |
|             pack1->cursor = p1;
 | |
|             pack2->cursor = p2;
 | |
|             return 1;
 | |
|         }
 | |
|         if (c1 >= 64) {
 | |
|             LOG(INFO) << __func__ << ": INTERNAL_ERROR: malformed domain";
 | |
|             break;
 | |
|         }
 | |
|         if ((p1 + c1 > end1) || (p2 + c1 > end2)) {
 | |
|             LOG(INFO) << __func__ << ": INTERNAL_ERROR: simple label read-overflow";
 | |
|             break;
 | |
|         }
 | |
|         if (res_memcasecmp(p1, p2, c1) != 0) break;
 | |
|         p1 += c1;
 | |
|         p2 += c1;
 | |
|         /* we rely on the bound checks at the start of the loop */
 | |
|     }
 | |
|     /* not the same, or one is malformed */
 | |
|     LOG(INFO) << __func__ << ": different DN";
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int _dnsPacket_isEqualBytes(DnsPacket* pack1, DnsPacket* pack2, int numBytes) {
 | |
|     const uint8_t* p1 = pack1->cursor;
 | |
|     const uint8_t* p2 = pack2->cursor;
 | |
| 
 | |
|     if (p1 + numBytes > pack1->end || p2 + numBytes > pack2->end) return 0;
 | |
| 
 | |
|     if (memcmp(p1, p2, numBytes) != 0) return 0;
 | |
| 
 | |
|     pack1->cursor += numBytes;
 | |
|     pack2->cursor += numBytes;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int _dnsPacket_isEqualQR(DnsPacket* pack1, DnsPacket* pack2) {
 | |
|     /* compare domain name encoding + TYPE + CLASS */
 | |
|     if (!_dnsPacket_isEqualDomainName(pack1, pack2) ||
 | |
|         !_dnsPacket_isEqualBytes(pack1, pack2, 2 + 2))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int _dnsPacket_isEqualRR(DnsPacket* pack1, DnsPacket* pack2) {
 | |
|     int rdlength1, rdlength2;
 | |
|     /* compare query + TTL */
 | |
|     if (!_dnsPacket_isEqualQR(pack1, pack2) || !_dnsPacket_isEqualBytes(pack1, pack2, 4)) return 0;
 | |
| 
 | |
|     /* compare RDATA */
 | |
|     rdlength1 = _dnsPacket_readInt16(pack1);
 | |
|     rdlength2 = _dnsPacket_readInt16(pack2);
 | |
|     if (rdlength1 != rdlength2 || !_dnsPacket_isEqualBytes(pack1, pack2, rdlength1)) return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int _dnsPacket_isEqualQuery(DnsPacket* pack1, DnsPacket* pack2) {
 | |
|     int count1, count2, arcount1, arcount2;
 | |
| 
 | |
|     /* compare the headers, ignore most fields */
 | |
|     _dnsPacket_rewind(pack1);
 | |
|     _dnsPacket_rewind(pack2);
 | |
| 
 | |
|     /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
 | |
|     if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
 | |
|         LOG(INFO) << __func__ << ": different RD";
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (pack1->base[3] != pack2->base[3]) {
 | |
|         LOG(INFO) << __func__ << ": different CD or AD";
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* mark ID and header bytes as compared */
 | |
|     _dnsPacket_skip(pack1, 4);
 | |
|     _dnsPacket_skip(pack2, 4);
 | |
| 
 | |
|     /* compare QDCOUNT */
 | |
|     count1 = _dnsPacket_readInt16(pack1);
 | |
|     count2 = _dnsPacket_readInt16(pack2);
 | |
|     if (count1 != count2 || count1 < 0) {
 | |
|         LOG(INFO) << __func__ << ": different QDCOUNT";
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* assume: ANcount and NScount are 0 */
 | |
|     _dnsPacket_skip(pack1, 4);
 | |
|     _dnsPacket_skip(pack2, 4);
 | |
| 
 | |
|     /* compare ARCOUNT */
 | |
|     arcount1 = _dnsPacket_readInt16(pack1);
 | |
|     arcount2 = _dnsPacket_readInt16(pack2);
 | |
|     if (arcount1 != arcount2 || arcount1 < 0) {
 | |
|         LOG(INFO) << __func__ << ": different ARCOUNT";
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* compare the QDCOUNT QRs */
 | |
|     for (; count1 > 0; count1--) {
 | |
|         if (!_dnsPacket_isEqualQR(pack1, pack2)) {
 | |
|             LOG(INFO) << __func__ << ": different QR";
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* compare the ARCOUNT RRs */
 | |
|     for (; arcount1 > 0; arcount1--) {
 | |
|         if (!_dnsPacket_isEqualRR(pack1, pack2)) {
 | |
|             LOG(INFO) << __func__ << ": different additional RR";
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
 | |
|  * structure though they are conceptually part of the hash table.
 | |
|  *
 | |
|  * similarly, mru_next and mru_prev are part of the global MRU list
 | |
|  */
 | |
| struct Entry {
 | |
|     unsigned int hash;   /* hash value */
 | |
|     struct Entry* hlink; /* next in collision chain */
 | |
|     struct Entry* mru_prev;
 | |
|     struct Entry* mru_next;
 | |
| 
 | |
|     const uint8_t* query;
 | |
|     int querylen;
 | |
|     const uint8_t* answer;
 | |
|     int answerlen;
 | |
|     time_t expires; /* time_t when the entry isn't valid any more */
 | |
|     int id;         /* for debugging purpose */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Find the TTL for a negative DNS result.  This is defined as the minimum
 | |
|  * of the SOA records TTL and the MINIMUM-TTL field (RFC-2308).
 | |
|  *
 | |
|  * Return 0 if not found.
 | |
|  */
 | |
| static uint32_t answer_getNegativeTTL(ns_msg handle) {
 | |
|     int n, nscount;
 | |
|     uint32_t result = 0;
 | |
|     ns_rr rr;
 | |
| 
 | |
|     nscount = ns_msg_count(handle, ns_s_ns);
 | |
|     for (n = 0; n < nscount; n++) {
 | |
|         if ((ns_parserr(&handle, ns_s_ns, n, &rr) == 0) && (ns_rr_type(rr) == ns_t_soa)) {
 | |
|             const uint8_t* rdata = ns_rr_rdata(rr);          // find the data
 | |
|             const uint8_t* edata = rdata + ns_rr_rdlen(rr);  // add the len to find the end
 | |
|             int len;
 | |
|             uint32_t ttl, rec_result = rr.ttl;
 | |
| 
 | |
|             // find the MINIMUM-TTL field from the blob of binary data for this record
 | |
|             // skip the server name
 | |
|             len = dn_skipname(rdata, edata);
 | |
|             if (len == -1) continue;  // error skipping
 | |
|             rdata += len;
 | |
| 
 | |
|             // skip the admin name
 | |
|             len = dn_skipname(rdata, edata);
 | |
|             if (len == -1) continue;  // error skipping
 | |
|             rdata += len;
 | |
| 
 | |
|             if (edata - rdata != 5 * NS_INT32SZ) continue;
 | |
|             // skip: serial number + refresh interval + retry interval + expiry
 | |
|             rdata += NS_INT32SZ * 4;
 | |
|             // finally read the MINIMUM TTL
 | |
|             ttl = ntohl(*reinterpret_cast<const uint32_t*>(rdata));
 | |
|             if (ttl < rec_result) {
 | |
|                 rec_result = ttl;
 | |
|             }
 | |
|             // Now that the record is read successfully, apply the new min TTL
 | |
|             if (n == 0 || rec_result < result) {
 | |
|                 result = rec_result;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse the answer records and find the appropriate
 | |
|  * smallest TTL among the records.  This might be from
 | |
|  * the answer records if found or from the SOA record
 | |
|  * if it's a negative result.
 | |
|  *
 | |
|  * The returned TTL is the number of seconds to
 | |
|  * keep the answer in the cache.
 | |
|  *
 | |
|  * In case of parse error zero (0) is returned which
 | |
|  * indicates that the answer shall not be cached.
 | |
|  */
 | |
| static uint32_t answer_getTTL(span<const uint8_t> answer) {
 | |
|     ns_msg handle;
 | |
|     int ancount, n;
 | |
|     uint32_t result, ttl;
 | |
|     ns_rr rr;
 | |
| 
 | |
|     result = 0;
 | |
|     if (ns_initparse(answer.data(), answer.size(), &handle) >= 0) {
 | |
|         // get number of answer records
 | |
|         ancount = ns_msg_count(handle, ns_s_an);
 | |
| 
 | |
|         if (ancount == 0) {
 | |
|             // a response with no answers?  Cache this negative result.
 | |
|             result = answer_getNegativeTTL(handle);
 | |
|         } else {
 | |
|             for (n = 0; n < ancount; n++) {
 | |
|                 if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
 | |
|                     ttl = rr.ttl;
 | |
|                     if (n == 0 || ttl < result) {
 | |
|                         result = ttl;
 | |
|                     }
 | |
|                 } else {
 | |
|                     PLOG(INFO) << __func__ << ": ns_parserr failed ancount no = " << n;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         PLOG(INFO) << __func__ << ": ns_initparse failed";
 | |
|     }
 | |
| 
 | |
|     LOG(INFO) << __func__ << ": TTL = " << result;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void entry_free(Entry* e) {
 | |
|     /* everything is allocated in a single memory block */
 | |
|     if (e) {
 | |
|         free(e);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void entry_mru_remove(Entry* e) {
 | |
|     e->mru_prev->mru_next = e->mru_next;
 | |
|     e->mru_next->mru_prev = e->mru_prev;
 | |
| }
 | |
| 
 | |
| static void entry_mru_add(Entry* e, Entry* list) {
 | |
|     Entry* first = list->mru_next;
 | |
| 
 | |
|     e->mru_next = first;
 | |
|     e->mru_prev = list;
 | |
| 
 | |
|     list->mru_next = e;
 | |
|     first->mru_prev = e;
 | |
| }
 | |
| 
 | |
| /* compute the hash of a given entry, this is a hash of most
 | |
|  * data in the query (key) */
 | |
| static unsigned entry_hash(const Entry* e) {
 | |
|     DnsPacket pack[1];
 | |
| 
 | |
|     _dnsPacket_init(pack, e->query, e->querylen);
 | |
|     return _dnsPacket_hashQuery(pack);
 | |
| }
 | |
| 
 | |
| /* initialize an Entry as a search key, this also checks the input query packet
 | |
|  * returns 1 on success, or 0 in case of unsupported/malformed data */
 | |
| static int entry_init_key(Entry* e, span<const uint8_t> query) {
 | |
|     DnsPacket pack[1];
 | |
| 
 | |
|     memset(e, 0, sizeof(*e));
 | |
| 
 | |
|     e->query = query.data();
 | |
|     e->querylen = query.size();
 | |
|     e->hash = entry_hash(e);
 | |
| 
 | |
|     _dnsPacket_init(pack, e->query, e->querylen);
 | |
| 
 | |
|     return _dnsPacket_checkQuery(pack);
 | |
| }
 | |
| 
 | |
| /* allocate a new entry as a cache node */
 | |
| static Entry* entry_alloc(const Entry* init, span<const uint8_t> answer) {
 | |
|     Entry* e;
 | |
|     int size;
 | |
| 
 | |
|     size = sizeof(*e) + init->querylen + answer.size();
 | |
|     e = (Entry*) calloc(size, 1);
 | |
|     if (e == NULL) return e;
 | |
| 
 | |
|     e->hash = init->hash;
 | |
|     e->query = (const uint8_t*) (e + 1);
 | |
|     e->querylen = init->querylen;
 | |
| 
 | |
|     memcpy((char*) e->query, init->query, e->querylen);
 | |
| 
 | |
|     e->answer = e->query + e->querylen;
 | |
|     e->answerlen = answer.size();
 | |
| 
 | |
|     memcpy((char*)e->answer, answer.data(), e->answerlen);
 | |
| 
 | |
|     return e;
 | |
| }
 | |
| 
 | |
| static int entry_equals(const Entry* e1, const Entry* e2) {
 | |
|     DnsPacket pack1[1], pack2[1];
 | |
| 
 | |
|     if (e1->querylen != e2->querylen) {
 | |
|         return 0;
 | |
|     }
 | |
|     _dnsPacket_init(pack1, e1->query, e1->querylen);
 | |
|     _dnsPacket_init(pack2, e2->query, e2->querylen);
 | |
| 
 | |
|     return _dnsPacket_isEqualQuery(pack1, pack2);
 | |
| }
 | |
| 
 | |
| /* We use a simple hash table with external collision lists
 | |
|  * for simplicity, the hash-table fields 'hash' and 'hlink' are
 | |
|  * inlined in the Entry structure.
 | |
|  */
 | |
| 
 | |
| /* Maximum time for a thread to wait for an pending request */
 | |
| constexpr int PENDING_REQUEST_TIMEOUT = 20;
 | |
| 
 | |
| // lock protecting everything in NetConfig.
 | |
| static std::mutex cache_mutex;
 | |
| static std::condition_variable cv;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Map format: ReturnCode:rate_denom
 | |
| // if the ReturnCode is not associated with any rate_denom, use default
 | |
| // Sampling rate varies by return code; events to log are chosen randomly, with a
 | |
| // probability proportional to the sampling rate.
 | |
| constexpr const char DEFAULT_SUBSAMPLING_MAP[] = "default:8 0:400 2:110 7:110";
 | |
| constexpr const char DEFAULT_MDNS_SUBSAMPLING_MAP[] = "default:1";
 | |
| 
 | |
| std::unordered_map<int, uint32_t> resolv_get_dns_event_subsampling_map(bool isMdns) {
 | |
|     using android::base::ParseInt;
 | |
|     using android::base::ParseUint;
 | |
|     using android::base::Split;
 | |
|     using server_configurable_flags::GetServerConfigurableFlag;
 | |
|     std::unordered_map<int, uint32_t> sampling_rate_map{};
 | |
|     const char* flag = isMdns ? "mdns_event_subsample_map" : "dns_event_subsample_map";
 | |
|     const char* defaultMap = isMdns ? DEFAULT_MDNS_SUBSAMPLING_MAP : DEFAULT_SUBSAMPLING_MAP;
 | |
|     const std::vector<std::string> subsampling_vector =
 | |
|             Split(GetServerConfigurableFlag("netd_native", flag, defaultMap), " ");
 | |
| 
 | |
|     for (const auto& pair : subsampling_vector) {
 | |
|         std::vector<std::string> rate_denom = Split(pair, ":");
 | |
|         int return_code;
 | |
|         uint32_t denom;
 | |
|         if (rate_denom.size() != 2) {
 | |
|             LOG(ERROR) << __func__ << ": invalid subsampling_pair = " << pair;
 | |
|             continue;
 | |
|         }
 | |
|         if (rate_denom[0] == "default") {
 | |
|             return_code = DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY;
 | |
|         } else if (!ParseInt(rate_denom[0], &return_code)) {
 | |
|             LOG(ERROR) << __func__ << ": parse subsampling_pair failed = " << pair;
 | |
|             continue;
 | |
|         }
 | |
|         if (!ParseUint(rate_denom[1], &denom)) {
 | |
|             LOG(ERROR) << __func__ << ": parse subsampling_pair failed = " << pair;
 | |
|             continue;
 | |
|         }
 | |
|         sampling_rate_map[return_code] = denom;
 | |
|     }
 | |
|     return sampling_rate_map;
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| // Note that Cache is not thread-safe per se, access to its members must be protected
 | |
| // by an external mutex.
 | |
| //
 | |
| // TODO: move all cache manipulation code here and make data members private.
 | |
| struct Cache {
 | |
|     Cache() {
 | |
|         entries.resize(CONFIG_MAX_ENTRIES);
 | |
|         mru_list.mru_prev = mru_list.mru_next = &mru_list;
 | |
|     }
 | |
|     ~Cache() { flush(); }
 | |
| 
 | |
|     void flush() {
 | |
|         for (int nn = 0; nn < CONFIG_MAX_ENTRIES; nn++) {
 | |
|             Entry** pnode = (Entry**)&entries[nn];
 | |
| 
 | |
|             while (*pnode) {
 | |
|                 Entry* node = *pnode;
 | |
|                 *pnode = node->hlink;
 | |
|                 entry_free(node);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         flushPendingRequests();
 | |
| 
 | |
|         mru_list.mru_next = mru_list.mru_prev = &mru_list;
 | |
|         num_entries = 0;
 | |
|         last_id = 0;
 | |
| 
 | |
|         LOG(INFO) << "DNS cache flushed";
 | |
|     }
 | |
| 
 | |
|     void flushPendingRequests() {
 | |
|         pending_req_info* ri = pending_requests.next;
 | |
|         while (ri) {
 | |
|             pending_req_info* tmp = ri;
 | |
|             ri = ri->next;
 | |
|             free(tmp);
 | |
|         }
 | |
| 
 | |
|         pending_requests.next = nullptr;
 | |
|         cv.notify_all();
 | |
|     }
 | |
| 
 | |
|     int num_entries = 0;
 | |
| 
 | |
|     // TODO: convert to std::list
 | |
|     Entry mru_list;
 | |
|     int last_id = 0;
 | |
|     std::vector<Entry> entries;
 | |
| 
 | |
|     // TODO: convert to std::vector
 | |
|     struct pending_req_info {
 | |
|         unsigned int hash;
 | |
|         struct pending_req_info* next;
 | |
|     } pending_requests{};
 | |
| };
 | |
| 
 | |
| struct NetConfig {
 | |
|     explicit NetConfig(unsigned netId) : netid(netId) {
 | |
|         cache = std::make_unique<Cache>();
 | |
|         dns_event_subsampling_map = resolv_get_dns_event_subsampling_map(false);
 | |
|         mdns_event_subsampling_map = resolv_get_dns_event_subsampling_map(true);
 | |
|     }
 | |
|     int nameserverCount() { return nameserverSockAddrs.size(); }
 | |
|     int setOptions(const ResolverOptionsParcel& resolverOptions) {
 | |
|         customizedTable.clear();
 | |
|         for (const auto& host : resolverOptions.hosts) {
 | |
|             if (!host.hostName.empty() && !host.ipAddr.empty())
 | |
|                 customizedTable.emplace(host.hostName, host.ipAddr);
 | |
|         }
 | |
| 
 | |
|         if (resolverOptions.tcMode < aidl::android::net::IDnsResolver::TC_MODE_DEFAULT ||
 | |
|             resolverOptions.tcMode > aidl::android::net::IDnsResolver::TC_MODE_UDP_TCP) {
 | |
|             LOG(WARNING) << __func__ << ": netid = " << netid
 | |
|                          << ", invalid TC mode: " << resolverOptions.tcMode;
 | |
|             return -EINVAL;
 | |
|         }
 | |
|         tc_mode = resolverOptions.tcMode;
 | |
|         enforceDnsUid = resolverOptions.enforceDnsUid;
 | |
|         return 0;
 | |
|     }
 | |
|     const unsigned netid;
 | |
|     std::unique_ptr<Cache> cache;
 | |
|     std::vector<std::string> nameservers;
 | |
|     std::vector<IPSockAddr> nameserverSockAddrs;
 | |
|     int revision_id = 0;  // # times the nameservers have been replaced
 | |
|     res_params params{};
 | |
|     res_stats nsstats[MAXNS]{};
 | |
|     std::vector<std::string> search_domains;
 | |
|     int wait_for_pending_req_timeout_count = 0;
 | |
|     // Map format: ReturnCode:rate_denom
 | |
|     std::unordered_map<int, uint32_t> dns_event_subsampling_map;
 | |
|     std::unordered_map<int, uint32_t> mdns_event_subsampling_map;
 | |
|     DnsStats dnsStats;
 | |
| 
 | |
|     // Customized hostname/address table will be stored in customizedTable.
 | |
|     // If resolverParams.hosts is empty, the existing customized table will be erased.
 | |
|     typedef std::multimap<std::string /* hostname */, std::string /* IPv4/IPv6 address */>
 | |
|             HostMapping;
 | |
|     HostMapping customizedTable = {};
 | |
| 
 | |
|     int tc_mode = aidl::android::net::IDnsResolver::TC_MODE_DEFAULT;
 | |
|     bool enforceDnsUid = false;
 | |
|     std::vector<int32_t> transportTypes;
 | |
| };
 | |
| 
 | |
| /* gets cache associated with a network, or NULL if none exists */
 | |
| static Cache* find_named_cache_locked(unsigned netid) REQUIRES(cache_mutex);
 | |
| 
 | |
| // Return true - if there is a pending request in |cache| matching |key|.
 | |
| // Return false - if no pending request is found matching the key. Optionally
 | |
| //                link a new one if parameter append_if_not_found is true.
 | |
| static bool cache_has_pending_request_locked(Cache* cache, const Entry* key,
 | |
|                                              bool append_if_not_found) {
 | |
|     if (!cache || !key) return false;
 | |
| 
 | |
|     Cache::pending_req_info* ri = cache->pending_requests.next;
 | |
|     Cache::pending_req_info* prev = &cache->pending_requests;
 | |
|     while (ri) {
 | |
|         if (ri->hash == key->hash) {
 | |
|             return true;
 | |
|         }
 | |
|         prev = ri;
 | |
|         ri = ri->next;
 | |
|     }
 | |
| 
 | |
|     if (append_if_not_found) {
 | |
|         ri = (Cache::pending_req_info*)calloc(1, sizeof(Cache::pending_req_info));
 | |
|         if (ri) {
 | |
|             ri->hash = key->hash;
 | |
|             prev->next = ri;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // Notify all threads that the cache entry |key| has become available
 | |
| static void cache_notify_waiting_tid_locked(struct Cache* cache, const Entry* key) {
 | |
|     if (!cache || !key) return;
 | |
| 
 | |
|     Cache::pending_req_info* ri = cache->pending_requests.next;
 | |
|     Cache::pending_req_info* prev = &cache->pending_requests;
 | |
|     while (ri) {
 | |
|         if (ri->hash == key->hash) {
 | |
|             // remove item from list and destroy
 | |
|             prev->next = ri->next;
 | |
|             free(ri);
 | |
|             cv.notify_all();
 | |
|             return;
 | |
|         }
 | |
|         prev = ri;
 | |
|         ri = ri->next;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void _resolv_cache_query_failed(unsigned netid, span<const uint8_t> query, uint32_t flags) {
 | |
|     // We should not notify with these flags.
 | |
|     if (flags & (ANDROID_RESOLV_NO_CACHE_STORE | ANDROID_RESOLV_NO_CACHE_LOOKUP)) {
 | |
|         return;
 | |
|     }
 | |
|     Entry key[1];
 | |
| 
 | |
|     if (!entry_init_key(key, query)) return;
 | |
| 
 | |
|     std::lock_guard guard(cache_mutex);
 | |
| 
 | |
|     Cache* cache = find_named_cache_locked(netid);
 | |
| 
 | |
|     if (cache) {
 | |
|         cache_notify_waiting_tid_locked(cache, key);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void cache_dump_mru_locked(Cache* cache) {
 | |
|     std::string buf = fmt::format("MRU LIST ({:2d}): ", cache->num_entries);
 | |
|     for (Entry* e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next) {
 | |
|         fmt::format_to(std::back_inserter(buf), " {}", e->id);
 | |
|     }
 | |
| 
 | |
|     LOG(INFO) << __func__ << ": " << buf;
 | |
| }
 | |
| 
 | |
| /* This function tries to find a key within the hash table
 | |
|  * In case of success, it will return a *pointer* to the hashed key.
 | |
|  * In case of failure, it will return a *pointer* to NULL
 | |
|  *
 | |
|  * So, the caller must check '*result' to check for success/failure.
 | |
|  *
 | |
|  * The main idea is that the result can later be used directly in
 | |
|  * calls to resolv_cache_add or _resolv_cache_remove as the 'lookup'
 | |
|  * parameter. This makes the code simpler and avoids re-searching
 | |
|  * for the key position in the htable.
 | |
|  *
 | |
|  * The result of a lookup_p is only valid until you alter the hash
 | |
|  * table.
 | |
|  */
 | |
| static Entry** _cache_lookup_p(Cache* cache, Entry* key) {
 | |
|     int index = key->hash % CONFIG_MAX_ENTRIES;
 | |
|     Entry** pnode = (Entry**) &cache->entries[index];
 | |
| 
 | |
|     while (*pnode != NULL) {
 | |
|         Entry* node = *pnode;
 | |
| 
 | |
|         if (node == NULL) break;
 | |
| 
 | |
|         if (node->hash == key->hash && entry_equals(node, key)) break;
 | |
| 
 | |
|         pnode = &node->hlink;
 | |
|     }
 | |
|     return pnode;
 | |
| }
 | |
| 
 | |
| /* Add a new entry to the hash table. 'lookup' must be the
 | |
|  * result of an immediate previous failed _lookup_p() call
 | |
|  * (i.e. with *lookup == NULL), and 'e' is the pointer to the
 | |
|  * newly created entry
 | |
|  */
 | |
| static void _cache_add_p(Cache* cache, Entry** lookup, Entry* e) {
 | |
|     *lookup = e;
 | |
|     e->id = ++cache->last_id;
 | |
|     entry_mru_add(e, &cache->mru_list);
 | |
|     cache->num_entries += 1;
 | |
| 
 | |
|     LOG(INFO) << __func__ << ": entry " << e->id << " added (count=" << cache->num_entries << ")";
 | |
| }
 | |
| 
 | |
| /* Remove an existing entry from the hash table,
 | |
|  * 'lookup' must be the result of an immediate previous
 | |
|  * and succesful _lookup_p() call.
 | |
|  */
 | |
| static void _cache_remove_p(Cache* cache, Entry** lookup) {
 | |
|     Entry* e = *lookup;
 | |
| 
 | |
|     LOG(INFO) << __func__ << ": entry " << e->id << " removed (count=" << cache->num_entries - 1
 | |
|               << ")";
 | |
| 
 | |
|     entry_mru_remove(e);
 | |
|     *lookup = e->hlink;
 | |
|     entry_free(e);
 | |
|     cache->num_entries -= 1;
 | |
| }
 | |
| 
 | |
| /* Remove the oldest entry from the hash table.
 | |
|  */
 | |
| static void _cache_remove_oldest(Cache* cache) {
 | |
|     Entry* oldest = cache->mru_list.mru_prev;
 | |
|     Entry** lookup = _cache_lookup_p(cache, oldest);
 | |
| 
 | |
|     if (*lookup == NULL) { /* should not happen */
 | |
|         LOG(INFO) << __func__ << ": OLDEST NOT IN HTABLE ?";
 | |
|         return;
 | |
|     }
 | |
|     LOG(INFO) << __func__ << ": Cache full - removing oldest";
 | |
|     res_pquery({oldest->query, oldest->querylen});
 | |
|     _cache_remove_p(cache, lookup);
 | |
| }
 | |
| 
 | |
| /* Remove all expired entries from the hash table.
 | |
|  */
 | |
| static void _cache_remove_expired(Cache* cache) {
 | |
|     Entry* e;
 | |
|     time_t now = _time_now();
 | |
| 
 | |
|     for (e = cache->mru_list.mru_next; e != &cache->mru_list;) {
 | |
|         // Entry is old, remove
 | |
|         if (now >= e->expires) {
 | |
|             Entry** lookup = _cache_lookup_p(cache, e);
 | |
|             if (*lookup == NULL) { /* should not happen */
 | |
|                 LOG(INFO) << __func__ << ": ENTRY NOT IN HTABLE ?";
 | |
|                 return;
 | |
|             }
 | |
|             e = e->mru_next;
 | |
|             _cache_remove_p(cache, lookup);
 | |
|         } else {
 | |
|             e = e->mru_next;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Get a NetConfig associated with a network, or nullptr if not found.
 | |
| static NetConfig* find_netconfig_locked(unsigned netid) REQUIRES(cache_mutex);
 | |
| 
 | |
| ResolvCacheStatus resolv_cache_lookup(unsigned netid, span<const uint8_t> query,
 | |
|                                       span<uint8_t> answer, int* answerlen, uint32_t flags) {
 | |
|     // Skip cache lookup, return RESOLV_CACHE_NOTFOUND directly so that it is
 | |
|     // possible to cache the answer of this query.
 | |
|     // If ANDROID_RESOLV_NO_CACHE_STORE is set, return RESOLV_CACHE_SKIP to skip possible cache
 | |
|     // storing.
 | |
|     // (b/150371903): ANDROID_RESOLV_NO_CACHE_STORE should imply ANDROID_RESOLV_NO_CACHE_LOOKUP
 | |
|     // to avoid side channel attack.
 | |
|     if (flags & (ANDROID_RESOLV_NO_CACHE_LOOKUP | ANDROID_RESOLV_NO_CACHE_STORE)) {
 | |
|         return flags & ANDROID_RESOLV_NO_CACHE_STORE ? RESOLV_CACHE_SKIP : RESOLV_CACHE_NOTFOUND;
 | |
|     }
 | |
|     Entry key;
 | |
|     Entry** lookup;
 | |
|     Entry* e;
 | |
|     time_t now;
 | |
| 
 | |
|     LOG(INFO) << __func__ << ": lookup";
 | |
| 
 | |
|     /* we don't cache malformed queries */
 | |
|     if (!entry_init_key(&key, query)) {
 | |
|         LOG(INFO) << __func__ << ": unsupported query";
 | |
|         return RESOLV_CACHE_UNSUPPORTED;
 | |
|     }
 | |
|     /* lookup cache */
 | |
|     std::unique_lock lock(cache_mutex);
 | |
|     android::base::ScopedLockAssertion assume_lock(cache_mutex);
 | |
|     Cache* cache = find_named_cache_locked(netid);
 | |
|     if (cache == nullptr) {
 | |
|         return RESOLV_CACHE_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     /* see the description of _lookup_p to understand this.
 | |
|      * the function always return a non-NULL pointer.
 | |
|      */
 | |
|     lookup = _cache_lookup_p(cache, &key);
 | |
|     e = *lookup;
 | |
| 
 | |
|     if (e == NULL) {
 | |
|         LOG(INFO) << __func__ << ": NOT IN CACHE";
 | |
| 
 | |
|         if (!cache_has_pending_request_locked(cache, &key, true)) {
 | |
|             return RESOLV_CACHE_NOTFOUND;
 | |
| 
 | |
|         } else {
 | |
|             LOG(INFO) << __func__ << ": Waiting for previous request";
 | |
|             // wait until (1) timeout OR
 | |
|             //            (2) cv is notified AND no pending request matching the |key|
 | |
|             // (cv notifier should delete pending request before sending notification.)
 | |
|             bool ret = cv.wait_for(lock, std::chrono::seconds(PENDING_REQUEST_TIMEOUT),
 | |
|                                    [netid, &cache, &key]() REQUIRES(cache_mutex) {
 | |
|                                        // Must update cache as it could have been deleted
 | |
|                                        cache = find_named_cache_locked(netid);
 | |
|                                        return !cache_has_pending_request_locked(cache, &key, false);
 | |
|                                    });
 | |
|             if (!cache) {
 | |
|                 return RESOLV_CACHE_NOTFOUND;
 | |
|             }
 | |
|             if (ret == false) {
 | |
|                 NetConfig* info = find_netconfig_locked(netid);
 | |
|                 if (info != NULL) {
 | |
|                     info->wait_for_pending_req_timeout_count++;
 | |
|                 }
 | |
|             }
 | |
|             lookup = _cache_lookup_p(cache, &key);
 | |
|             e = *lookup;
 | |
|             if (e == NULL) {
 | |
|                 return RESOLV_CACHE_NOTFOUND;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     now = _time_now();
 | |
| 
 | |
|     /* remove stale entries here */
 | |
|     if (now >= e->expires) {
 | |
|         LOG(INFO) << __func__ << ": NOT IN CACHE (STALE ENTRY " << *lookup << "DISCARDED)";
 | |
|         res_pquery({e->query, e->querylen});
 | |
|         _cache_remove_p(cache, lookup);
 | |
|         return RESOLV_CACHE_NOTFOUND;
 | |
|     }
 | |
| 
 | |
|     *answerlen = e->answerlen;
 | |
|     if (e->answerlen > answer.size()) {
 | |
|         /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
 | |
|         LOG(INFO) << __func__ << ": ANSWER TOO LONG";
 | |
|         return RESOLV_CACHE_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     memcpy(answer.data(), e->answer, e->answerlen);
 | |
| 
 | |
|     /* bump up this entry to the top of the MRU list */
 | |
|     if (e != cache->mru_list.mru_next) {
 | |
|         entry_mru_remove(e);
 | |
|         entry_mru_add(e, &cache->mru_list);
 | |
|     }
 | |
| 
 | |
|     LOG(INFO) << __func__ << ": FOUND IN CACHE entry=" << e;
 | |
|     return RESOLV_CACHE_FOUND;
 | |
| }
 | |
| 
 | |
| int resolv_cache_add(unsigned netid, span<const uint8_t> query, span<const uint8_t> answer) {
 | |
|     Entry key[1];
 | |
|     Entry* e;
 | |
|     Entry** lookup;
 | |
|     uint32_t ttl;
 | |
|     Cache* cache = NULL;
 | |
| 
 | |
|     /* don't assume that the query has already been cached
 | |
|      */
 | |
|     if (!entry_init_key(key, query)) {
 | |
|         LOG(INFO) << __func__ << ": passed invalid query?";
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     std::lock_guard guard(cache_mutex);
 | |
| 
 | |
|     cache = find_named_cache_locked(netid);
 | |
|     if (cache == nullptr) {
 | |
|         return -ENONET;
 | |
|     }
 | |
| 
 | |
|     lookup = _cache_lookup_p(cache, key);
 | |
|     e = *lookup;
 | |
| 
 | |
|     // Should only happen on ANDROID_RESOLV_NO_CACHE_LOOKUP
 | |
|     if (e != NULL) {
 | |
|         LOG(INFO) << __func__ << ": ALREADY IN CACHE (" << e << ") ? IGNORING ADD";
 | |
|         cache_notify_waiting_tid_locked(cache, key);
 | |
|         return -EEXIST;
 | |
|     }
 | |
| 
 | |
|     if (cache->num_entries >= CONFIG_MAX_ENTRIES) {
 | |
|         _cache_remove_expired(cache);
 | |
|         if (cache->num_entries >= CONFIG_MAX_ENTRIES) {
 | |
|             _cache_remove_oldest(cache);
 | |
|         }
 | |
|         // TODO: It looks useless, remove below code after having test to prove it.
 | |
|         lookup = _cache_lookup_p(cache, key);
 | |
|         e = *lookup;
 | |
|         if (e != NULL) {
 | |
|             LOG(INFO) << __func__ << ": ALREADY IN CACHE (" << e << ") ? IGNORING ADD";
 | |
|             cache_notify_waiting_tid_locked(cache, key);
 | |
|             return -EEXIST;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ttl = answer_getTTL(answer);
 | |
|     if (ttl > 0) {
 | |
|         e = entry_alloc(key, answer);
 | |
|         if (e != NULL) {
 | |
|             e->expires = ttl + _time_now();
 | |
|             _cache_add_p(cache, lookup, e);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cache_dump_mru_locked(cache);
 | |
|     cache_notify_waiting_tid_locked(cache, key);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| bool resolv_gethostbyaddr_from_cache(unsigned netid, char domain_name[], size_t domain_name_size,
 | |
|                                      const char* ip_address, int af) {
 | |
|     if (domain_name_size > NS_MAXDNAME) {
 | |
|         LOG(WARNING) << __func__ << ": invalid domain_name_size " << domain_name_size;
 | |
|         return false;
 | |
|     } else if (ip_address == nullptr || ip_address[0] == '\0') {
 | |
|         LOG(WARNING) << __func__ << ": invalid ip_address";
 | |
|         return false;
 | |
|     } else if (af != AF_INET && af != AF_INET6) {
 | |
|         LOG(WARNING) << __func__ << ": unsupported AF";
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     Cache* cache = nullptr;
 | |
|     Entry* node = nullptr;
 | |
| 
 | |
|     ns_rr rr;
 | |
|     ns_msg handle;
 | |
|     ns_rr rr_query;
 | |
| 
 | |
|     struct sockaddr_in sa;
 | |
|     struct sockaddr_in6 sa6;
 | |
|     char* addr_buf = nullptr;
 | |
| 
 | |
|     std::lock_guard guard(cache_mutex);
 | |
| 
 | |
|     cache = find_named_cache_locked(netid);
 | |
|     if (cache == nullptr) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     for (node = cache->mru_list.mru_next; node != nullptr && node != &cache->mru_list;
 | |
|          node = node->mru_next) {
 | |
|         if (node->answer == nullptr) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         memset(&handle, 0, sizeof(handle));
 | |
| 
 | |
|         if (ns_initparse(node->answer, node->answerlen, &handle) < 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         for (int n = 0; n < ns_msg_count(handle, ns_s_an); n++) {
 | |
|             memset(&rr, 0, sizeof(rr));
 | |
| 
 | |
|             if (ns_parserr(&handle, ns_s_an, n, &rr)) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (ns_rr_type(rr) == ns_t_a && af == AF_INET) {
 | |
|                 addr_buf = (char*)&(sa.sin_addr);
 | |
|             } else if (ns_rr_type(rr) == ns_t_aaaa && af == AF_INET6) {
 | |
|                 addr_buf = (char*)&(sa6.sin6_addr);
 | |
|             } else {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (inet_pton(af, ip_address, addr_buf) != 1) {
 | |
|                 LOG(WARNING) << __func__ << ": inet_pton() fail";
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             if (memcmp(ns_rr_rdata(rr), addr_buf, ns_rr_rdlen(rr)) == 0) {
 | |
|                 int query_count = ns_msg_count(handle, ns_s_qd);
 | |
|                 for (int i = 0; i < query_count; i++) {
 | |
|                     memset(&rr_query, 0, sizeof(rr_query));
 | |
|                     if (ns_parserr(&handle, ns_s_qd, i, &rr_query)) {
 | |
|                         continue;
 | |
|                     }
 | |
|                     strlcpy(domain_name, ns_rr_name(rr_query), domain_name_size);
 | |
|                     if (domain_name[0] != '\0') {
 | |
|                         return true;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static std::unordered_map<unsigned, std::unique_ptr<NetConfig>> sNetConfigMap
 | |
|         GUARDED_BY(cache_mutex);
 | |
| 
 | |
| // Clears nameservers set for |netconfig| and clears the stats
 | |
| static void free_nameservers_locked(NetConfig* netconfig);
 | |
| // Order-insensitive comparison for the two set of servers.
 | |
| static bool resolv_is_nameservers_equal(const std::vector<std::string>& oldServers,
 | |
|                                         const std::vector<std::string>& newServers);
 | |
| // clears the stats samples contained withing the given netconfig.
 | |
| static void res_cache_clear_stats_locked(NetConfig* netconfig);
 | |
| 
 | |
| // public API for netd to query if name server is set on specific netid
 | |
| bool resolv_has_nameservers(unsigned netid) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     NetConfig* info = find_netconfig_locked(netid);
 | |
|     return (info != nullptr) && (info->nameserverCount() > 0);
 | |
| }
 | |
| 
 | |
| int resolv_create_cache_for_net(unsigned netid) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     if (sNetConfigMap.find(netid) != sNetConfigMap.end()) {
 | |
|         LOG(ERROR) << __func__ << ": Cache is already created, netId: " << netid;
 | |
|         return -EEXIST;
 | |
|     }
 | |
| 
 | |
|     sNetConfigMap[netid] = std::make_unique<NetConfig>(netid);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void resolv_delete_cache_for_net(unsigned netid) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     sNetConfigMap.erase(netid);
 | |
| }
 | |
| 
 | |
| int resolv_flush_cache_for_net(unsigned netid) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
| 
 | |
|     NetConfig* netconfig = find_netconfig_locked(netid);
 | |
|     if (netconfig == nullptr) {
 | |
|         return -ENONET;
 | |
|     }
 | |
|     netconfig->cache->flush();
 | |
| 
 | |
|     // Also clear the NS statistics.
 | |
|     res_cache_clear_stats_locked(netconfig);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| std::vector<unsigned> resolv_list_caches() {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     std::vector<unsigned> result;
 | |
|     result.reserve(sNetConfigMap.size());
 | |
|     for (const auto& [netId, _] : sNetConfigMap) {
 | |
|         result.push_back(netId);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static Cache* find_named_cache_locked(unsigned netid) {
 | |
|     NetConfig* info = find_netconfig_locked(netid);
 | |
|     if (info != nullptr) return info->cache.get();
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| static NetConfig* find_netconfig_locked(unsigned netid) {
 | |
|     if (auto it = sNetConfigMap.find(netid); it != sNetConfigMap.end()) {
 | |
|         return it->second.get();
 | |
|     }
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| static void resolv_set_experiment_params(res_params* params) {
 | |
|     if (params->retry_count == 0) {
 | |
|         params->retry_count = getExperimentFlagInt("retry_count", RES_DFLRETRY);
 | |
|     }
 | |
| 
 | |
|     if (params->base_timeout_msec == 0) {
 | |
|         params->base_timeout_msec =
 | |
|                 getExperimentFlagInt("retransmission_time_interval", RES_TIMEOUT);
 | |
|     }
 | |
| }
 | |
| 
 | |
| android::net::NetworkType resolv_get_network_types_for_net(unsigned netid) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     NetConfig* netconfig = find_netconfig_locked(netid);
 | |
|     if (netconfig == nullptr) return android::net::NT_UNKNOWN;
 | |
|     return convert_network_type(netconfig->transportTypes);
 | |
| }
 | |
| 
 | |
| bool is_mdns_supported_transport_types(const std::vector<int32_t>& transportTypes) {
 | |
|     for (const auto& tp : transportTypes) {
 | |
|         if (tp == IDnsResolver::TRANSPORT_CELLULAR || tp == IDnsResolver::TRANSPORT_VPN) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool is_mdns_supported_network(unsigned netid) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     NetConfig* netconfig = find_netconfig_locked(netid);
 | |
|     if (netconfig == nullptr) return false;
 | |
|     return is_mdns_supported_transport_types(netconfig->transportTypes);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Returns valid domains without duplicates which are limited to max size |MAXDNSRCH|.
 | |
| std::vector<std::string> filter_domains(const std::vector<std::string>& domains) {
 | |
|     std::set<std::string> tmp_set;
 | |
|     std::vector<std::string> res;
 | |
| 
 | |
|     std::copy_if(domains.begin(), domains.end(), std::back_inserter(res),
 | |
|                  [&tmp_set](const std::string& str) {
 | |
|                      return !(str.size() > MAXDNSRCHPATH - 1) && (tmp_set.insert(str).second);
 | |
|                  });
 | |
|     if (res.size() > MAXDNSRCH) {
 | |
|         LOG(WARNING) << __func__ << ": valid domains=" << res.size()
 | |
|                      << ", but MAXDNSRCH=" << MAXDNSRCH;
 | |
|         res.resize(MAXDNSRCH);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| std::vector<std::string> filter_nameservers(const std::vector<std::string>& servers) {
 | |
|     std::vector<std::string> res = servers;
 | |
|     if (res.size() > MAXNS) {
 | |
|         LOG(WARNING) << __func__ << ": too many servers: " << res.size();
 | |
|         res.resize(MAXNS);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| bool isValidServer(const std::string& server) {
 | |
|     const addrinfo hints = {
 | |
|             .ai_family = AF_UNSPEC,
 | |
|             .ai_socktype = SOCK_DGRAM,
 | |
|     };
 | |
|     addrinfo* result = nullptr;
 | |
|     if (int err = getaddrinfo_numeric(server.c_str(), "53", hints, &result); err != 0) {
 | |
|         LOG(WARNING) << __func__ << ": getaddrinfo_numeric(" << server
 | |
|                      << ") = " << gai_strerror(err);
 | |
|         return false;
 | |
|     }
 | |
|     freeaddrinfo(result);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| std::vector<std::string> getCustomizedTableByName(const size_t netid, const char* hostname) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     NetConfig* netconfig = find_netconfig_locked(netid);
 | |
| 
 | |
|     std::vector<std::string> result;
 | |
|     if (netconfig != nullptr) {
 | |
|         const auto& hosts = netconfig->customizedTable.equal_range(hostname);
 | |
|         for (auto i = hosts.first; i != hosts.second; ++i) {
 | |
|             result.push_back(i->second);
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| int resolv_set_nameservers(unsigned netid, const std::vector<std::string>& servers,
 | |
|                            const std::vector<std::string>& domains, const res_params& params,
 | |
|                            const std::optional<ResolverOptionsParcel> optionalResolverOptions,
 | |
|                            const std::vector<int32_t>& transportTypes) {
 | |
|     std::vector<std::string> nameservers = filter_nameservers(servers);
 | |
|     const int numservers = static_cast<int>(nameservers.size());
 | |
| 
 | |
|     LOG(INFO) << __func__ << ": netId = " << netid << ", numservers = " << numservers;
 | |
| 
 | |
|     // Parse the addresses before actually locking or changing any state, in case there is an error.
 | |
|     // As a side effect this also reduces the time the lock is kept.
 | |
|     std::vector<IPSockAddr> ipSockAddrs;
 | |
|     ipSockAddrs.reserve(nameservers.size());
 | |
|     for (const auto& server : nameservers) {
 | |
|         if (!isValidServer(server)) return -EINVAL;
 | |
|         ipSockAddrs.push_back(IPSockAddr::toIPSockAddr(server, 53));
 | |
|     }
 | |
| 
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     NetConfig* netconfig = find_netconfig_locked(netid);
 | |
| 
 | |
|     if (netconfig == nullptr) return -ENONET;
 | |
| 
 | |
|     uint8_t old_max_samples = netconfig->params.max_samples;
 | |
|     netconfig->params = params;
 | |
|     resolv_set_experiment_params(&netconfig->params);
 | |
|     if (!resolv_is_nameservers_equal(netconfig->nameservers, nameservers)) {
 | |
|         // free current before adding new
 | |
|         free_nameservers_locked(netconfig);
 | |
|         netconfig->nameservers = std::move(nameservers);
 | |
|         for (int i = 0; i < numservers; i++) {
 | |
|             LOG(INFO) << __func__ << ": netid = " << netid
 | |
|                       << ", addr = " << netconfig->nameservers[i];
 | |
|         }
 | |
|         netconfig->nameserverSockAddrs = std::move(ipSockAddrs);
 | |
|     } else {
 | |
|         if (netconfig->params.max_samples != old_max_samples) {
 | |
|             // If the maximum number of samples changes, the overhead of keeping the most recent
 | |
|             // samples around is not considered worth the effort, so they are cleared instead.
 | |
|             // All other parameters do not affect shared state: Changing these parameters does
 | |
|             // not invalidate the samples, as they only affect aggregation and the conditions
 | |
|             // under which servers are considered usable.
 | |
|             res_cache_clear_stats_locked(netconfig);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Always update the search paths. Cache-flushing however is not necessary,
 | |
|     // since the stored cache entries do contain the domain, not just the host name.
 | |
|     netconfig->search_domains = filter_domains(domains);
 | |
| 
 | |
|     // Setup stats for cleartext dns servers.
 | |
|     if (!netconfig->dnsStats.setAddrs(netconfig->nameserverSockAddrs, PROTO_TCP) ||
 | |
|         !netconfig->dnsStats.setAddrs(netconfig->nameserverSockAddrs, PROTO_UDP)) {
 | |
|         LOG(WARNING) << __func__ << ": netid = " << netid << ", failed to set dns stats";
 | |
|         return -EINVAL;
 | |
|     }
 | |
|     netconfig->transportTypes = transportTypes;
 | |
|     if (optionalResolverOptions.has_value()) {
 | |
|         const ResolverOptionsParcel& resolverOptions = optionalResolverOptions.value();
 | |
|         return netconfig->setOptions(resolverOptions);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int resolv_set_options(unsigned netid, const ResolverOptionsParcel& options) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     NetConfig* netconfig = find_netconfig_locked(netid);
 | |
| 
 | |
|     if (netconfig == nullptr) return -ENONET;
 | |
|     return netconfig->setOptions(options);
 | |
| }
 | |
| 
 | |
| static bool resolv_is_nameservers_equal(const std::vector<std::string>& oldServers,
 | |
|                                         const std::vector<std::string>& newServers) {
 | |
|     const std::set<std::string> olds(oldServers.begin(), oldServers.end());
 | |
|     const std::set<std::string> news(newServers.begin(), newServers.end());
 | |
| 
 | |
|     // TODO: this is incorrect if the list of current or previous nameservers
 | |
|     // contains duplicates. This does not really matter because the framework
 | |
|     // filters out duplicates, but we should probably fix it. It's also
 | |
|     // insensitive to the order of the nameservers; we should probably fix that
 | |
|     // too.
 | |
|     return olds == news;
 | |
| }
 | |
| 
 | |
| static void free_nameservers_locked(NetConfig* netconfig) {
 | |
|     netconfig->nameservers.clear();
 | |
|     netconfig->nameserverSockAddrs.clear();
 | |
|     res_cache_clear_stats_locked(netconfig);
 | |
| }
 | |
| 
 | |
| void resolv_populate_res_for_net(ResState* statp) {
 | |
|     if (statp == nullptr) {
 | |
|         return;
 | |
|     }
 | |
|     LOG(INFO) << __func__ << ": netid=" << statp->netid;
 | |
| 
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     NetConfig* info = find_netconfig_locked(statp->netid);
 | |
|     if (info == nullptr) return;
 | |
| 
 | |
|     const bool sortNameservers = Experiments::getInstance()->getFlag("sort_nameservers", 0);
 | |
|     statp->sort_nameservers = sortNameservers;
 | |
|     statp->nsaddrs = sortNameservers ? info->dnsStats.getSortedServers(PROTO_UDP)
 | |
|                                      : info->nameserverSockAddrs;
 | |
|     statp->search_domains = info->search_domains;
 | |
|     statp->tc_mode = info->tc_mode;
 | |
|     statp->enforce_dns_uid = info->enforceDnsUid;
 | |
| }
 | |
| 
 | |
| /* Resolver reachability statistics. */
 | |
| 
 | |
| static void res_cache_add_stats_sample_locked(res_stats* stats, const res_sample& sample,
 | |
|                                               int max_samples) {
 | |
|     // Note: This function expects max_samples > 0, otherwise a (harmless) modification of the
 | |
|     // allocated but supposedly unused memory for samples[0] will happen
 | |
|     LOG(INFO) << __func__ << ": adding sample to stats, next = " << unsigned(stats->sample_next)
 | |
|               << ", count = " << unsigned(stats->sample_count);
 | |
|     stats->samples[stats->sample_next] = sample;
 | |
|     if (stats->sample_count < max_samples) {
 | |
|         ++stats->sample_count;
 | |
|     }
 | |
|     if (++stats->sample_next >= max_samples) {
 | |
|         stats->sample_next = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void res_cache_clear_stats_locked(NetConfig* netconfig) {
 | |
|     for (int i = 0; i < MAXNS; ++i) {
 | |
|         netconfig->nsstats[i].sample_count = 0;
 | |
|         netconfig->nsstats[i].sample_next = 0;
 | |
|     }
 | |
| 
 | |
|     // Increment the revision id to ensure that sample state is not written back if the
 | |
|     // servers change; in theory it would suffice to do so only if the servers or
 | |
|     // max_samples actually change, in practice the overhead of checking is higher than the
 | |
|     // cost, and overflows are unlikely.
 | |
|     ++netconfig->revision_id;
 | |
| }
 | |
| 
 | |
| int android_net_res_stats_get_info_for_net(unsigned netid, int* nscount,
 | |
|                                            struct sockaddr_storage servers[MAXNS], int* dcount,
 | |
|                                            char domains[MAXDNSRCH][MAXDNSRCHPATH],
 | |
|                                            res_params* params, struct res_stats stats[MAXNS],
 | |
|                                            int* wait_for_pending_req_timeout_count) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     NetConfig* info = find_netconfig_locked(netid);
 | |
|     if (!info) return -1;
 | |
| 
 | |
|     const int num = info->nameserverCount();
 | |
|     if (num > MAXNS) {
 | |
|         LOG(INFO) << __func__ << ": nscount " << num << " > MAXNS " << MAXNS;
 | |
|         errno = EFAULT;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < num; i++) {
 | |
|         servers[i] = info->nameserverSockAddrs[i];
 | |
|         stats[i] = info->nsstats[i];
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < info->search_domains.size(); i++) {
 | |
|         strlcpy(domains[i], info->search_domains[i].c_str(), MAXDNSRCHPATH);
 | |
|     }
 | |
| 
 | |
|     *nscount = num;
 | |
|     *dcount = static_cast<int>(info->search_domains.size());
 | |
|     *params = info->params;
 | |
|     *wait_for_pending_req_timeout_count = info->wait_for_pending_req_timeout_count;
 | |
| 
 | |
|     return info->revision_id;
 | |
| }
 | |
| 
 | |
| std::vector<std::string> resolv_cache_dump_subsampling_map(unsigned netid, bool is_mdns) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     NetConfig* netconfig = find_netconfig_locked(netid);
 | |
|     if (netconfig == nullptr) return {};
 | |
|     std::vector<std::string> result;
 | |
|     const auto& subsampling_map = (!is_mdns) ? netconfig->dns_event_subsampling_map
 | |
|                                              : netconfig->mdns_event_subsampling_map;
 | |
|     result.reserve(subsampling_map.size());
 | |
|     for (const auto& [return_code, rate_denom] : subsampling_map) {
 | |
|         result.push_back(fmt::format("{}:{}",
 | |
|                                      (return_code == DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY)
 | |
|                                              ? "default"
 | |
|                                              : std::to_string(return_code),
 | |
|                                      rate_denom));
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // Decides whether an event should be sampled using a random number generator and
 | |
| // a sampling factor derived from the netid and the return code.
 | |
| //
 | |
| // Returns the subsampling rate if the event should be sampled, or 0 if it should be discarded.
 | |
| uint32_t resolv_cache_get_subsampling_denom(unsigned netid, int return_code, bool is_mdns) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     NetConfig* netconfig = find_netconfig_locked(netid);
 | |
|     if (netconfig == nullptr) return 0;  // Don't log anything at all.
 | |
|     const auto& subsampling_map = (!is_mdns) ? netconfig->dns_event_subsampling_map
 | |
|                                              : netconfig->mdns_event_subsampling_map;
 | |
|     auto search_returnCode = subsampling_map.find(return_code);
 | |
|     uint32_t denom;
 | |
|     if (search_returnCode != subsampling_map.end()) {
 | |
|         denom = search_returnCode->second;
 | |
|     } else {
 | |
|         auto search_default = subsampling_map.find(DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY);
 | |
|         denom = (search_default == subsampling_map.end()) ? 0 : search_default->second;
 | |
|     }
 | |
|     return denom;
 | |
| }
 | |
| 
 | |
| int resolv_cache_get_resolver_stats(unsigned netid, res_params* params, res_stats stats[MAXNS],
 | |
|                                     const std::vector<IPSockAddr>& serverSockAddrs) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     NetConfig* info = find_netconfig_locked(netid);
 | |
|     if (!info) return -1;
 | |
| 
 | |
|     for (size_t i = 0; i < serverSockAddrs.size(); i++) {
 | |
|         for (size_t j = 0; j < info->nameserverSockAddrs.size(); j++) {
 | |
|             // Should never happen. Just in case because of the fix-sized array |stats|.
 | |
|             if (j >= MAXNS) {
 | |
|                 LOG(WARNING) << __func__ << ": unexpected size " << j;
 | |
|                 return -1;
 | |
|             }
 | |
| 
 | |
|             // It's possible that the server is not found, e.g. when a new list of nameservers
 | |
|             // is updated to the NetConfig just after this look up thread being populated.
 | |
|             // Keep the server valid as-is (by means of keeping stats[i] unset), but we should
 | |
|             // think about if there's a better way.
 | |
|             if (info->nameserverSockAddrs[j] == serverSockAddrs[i]) {
 | |
|                 stats[i] = info->nsstats[j];
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *params = info->params;
 | |
|     return info->revision_id;
 | |
| }
 | |
| 
 | |
| void resolv_cache_add_resolver_stats_sample(unsigned netid, int revision_id,
 | |
|                                             const IPSockAddr& serverSockAddr,
 | |
|                                             const res_sample& sample, int max_samples) {
 | |
|     if (max_samples <= 0) return;
 | |
| 
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     NetConfig* info = find_netconfig_locked(netid);
 | |
| 
 | |
|     if (info && info->revision_id == revision_id) {
 | |
|         const int serverNum = std::min(MAXNS, static_cast<int>(info->nameserverSockAddrs.size()));
 | |
|         for (int ns = 0; ns < serverNum; ns++) {
 | |
|             if (serverSockAddr == info->nameserverSockAddrs[ns]) {
 | |
|                 res_cache_add_stats_sample_locked(&info->nsstats[ns], sample, max_samples);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool has_named_cache(unsigned netid) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     return find_named_cache_locked(netid) != nullptr;
 | |
| }
 | |
| 
 | |
| int resolv_cache_get_expiration(unsigned netid, span<const uint8_t> query, time_t* expiration) {
 | |
|     Entry key;
 | |
|     *expiration = -1;
 | |
| 
 | |
|     // A malformed query is not allowed.
 | |
|     if (!entry_init_key(&key, query)) {
 | |
|         LOG(WARNING) << __func__ << ": unsupported query";
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     // lookup cache.
 | |
|     Cache* cache;
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     if (cache = find_named_cache_locked(netid); cache == nullptr) {
 | |
|         LOG(WARNING) << __func__ << ": cache not created in the network " << netid;
 | |
|         return -ENONET;
 | |
|     }
 | |
|     Entry** lookup = _cache_lookup_p(cache, &key);
 | |
|     Entry* e = *lookup;
 | |
|     if (e == NULL) {
 | |
|         LOG(WARNING) << __func__ << ": not in cache";
 | |
|         return -ENODATA;
 | |
|     }
 | |
| 
 | |
|     if (_time_now() >= e->expires) {
 | |
|         LOG(WARNING) << __func__ << ": entry expired";
 | |
|         return -ENODATA;
 | |
|     }
 | |
| 
 | |
|     *expiration = e->expires;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const char* protocol_to_str(const Protocol proto) {
 | |
|     switch (proto) {
 | |
|         case PROTO_UDP:
 | |
|             return "UDP";
 | |
|         case PROTO_TCP:
 | |
|             return "TCP";
 | |
|         case PROTO_DOT:
 | |
|             return "DOT";
 | |
|         case PROTO_DOH:
 | |
|             return "DOH";
 | |
|         case PROTO_MDNS:
 | |
|             return "MDNS";
 | |
|         default:
 | |
|             return "UNKNOWN";
 | |
|     }
 | |
| }
 | |
| 
 | |
| int resolv_stats_set_addrs(unsigned netid, Protocol proto, const std::vector<std::string>& addrs,
 | |
|                            int port) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     const auto info = find_netconfig_locked(netid);
 | |
| 
 | |
|     if (info == nullptr) return -ENONET;
 | |
| 
 | |
|     std::vector<IPSockAddr> sockAddrs;
 | |
|     sockAddrs.reserve(addrs.size());
 | |
|     for (const auto& addr : addrs) {
 | |
|         sockAddrs.push_back(IPSockAddr::toIPSockAddr(addr, port));
 | |
|     }
 | |
| 
 | |
|     if (!info->dnsStats.setAddrs(sockAddrs, proto)) {
 | |
|         LOG(WARNING) << __func__ << ": netid = " << netid << ", failed to set "
 | |
|                      << protocol_to_str(proto) << " stats";
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| bool resolv_stats_add(unsigned netid, const android::netdutils::IPSockAddr& server,
 | |
|                       const DnsQueryEvent* record) {
 | |
|     if (record == nullptr) return false;
 | |
| 
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     if (const auto info = find_netconfig_locked(netid); info != nullptr) {
 | |
|         return info->dnsStats.addStats(server, *record);
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static const char* tc_mode_to_str(const int mode) {
 | |
|     switch (mode) {
 | |
|         case aidl::android::net::IDnsResolver::TC_MODE_DEFAULT:
 | |
|             return "default";
 | |
|         case aidl::android::net::IDnsResolver::TC_MODE_UDP_TCP:
 | |
|             return "UDP_TCP";
 | |
|         default:
 | |
|             return "unknown";
 | |
|     }
 | |
| }
 | |
| 
 | |
| static android::net::NetworkType to_stats_network_type(int32_t mainType, bool withVpn) {
 | |
|     switch (mainType) {
 | |
|         case IDnsResolver::TRANSPORT_CELLULAR:
 | |
|             return withVpn ? android::net::NT_CELLULAR_VPN : android::net::NT_CELLULAR;
 | |
|         case IDnsResolver::TRANSPORT_WIFI:
 | |
|             return withVpn ? android::net::NT_WIFI_VPN : android::net::NT_WIFI;
 | |
|         case IDnsResolver::TRANSPORT_BLUETOOTH:
 | |
|             return withVpn ? android::net::NT_BLUETOOTH_VPN : android::net::NT_BLUETOOTH;
 | |
|         case IDnsResolver::TRANSPORT_ETHERNET:
 | |
|             return withVpn ? android::net::NT_ETHERNET_VPN : android::net::NT_ETHERNET;
 | |
|         case IDnsResolver::TRANSPORT_VPN:
 | |
|             return withVpn ? android::net::NT_UNKNOWN : android::net::NT_VPN;
 | |
|         case IDnsResolver::TRANSPORT_WIFI_AWARE:
 | |
|             return withVpn ? android::net::NT_UNKNOWN : android::net::NT_WIFI_AWARE;
 | |
|         case IDnsResolver::TRANSPORT_LOWPAN:
 | |
|             return withVpn ? android::net::NT_UNKNOWN : android::net::NT_LOWPAN;
 | |
|         default:
 | |
|             return android::net::NT_UNKNOWN;
 | |
|     }
 | |
| }
 | |
| 
 | |
| android::net::NetworkType convert_network_type(const std::vector<int32_t>& transportTypes) {
 | |
|     // The valid transportTypes size is 1 to 3.
 | |
|     if (transportTypes.size() > 3 || transportTypes.size() == 0) return android::net::NT_UNKNOWN;
 | |
|     // TransportTypes size == 1, map the type to stats network type directly.
 | |
|     if (transportTypes.size() == 1) return to_stats_network_type(transportTypes[0], false);
 | |
|     // TransportTypes size == 3, only cellular + wifi + vpn is valid.
 | |
|     if (transportTypes.size() == 3) {
 | |
|         std::vector<int32_t> sortedTransTypes = transportTypes;
 | |
|         std::sort(sortedTransTypes.begin(), sortedTransTypes.end());
 | |
|         if (sortedTransTypes != std::vector<int32_t>{IDnsResolver::TRANSPORT_CELLULAR,
 | |
|                                                      IDnsResolver::TRANSPORT_WIFI,
 | |
|                                                      IDnsResolver::TRANSPORT_VPN}) {
 | |
|             return android::net::NT_UNKNOWN;
 | |
|         }
 | |
|         return android::net::NT_WIFI_CELLULAR_VPN;
 | |
|     }
 | |
|     // TransportTypes size == 2, it shoud be 1 main type + vpn type.
 | |
|     // Otherwise, consider it as UNKNOWN.
 | |
|     bool hasVpn = false;
 | |
|     int32_t mainType = IDnsResolver::TRANSPORT_UNKNOWN;
 | |
|     for (const auto& transportType : transportTypes) {
 | |
|         if (transportType == IDnsResolver::TRANSPORT_VPN) {
 | |
|             hasVpn = true;
 | |
|             continue;
 | |
|         }
 | |
|         mainType = transportType;
 | |
|     }
 | |
|     return hasVpn ? to_stats_network_type(mainType, true) : android::net::NT_UNKNOWN;
 | |
| }
 | |
| 
 | |
| static const char* transport_type_to_str(const std::vector<int32_t>& transportTypes) {
 | |
|     switch (convert_network_type(transportTypes)) {
 | |
|         case android::net::NT_CELLULAR:
 | |
|             return "CELLULAR";
 | |
|         case android::net::NT_WIFI:
 | |
|             return "WIFI";
 | |
|         case android::net::NT_BLUETOOTH:
 | |
|             return "BLUETOOTH";
 | |
|         case android::net::NT_ETHERNET:
 | |
|             return "ETHERNET";
 | |
|         case android::net::NT_VPN:
 | |
|             return "VPN";
 | |
|         case android::net::NT_WIFI_AWARE:
 | |
|             return "WIFI_AWARE";
 | |
|         case android::net::NT_LOWPAN:
 | |
|             return "LOWPAN";
 | |
|         case android::net::NT_CELLULAR_VPN:
 | |
|             return "CELLULAR_VPN";
 | |
|         case android::net::NT_WIFI_VPN:
 | |
|             return "WIFI_VPN";
 | |
|         case android::net::NT_BLUETOOTH_VPN:
 | |
|             return "BLUETOOTH_VPN";
 | |
|         case android::net::NT_ETHERNET_VPN:
 | |
|             return "ETHERNET_VPN";
 | |
|         case android::net::NT_WIFI_CELLULAR_VPN:
 | |
|             return "WIFI_CELLULAR_VPN";
 | |
|         default:
 | |
|             return "UNKNOWN";
 | |
|     }
 | |
| }
 | |
| 
 | |
| void resolv_netconfig_dump(DumpWriter& dw, unsigned netid) {
 | |
|     std::lock_guard guard(cache_mutex);
 | |
|     if (const auto info = find_netconfig_locked(netid); info != nullptr) {
 | |
|         info->dnsStats.dump(dw);
 | |
|         // TODO: dump info->hosts
 | |
|         dw.println("TC mode: %s", tc_mode_to_str(info->tc_mode));
 | |
|         dw.println("TransportType: %s", transport_type_to_str(info->transportTypes));
 | |
|     }
 | |
| }
 |