642 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			642 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2019 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #define LOG_TAG "ExecutionBurstController"
 | |
| 
 | |
| #include "ExecutionBurstController.h"
 | |
| 
 | |
| #include <android-base/logging.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstring>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <string>
 | |
| #include <thread>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| #include "HalInterfaces.h"
 | |
| #include "Tracing.h"
 | |
| #include "Utils.h"
 | |
| 
 | |
| namespace android::nn {
 | |
| namespace {
 | |
| 
 | |
| using V1_2::FmqRequestDatum;
 | |
| using V1_2::FmqResultDatum;
 | |
| using V1_2::IBurstCallback;
 | |
| using V1_2::IBurstContext;
 | |
| using FmqRequestDescriptor = hardware::MQDescriptorSync<FmqRequestDatum>;
 | |
| using FmqResultDescriptor = hardware::MQDescriptorSync<FmqResultDatum>;
 | |
| 
 | |
| constexpr V1_2::Timing kNoTiming12 = {std::numeric_limits<uint64_t>::max(),
 | |
|                                       std::numeric_limits<uint64_t>::max()};
 | |
| 
 | |
| class BurstContextDeathHandler : public hardware::hidl_death_recipient {
 | |
|    public:
 | |
|     using Callback = std::function<void()>;
 | |
| 
 | |
|     BurstContextDeathHandler(const Callback& onDeathCallback) : mOnDeathCallback(onDeathCallback) {
 | |
|         CHECK(onDeathCallback != nullptr);
 | |
|     }
 | |
| 
 | |
|     void serviceDied(uint64_t /*cookie*/, const wp<hidl::base::V1_0::IBase>& /*who*/) override {
 | |
|         LOG(ERROR) << "BurstContextDeathHandler::serviceDied -- service unexpectedly died!";
 | |
|         mOnDeathCallback();
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const Callback mOnDeathCallback;
 | |
| };
 | |
| 
 | |
| }  // anonymous namespace
 | |
| 
 | |
| // serialize a request into a packet
 | |
| std::vector<FmqRequestDatum> serialize(const V1_0::Request& request, V1_2::MeasureTiming measure,
 | |
|                                        const std::vector<int32_t>& slots) {
 | |
|     // count how many elements need to be sent for a request
 | |
|     size_t count = 2 + request.inputs.size() + request.outputs.size() + request.pools.size();
 | |
|     for (const auto& input : request.inputs) {
 | |
|         count += input.dimensions.size();
 | |
|     }
 | |
|     for (const auto& output : request.outputs) {
 | |
|         count += output.dimensions.size();
 | |
|     }
 | |
| 
 | |
|     // create buffer to temporarily store elements
 | |
|     std::vector<FmqRequestDatum> data;
 | |
|     data.reserve(count);
 | |
| 
 | |
|     // package packetInfo
 | |
|     {
 | |
|         FmqRequestDatum datum;
 | |
|         datum.packetInformation(
 | |
|                 {/*.packetSize=*/static_cast<uint32_t>(count),
 | |
|                  /*.numberOfInputOperands=*/static_cast<uint32_t>(request.inputs.size()),
 | |
|                  /*.numberOfOutputOperands=*/static_cast<uint32_t>(request.outputs.size()),
 | |
|                  /*.numberOfPools=*/static_cast<uint32_t>(request.pools.size())});
 | |
|         data.push_back(datum);
 | |
|     }
 | |
| 
 | |
|     // package input data
 | |
|     for (const auto& input : request.inputs) {
 | |
|         // package operand information
 | |
|         FmqRequestDatum datum;
 | |
|         datum.inputOperandInformation(
 | |
|                 {/*.hasNoValue=*/input.hasNoValue,
 | |
|                  /*.location=*/input.location,
 | |
|                  /*.numberOfDimensions=*/static_cast<uint32_t>(input.dimensions.size())});
 | |
|         data.push_back(datum);
 | |
| 
 | |
|         // package operand dimensions
 | |
|         for (uint32_t dimension : input.dimensions) {
 | |
|             FmqRequestDatum datum;
 | |
|             datum.inputOperandDimensionValue(dimension);
 | |
|             data.push_back(datum);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // package output data
 | |
|     for (const auto& output : request.outputs) {
 | |
|         // package operand information
 | |
|         FmqRequestDatum datum;
 | |
|         datum.outputOperandInformation(
 | |
|                 {/*.hasNoValue=*/output.hasNoValue,
 | |
|                  /*.location=*/output.location,
 | |
|                  /*.numberOfDimensions=*/static_cast<uint32_t>(output.dimensions.size())});
 | |
|         data.push_back(datum);
 | |
| 
 | |
|         // package operand dimensions
 | |
|         for (uint32_t dimension : output.dimensions) {
 | |
|             FmqRequestDatum datum;
 | |
|             datum.outputOperandDimensionValue(dimension);
 | |
|             data.push_back(datum);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // package pool identifier
 | |
|     for (int32_t slot : slots) {
 | |
|         FmqRequestDatum datum;
 | |
|         datum.poolIdentifier(slot);
 | |
|         data.push_back(datum);
 | |
|     }
 | |
| 
 | |
|     // package measureTiming
 | |
|     {
 | |
|         FmqRequestDatum datum;
 | |
|         datum.measureTiming(measure);
 | |
|         data.push_back(datum);
 | |
|     }
 | |
| 
 | |
|     // return packet
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| // deserialize a packet into the result
 | |
| std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
 | |
| deserialize(const std::vector<FmqResultDatum>& data) {
 | |
|     using discriminator = FmqResultDatum::hidl_discriminator;
 | |
| 
 | |
|     std::vector<V1_2::OutputShape> outputShapes;
 | |
|     size_t index = 0;
 | |
| 
 | |
|     // validate packet information
 | |
|     if (index >= data.size() ||
 | |
|         data.at(index).getDiscriminator() != discriminator::packetInformation) {
 | |
|         LOG(ERROR) << "FMQ Result packet ill-formed";
 | |
|         return std::nullopt;
 | |
|     }
 | |
| 
 | |
|     // unpackage packet information
 | |
|     const FmqResultDatum::PacketInformation& packetInfo = data.at(index).packetInformation();
 | |
|     index++;
 | |
|     const uint32_t packetSize = packetInfo.packetSize;
 | |
|     const V1_0::ErrorStatus errorStatus = packetInfo.errorStatus;
 | |
|     const uint32_t numberOfOperands = packetInfo.numberOfOperands;
 | |
| 
 | |
|     // verify packet size
 | |
|     if (data.size() != packetSize) {
 | |
|         LOG(ERROR) << "FMQ Result packet ill-formed";
 | |
|         return std::nullopt;
 | |
|     }
 | |
| 
 | |
|     // unpackage operands
 | |
|     for (size_t operand = 0; operand < numberOfOperands; ++operand) {
 | |
|         // validate operand information
 | |
|         if (index >= data.size() ||
 | |
|             data.at(index).getDiscriminator() != discriminator::operandInformation) {
 | |
|             LOG(ERROR) << "FMQ Result packet ill-formed";
 | |
|             return std::nullopt;
 | |
|         }
 | |
| 
 | |
|         // unpackage operand information
 | |
|         const FmqResultDatum::OperandInformation& operandInfo = data.at(index).operandInformation();
 | |
|         index++;
 | |
|         const bool isSufficient = operandInfo.isSufficient;
 | |
|         const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
 | |
| 
 | |
|         // unpackage operand dimensions
 | |
|         std::vector<uint32_t> dimensions;
 | |
|         dimensions.reserve(numberOfDimensions);
 | |
|         for (size_t i = 0; i < numberOfDimensions; ++i) {
 | |
|             // validate dimension
 | |
|             if (index >= data.size() ||
 | |
|                 data.at(index).getDiscriminator() != discriminator::operandDimensionValue) {
 | |
|                 LOG(ERROR) << "FMQ Result packet ill-formed";
 | |
|                 return std::nullopt;
 | |
|             }
 | |
| 
 | |
|             // unpackage dimension
 | |
|             const uint32_t dimension = data.at(index).operandDimensionValue();
 | |
|             index++;
 | |
| 
 | |
|             // store result
 | |
|             dimensions.push_back(dimension);
 | |
|         }
 | |
| 
 | |
|         // store result
 | |
|         outputShapes.push_back({/*.dimensions=*/dimensions, /*.isSufficient=*/isSufficient});
 | |
|     }
 | |
| 
 | |
|     // validate execution timing
 | |
|     if (index >= data.size() ||
 | |
|         data.at(index).getDiscriminator() != discriminator::executionTiming) {
 | |
|         LOG(ERROR) << "FMQ Result packet ill-formed";
 | |
|         return std::nullopt;
 | |
|     }
 | |
| 
 | |
|     // unpackage execution timing
 | |
|     const V1_2::Timing timing = data.at(index).executionTiming();
 | |
|     index++;
 | |
| 
 | |
|     // validate packet information
 | |
|     if (index != packetSize) {
 | |
|         LOG(ERROR) << "FMQ Result packet ill-formed";
 | |
|         return std::nullopt;
 | |
|     }
 | |
| 
 | |
|     // return result
 | |
|     return std::make_tuple(errorStatus, std::move(outputShapes), timing);
 | |
| }
 | |
| 
 | |
| V1_0::ErrorStatus legacyConvertResultCodeToErrorStatus(int resultCode) {
 | |
|     return convertToV1_0(convertResultCodeToErrorStatus(resultCode));
 | |
| }
 | |
| 
 | |
| std::pair<std::unique_ptr<ResultChannelReceiver>, const FmqResultDescriptor*>
 | |
| ResultChannelReceiver::create(size_t channelLength, std::chrono::microseconds pollingTimeWindow) {
 | |
|     std::unique_ptr<FmqResultChannel> fmqResultChannel =
 | |
|             std::make_unique<FmqResultChannel>(channelLength, /*confEventFlag=*/true);
 | |
|     if (!fmqResultChannel->isValid()) {
 | |
|         LOG(ERROR) << "Unable to create ResultChannelReceiver";
 | |
|         return {nullptr, nullptr};
 | |
|     }
 | |
| 
 | |
|     const FmqResultDescriptor* descriptor = fmqResultChannel->getDesc();
 | |
|     return std::make_pair(
 | |
|             std::make_unique<ResultChannelReceiver>(std::move(fmqResultChannel), pollingTimeWindow),
 | |
|             descriptor);
 | |
| }
 | |
| 
 | |
| ResultChannelReceiver::ResultChannelReceiver(std::unique_ptr<FmqResultChannel> fmqResultChannel,
 | |
|                                              std::chrono::microseconds pollingTimeWindow)
 | |
|     : mFmqResultChannel(std::move(fmqResultChannel)), kPollingTimeWindow(pollingTimeWindow) {}
 | |
| 
 | |
| std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
 | |
| ResultChannelReceiver::getBlocking() {
 | |
|     const auto packet = getPacketBlocking();
 | |
|     if (!packet) {
 | |
|         return std::nullopt;
 | |
|     }
 | |
| 
 | |
|     return deserialize(*packet);
 | |
| }
 | |
| 
 | |
| void ResultChannelReceiver::invalidate() {
 | |
|     mValid = false;
 | |
| 
 | |
|     // force unblock
 | |
|     // ExecutionBurstController waits on a result packet after sending a
 | |
|     // request. If the driver containing ExecutionBurstServer crashes, the
 | |
|     // controller may be waiting on the futex. This force unblock wakes up any
 | |
|     // thread waiting on the futex.
 | |
|     // TODO: look for a different/better way to signal/notify the futex to
 | |
|     // wake up any thread waiting on it
 | |
|     FmqResultDatum datum;
 | |
|     datum.packetInformation({/*.packetSize=*/0,
 | |
|                              /*.errorStatus=*/V1_0::ErrorStatus::GENERAL_FAILURE,
 | |
|                              /*.numberOfOperands=*/0});
 | |
|     mFmqResultChannel->writeBlocking(&datum, 1);
 | |
| }
 | |
| 
 | |
| std::optional<std::vector<FmqResultDatum>> ResultChannelReceiver::getPacketBlocking() {
 | |
|     if (!mValid) {
 | |
|         return std::nullopt;
 | |
|     }
 | |
| 
 | |
|     // First spend time polling if results are available in FMQ instead of
 | |
|     // waiting on the futex. Polling is more responsive (yielding lower
 | |
|     // latencies), but can take up more power, so only poll for a limited period
 | |
|     // of time.
 | |
| 
 | |
|     auto& getCurrentTime = std::chrono::high_resolution_clock::now;
 | |
|     const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
 | |
| 
 | |
|     while (getCurrentTime() < timeToStopPolling) {
 | |
|         // if class is being torn down, immediately return
 | |
|         if (!mValid.load(std::memory_order_relaxed)) {
 | |
|             return std::nullopt;
 | |
|         }
 | |
| 
 | |
|         // Check if data is available. If it is, immediately retrieve it and
 | |
|         // return.
 | |
|         const size_t available = mFmqResultChannel->availableToRead();
 | |
|         if (available > 0) {
 | |
|             std::vector<FmqResultDatum> packet(available);
 | |
|             const bool success = mFmqResultChannel->read(packet.data(), available);
 | |
|             if (!success) {
 | |
|                 LOG(ERROR) << "Error receiving packet";
 | |
|                 return std::nullopt;
 | |
|             }
 | |
|             return std::make_optional(std::move(packet));
 | |
|         }
 | |
| 
 | |
|         std::this_thread::yield();
 | |
|     }
 | |
| 
 | |
|     // If we get to this point, we either stopped polling because it was taking
 | |
|     // too long or polling was not allowed. Instead, perform a blocking call
 | |
|     // which uses a futex to save power.
 | |
| 
 | |
|     // wait for result packet and read first element of result packet
 | |
|     FmqResultDatum datum;
 | |
|     bool success = mFmqResultChannel->readBlocking(&datum, 1);
 | |
| 
 | |
|     // retrieve remaining elements
 | |
|     // NOTE: all of the data is already available at this point, so there's no
 | |
|     // need to do a blocking wait to wait for more data. This is known because
 | |
|     // in FMQ, all writes are published (made available) atomically. Currently,
 | |
|     // the producer always publishes the entire packet in one function call, so
 | |
|     // if the first element of the packet is available, the remaining elements
 | |
|     // are also available.
 | |
|     const size_t count = mFmqResultChannel->availableToRead();
 | |
|     std::vector<FmqResultDatum> packet(count + 1);
 | |
|     std::memcpy(&packet.front(), &datum, sizeof(datum));
 | |
|     success &= mFmqResultChannel->read(packet.data() + 1, count);
 | |
| 
 | |
|     if (!mValid) {
 | |
|         return std::nullopt;
 | |
|     }
 | |
| 
 | |
|     // ensure packet was successfully received
 | |
|     if (!success) {
 | |
|         LOG(ERROR) << "Error receiving packet";
 | |
|         return std::nullopt;
 | |
|     }
 | |
| 
 | |
|     return std::make_optional(std::move(packet));
 | |
| }
 | |
| 
 | |
| std::pair<std::unique_ptr<RequestChannelSender>, const FmqRequestDescriptor*>
 | |
| RequestChannelSender::create(size_t channelLength) {
 | |
|     std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
 | |
|             std::make_unique<FmqRequestChannel>(channelLength, /*confEventFlag=*/true);
 | |
|     if (!fmqRequestChannel->isValid()) {
 | |
|         LOG(ERROR) << "Unable to create RequestChannelSender";
 | |
|         return {nullptr, nullptr};
 | |
|     }
 | |
| 
 | |
|     const FmqRequestDescriptor* descriptor = fmqRequestChannel->getDesc();
 | |
|     return std::make_pair(std::make_unique<RequestChannelSender>(std::move(fmqRequestChannel)),
 | |
|                           descriptor);
 | |
| }
 | |
| 
 | |
| RequestChannelSender::RequestChannelSender(std::unique_ptr<FmqRequestChannel> fmqRequestChannel)
 | |
|     : mFmqRequestChannel(std::move(fmqRequestChannel)) {}
 | |
| 
 | |
| bool RequestChannelSender::send(const V1_0::Request& request, V1_2::MeasureTiming measure,
 | |
|                                 const std::vector<int32_t>& slots) {
 | |
|     const std::vector<FmqRequestDatum> serialized = serialize(request, measure, slots);
 | |
|     return sendPacket(serialized);
 | |
| }
 | |
| 
 | |
| bool RequestChannelSender::sendPacket(const std::vector<FmqRequestDatum>& packet) {
 | |
|     if (!mValid) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (packet.size() > mFmqRequestChannel->availableToWrite()) {
 | |
|         LOG(ERROR)
 | |
|                 << "RequestChannelSender::sendPacket -- packet size exceeds size available in FMQ";
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Always send the packet with "blocking" because this signals the futex and
 | |
|     // unblocks the consumer if it is waiting on the futex.
 | |
|     return mFmqRequestChannel->writeBlocking(packet.data(), packet.size());
 | |
| }
 | |
| 
 | |
| void RequestChannelSender::invalidate() {
 | |
|     mValid = false;
 | |
| }
 | |
| 
 | |
| hardware::Return<void> ExecutionBurstController::ExecutionBurstCallback::getMemories(
 | |
|         const hardware::hidl_vec<int32_t>& slots, getMemories_cb cb) {
 | |
|     std::lock_guard<std::mutex> guard(mMutex);
 | |
| 
 | |
|     // get all memories
 | |
|     hardware::hidl_vec<hardware::hidl_memory> memories(slots.size());
 | |
|     std::transform(slots.begin(), slots.end(), memories.begin(), [this](int32_t slot) {
 | |
|         if (slot < 0 || static_cast<size_t>(slot) >= mMemoryCache.size()) {
 | |
|             return hardware::hidl_memory{};
 | |
|         }
 | |
|         return mMemoryCache[slot];
 | |
|     });
 | |
| 
 | |
|     // ensure all memories are valid
 | |
|     if (!std::all_of(memories.begin(), memories.end(),
 | |
|                      [](const hardware::hidl_memory& memory) { return memory.valid(); })) {
 | |
|         cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {});
 | |
|         return hardware::Void();
 | |
|     }
 | |
| 
 | |
|     // return successful
 | |
|     cb(V1_0::ErrorStatus::NONE, std::move(memories));
 | |
|     return hardware::Void();
 | |
| }
 | |
| 
 | |
| std::vector<int32_t> ExecutionBurstController::ExecutionBurstCallback::getSlots(
 | |
|         const hardware::hidl_vec<hardware::hidl_memory>& memories,
 | |
|         const std::vector<intptr_t>& keys) {
 | |
|     std::lock_guard<std::mutex> guard(mMutex);
 | |
| 
 | |
|     // retrieve (or bind) all slots corresponding to memories
 | |
|     std::vector<int32_t> slots;
 | |
|     slots.reserve(memories.size());
 | |
|     for (size_t i = 0; i < memories.size(); ++i) {
 | |
|         slots.push_back(getSlotLocked(memories[i], keys[i]));
 | |
|     }
 | |
|     return slots;
 | |
| }
 | |
| 
 | |
| std::pair<bool, int32_t> ExecutionBurstController::ExecutionBurstCallback::freeMemory(
 | |
|         intptr_t key) {
 | |
|     std::lock_guard<std::mutex> guard(mMutex);
 | |
| 
 | |
|     auto iter = mMemoryIdToSlot.find(key);
 | |
|     if (iter == mMemoryIdToSlot.end()) {
 | |
|         return {false, 0};
 | |
|     }
 | |
|     const int32_t slot = iter->second;
 | |
|     mMemoryIdToSlot.erase(key);
 | |
|     mMemoryCache[slot] = {};
 | |
|     mFreeSlots.push(slot);
 | |
|     return {true, slot};
 | |
| }
 | |
| 
 | |
| int32_t ExecutionBurstController::ExecutionBurstCallback::getSlotLocked(
 | |
|         const hardware::hidl_memory& memory, intptr_t key) {
 | |
|     auto iter = mMemoryIdToSlot.find(key);
 | |
|     if (iter == mMemoryIdToSlot.end()) {
 | |
|         const int32_t slot = allocateSlotLocked();
 | |
|         mMemoryIdToSlot[key] = slot;
 | |
|         mMemoryCache[slot] = memory;
 | |
|         return slot;
 | |
|     } else {
 | |
|         const int32_t slot = iter->second;
 | |
|         return slot;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int32_t ExecutionBurstController::ExecutionBurstCallback::allocateSlotLocked() {
 | |
|     constexpr size_t kMaxNumberOfSlots = std::numeric_limits<int32_t>::max();
 | |
| 
 | |
|     // if there is a free slot, use it
 | |
|     if (mFreeSlots.size() > 0) {
 | |
|         const int32_t slot = mFreeSlots.top();
 | |
|         mFreeSlots.pop();
 | |
|         return slot;
 | |
|     }
 | |
| 
 | |
|     // otherwise use a slot for the first time
 | |
|     CHECK(mMemoryCache.size() < kMaxNumberOfSlots) << "Exceeded maximum number of slots!";
 | |
|     const int32_t slot = static_cast<int32_t>(mMemoryCache.size());
 | |
|     mMemoryCache.emplace_back();
 | |
| 
 | |
|     return slot;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<ExecutionBurstController> ExecutionBurstController::create(
 | |
|         const sp<V1_2::IPreparedModel>& preparedModel,
 | |
|         std::chrono::microseconds pollingTimeWindow) {
 | |
|     // check inputs
 | |
|     if (preparedModel == nullptr) {
 | |
|         LOG(ERROR) << "ExecutionBurstController::create passed a nullptr";
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // create callback object
 | |
|     sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
 | |
| 
 | |
|     // create FMQ objects
 | |
|     auto [requestChannelSenderTemp, requestChannelDescriptor] =
 | |
|             RequestChannelSender::create(kExecutionBurstChannelLength);
 | |
|     auto [resultChannelReceiverTemp, resultChannelDescriptor] =
 | |
|             ResultChannelReceiver::create(kExecutionBurstChannelLength, pollingTimeWindow);
 | |
|     std::shared_ptr<RequestChannelSender> requestChannelSender =
 | |
|             std::move(requestChannelSenderTemp);
 | |
|     std::shared_ptr<ResultChannelReceiver> resultChannelReceiver =
 | |
|             std::move(resultChannelReceiverTemp);
 | |
| 
 | |
|     // check FMQ objects
 | |
|     if (!requestChannelSender || !resultChannelReceiver || !requestChannelDescriptor ||
 | |
|         !resultChannelDescriptor) {
 | |
|         LOG(ERROR) << "ExecutionBurstController::create failed to create FastMessageQueue";
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // configure burst
 | |
|     V1_0::ErrorStatus errorStatus;
 | |
|     sp<IBurstContext> burstContext;
 | |
|     const hardware::Return<void> ret = preparedModel->configureExecutionBurst(
 | |
|             callback, *requestChannelDescriptor, *resultChannelDescriptor,
 | |
|             [&errorStatus, &burstContext](V1_0::ErrorStatus status,
 | |
|                                           const sp<IBurstContext>& context) {
 | |
|                 errorStatus = status;
 | |
|                 burstContext = context;
 | |
|             });
 | |
| 
 | |
|     // check burst
 | |
|     if (!ret.isOk()) {
 | |
|         LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with description "
 | |
|                    << ret.description();
 | |
|         return nullptr;
 | |
|     }
 | |
|     if (errorStatus != V1_0::ErrorStatus::NONE) {
 | |
|         LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with status "
 | |
|                    << toString(errorStatus);
 | |
|         return nullptr;
 | |
|     }
 | |
|     if (burstContext == nullptr) {
 | |
|         LOG(ERROR) << "IPreparedModel::configureExecutionBurst returned nullptr for burst";
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // create death handler object
 | |
|     BurstContextDeathHandler::Callback onDeathCallback = [requestChannelSender,
 | |
|                                                           resultChannelReceiver] {
 | |
|         requestChannelSender->invalidate();
 | |
|         resultChannelReceiver->invalidate();
 | |
|     };
 | |
|     const sp<BurstContextDeathHandler> deathHandler = new BurstContextDeathHandler(onDeathCallback);
 | |
| 
 | |
|     // linkToDeath registers a callback that will be invoked on service death to
 | |
|     // proactively handle service crashes. If the linkToDeath call fails,
 | |
|     // asynchronous calls are susceptible to hangs if the service crashes before
 | |
|     // providing the response.
 | |
|     const hardware::Return<bool> deathHandlerRet = burstContext->linkToDeath(deathHandler, 0);
 | |
|     if (!deathHandlerRet.isOk() || deathHandlerRet != true) {
 | |
|         LOG(ERROR) << "ExecutionBurstController::create -- Failed to register a death recipient "
 | |
|                       "for the IBurstContext object.";
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // make and return controller
 | |
|     return std::make_unique<ExecutionBurstController>(requestChannelSender, resultChannelReceiver,
 | |
|                                                       burstContext, callback, deathHandler);
 | |
| }
 | |
| 
 | |
| ExecutionBurstController::ExecutionBurstController(
 | |
|         const std::shared_ptr<RequestChannelSender>& requestChannelSender,
 | |
|         const std::shared_ptr<ResultChannelReceiver>& resultChannelReceiver,
 | |
|         const sp<IBurstContext>& burstContext, const sp<ExecutionBurstCallback>& callback,
 | |
|         const sp<hardware::hidl_death_recipient>& deathHandler)
 | |
|     : mRequestChannelSender(requestChannelSender),
 | |
|       mResultChannelReceiver(resultChannelReceiver),
 | |
|       mBurstContext(burstContext),
 | |
|       mMemoryCache(callback),
 | |
|       mDeathHandler(deathHandler) {}
 | |
| 
 | |
| ExecutionBurstController::~ExecutionBurstController() {
 | |
|     // It is safe to ignore any errors resulting from this unlinkToDeath call
 | |
|     // because the ExecutionBurstController object is already being destroyed
 | |
|     // and its underlying IBurstContext object is no longer being used by the NN
 | |
|     // runtime.
 | |
|     if (mDeathHandler) {
 | |
|         mBurstContext->unlinkToDeath(mDeathHandler).isOk();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool> getExecutionResult(
 | |
|         V1_0::ErrorStatus status, std::vector<V1_2::OutputShape> outputShapes, V1_2::Timing timing,
 | |
|         bool fallback) {
 | |
|     auto [n, checkedOutputShapes, checkedTiming] =
 | |
|             getExecutionResult(convertToV1_3(status), std::move(outputShapes), timing);
 | |
|     return {n, convertToV1_2(checkedOutputShapes), convertToV1_2(checkedTiming), fallback};
 | |
| }
 | |
| 
 | |
| std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool>
 | |
| ExecutionBurstController::compute(const V1_0::Request& request, V1_2::MeasureTiming measure,
 | |
|                                   const std::vector<intptr_t>& memoryIds) {
 | |
|     // This is the first point when we know an execution is occurring, so begin
 | |
|     // to collect systraces. Note that the first point we can begin collecting
 | |
|     // systraces in ExecutionBurstServer is when the RequestChannelReceiver
 | |
|     // realizes there is data in the FMQ, so ExecutionBurstServer collects
 | |
|     // systraces at different points in the code.
 | |
|     NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstController::compute");
 | |
| 
 | |
|     std::lock_guard<std::mutex> guard(mMutex);
 | |
| 
 | |
|     // send request packet
 | |
|     const std::vector<int32_t> slots = mMemoryCache->getSlots(request.pools, memoryIds);
 | |
|     const bool success = mRequestChannelSender->send(request, measure, slots);
 | |
|     if (!success) {
 | |
|         LOG(ERROR) << "Error sending FMQ packet";
 | |
|         // only use fallback execution path if the packet could not be sent
 | |
|         return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12,
 | |
|                                   /*fallback=*/true);
 | |
|     }
 | |
| 
 | |
|     // get result packet
 | |
|     const auto result = mResultChannelReceiver->getBlocking();
 | |
|     if (!result) {
 | |
|         LOG(ERROR) << "Error retrieving FMQ packet";
 | |
|         // only use fallback execution path if the packet could not be sent
 | |
|         return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12,
 | |
|                                   /*fallback=*/false);
 | |
|     }
 | |
| 
 | |
|     // unpack results and return (only use fallback execution path if the
 | |
|     // packet could not be sent)
 | |
|     auto [status, outputShapes, timing] = std::move(*result);
 | |
|     return getExecutionResult(status, std::move(outputShapes), timing, /*fallback=*/false);
 | |
| }
 | |
| 
 | |
| void ExecutionBurstController::freeMemory(intptr_t key) {
 | |
|     std::lock_guard<std::mutex> guard(mMutex);
 | |
| 
 | |
|     bool valid;
 | |
|     int32_t slot;
 | |
|     std::tie(valid, slot) = mMemoryCache->freeMemory(key);
 | |
|     if (valid) {
 | |
|         mBurstContext->freeMemory(slot).isOk();
 | |
|     }
 | |
| }
 | |
| 
 | |
| }  // namespace android::nn
 |