376 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			376 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2018 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include <gmock/gmock.h>
 | |
| #include <gtest/gtest.h>
 | |
| 
 | |
| #include <limits>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| #include "HalInterfaces.h"
 | |
| #include "MemoryUtils.h"
 | |
| #include "OperationsExecutionUtils.h"
 | |
| #include "QuantUtils.h"
 | |
| #include "Utils.h"
 | |
| #include "ValidateHal.h"
 | |
| #include "nnapi/TypeUtils.h"
 | |
| #include "nnapi/Types.h"
 | |
| 
 | |
| namespace android {
 | |
| namespace nn {
 | |
| namespace wrapper {
 | |
| 
 | |
| namespace {
 | |
| using ::testing::ElementsAreArray;
 | |
| }  // namespace
 | |
| 
 | |
| TEST(CalculateBroadcastedShapeTest, Basic) {
 | |
|     Shape shape1;
 | |
|     Shape shape2;
 | |
|     shape1.dimensions = {4, 3, 2, 1};
 | |
|     shape2.dimensions = {3, 1, 5};
 | |
| 
 | |
|     Shape expectedOutputShape;
 | |
|     expectedOutputShape.dimensions = {4, 3, 2, 5};
 | |
| 
 | |
|     Shape actualOutputShape;
 | |
|     EXPECT_TRUE(calculateBroadcastedShape(shape1, shape2, &actualOutputShape));
 | |
|     EXPECT_THAT(actualOutputShape.dimensions, ElementsAreArray(expectedOutputShape.dimensions));
 | |
| 
 | |
|     EXPECT_TRUE(calculateBroadcastedShape(shape2, shape1, &actualOutputShape));
 | |
|     EXPECT_THAT(actualOutputShape.dimensions, ElementsAreArray(expectedOutputShape.dimensions));
 | |
| }
 | |
| 
 | |
| TEST(CalculateBroadcastedShapeTest, FailsOnIncompatible) {
 | |
|     Shape shape1;
 | |
|     Shape shape2;
 | |
|     shape1.dimensions = {5};
 | |
|     shape2.dimensions = {3};
 | |
| 
 | |
|     Shape actualOutputShape;
 | |
|     EXPECT_FALSE(calculateBroadcastedShape(shape1, shape2, &actualOutputShape));
 | |
|     EXPECT_FALSE(calculateBroadcastedShape(shape2, shape1, &actualOutputShape));
 | |
| }
 | |
| 
 | |
| static int32_t getExtensionType(uint16_t extensionPrefix, uint16_t typeWithinExtension) {
 | |
|     int32_t type = (extensionPrefix << kExtensionTypeBits) | typeWithinExtension;
 | |
|     EXPECT_TRUE(isExtensionOperandType(static_cast<V1_3::OperandType>(type)));
 | |
|     return type;
 | |
| }
 | |
| 
 | |
| TEST(TensorHasUnspecifiedDimensionsTest, ExtensionTensorWithUnspecifiedRank) {
 | |
|     // Regression test for b/124285861.
 | |
|     EXPECT_TRUE(tensorHasUnspecifiedDimensions(getExtensionType(1, 0), /*dim=*/nullptr,
 | |
|                                                /*dimCount=*/0));
 | |
| }
 | |
| 
 | |
| TEST(ValidateOperandTypeTest, ExtensionTensorWithUnspecifiedRank) {
 | |
|     // Regression test for b/124104123.
 | |
|     constexpr uint16_t kExtensionPrefix = 1;
 | |
|     constexpr uint16_t kTypeWithinExtension = 0;
 | |
|     int32_t extensionType = getExtensionType(kExtensionPrefix, kTypeWithinExtension);
 | |
|     ANeuralNetworksOperandType type = {
 | |
|             .type = extensionType,
 | |
|             .dimensionCount = 0,
 | |
|             .dimensions = nullptr,
 | |
|     };
 | |
|     Extension::OperandTypeInformation info = {
 | |
|             .type = kTypeWithinExtension,
 | |
|             .isTensor = true,
 | |
|             .byteSize = 4,
 | |
|     };
 | |
|     EXPECT_EQ(validateOperandType(type, &info, /*tag=*/"test", /*allowPartial=*/true),
 | |
|               ANEURALNETWORKS_NO_ERROR);
 | |
|     EXPECT_EQ(validateOperandType(type, &info, /*tag=*/"test", /*allowPartial=*/false),
 | |
|               ANEURALNETWORKS_BAD_DATA);
 | |
| }
 | |
| 
 | |
| TEST(ValidateOperandTypeTest, ExtensionTypeDimensionProductOverflow) {
 | |
|     // Regression test for b/146044137.
 | |
|     constexpr uint16_t kExtensionPrefix = 1;
 | |
|     constexpr uint16_t kTypeWithinExtension = 0;
 | |
|     int32_t extensionType = getExtensionType(kExtensionPrefix, kTypeWithinExtension);
 | |
|     uint32_t dimensions[] = {5, 4, 4, 786433, 5, 3, 16777216, 4, 5};
 | |
|     ANeuralNetworksOperandType type = {
 | |
|             .type = extensionType,
 | |
|             .dimensionCount = std::size(dimensions),
 | |
|             .dimensions = dimensions,
 | |
|     };
 | |
|     Extension::OperandTypeInformation info = {
 | |
|             .type = kTypeWithinExtension,
 | |
|             .isTensor = true,
 | |
|             .byteSize = 1,
 | |
|     };
 | |
|     EXPECT_EQ(validateOperandType(type, &info, /*tag=*/"test", /*allowPartial=*/true),
 | |
|               ANEURALNETWORKS_BAD_DATA);
 | |
| }
 | |
| 
 | |
| TEST(ValidateOperandTypeTest, TensorSizeDimensionProductOverflow) {
 | |
|     // Regression test for b/146044137.
 | |
|     uint32_t dimensions[] = {256, 256, 256, 256};
 | |
|     ANeuralNetworksOperandType type = {
 | |
|             .type = ANEURALNETWORKS_TENSOR_FLOAT32,
 | |
|             .dimensionCount = std::size(dimensions),
 | |
|             .dimensions = dimensions,
 | |
|     };
 | |
|     EXPECT_EQ(validateOperandType(type, nullptr, /*tag=*/"test", /*allowPartial=*/true),
 | |
|               ANEURALNETWORKS_BAD_DATA);
 | |
| }
 | |
| 
 | |
| TEST(ValidateRequestTest, UnknownOutputRank) {
 | |
|     V1_3::Request::MemoryPool pool;
 | |
|     pool.hidlMemory(allocateSharedMemory(2 * sizeof(float)));
 | |
|     ASSERT_TRUE(pool.hidlMemory().valid());
 | |
|     const V1_3::Model model = {
 | |
|             .main =
 | |
|                     {
 | |
|                             .operands = {{
 | |
|                                                  .type = V1_3::OperandType::TENSOR_FLOAT32,
 | |
|                                                  .dimensions = {1},
 | |
|                                                  .numberOfConsumers = 1,
 | |
|                                                  .lifetime = V1_3::OperandLifeTime::SUBGRAPH_INPUT,
 | |
|                                          },
 | |
|                                          {
 | |
|                                                  .type = V1_3::OperandType::TENSOR_FLOAT32,
 | |
|                                                  .dimensions = {},  // unknown output rank
 | |
|                                                  .numberOfConsumers = 0,
 | |
|                                                  .lifetime = V1_3::OperandLifeTime::SUBGRAPH_OUTPUT,
 | |
|                                          }},
 | |
|                             .operations = {{
 | |
|                                     .type = V1_3::OperationType::ABS,
 | |
|                                     .inputs = {0},
 | |
|                                     .outputs = {1},
 | |
|                             }},
 | |
|                             .inputIndexes = {0},
 | |
|                             .outputIndexes = {1},
 | |
|                     },
 | |
|     };
 | |
|     const V1_3::Request request = {
 | |
|             .inputs = {{
 | |
|                     .location = {.poolIndex = 0, .offset = 0, .length = sizeof(float)},
 | |
|                     .dimensions = {},
 | |
|             }},
 | |
|             .outputs = {{
 | |
|                     .location = {.poolIndex = 0, .offset = sizeof(float), .length = sizeof(float)},
 | |
|                     .dimensions = {},
 | |
|             }},
 | |
|             .pools = {std::move(pool)},
 | |
|     };
 | |
|     EXPECT_FALSE(validateRequest(request, model, /*allowUnspecifiedOutput=*/false));
 | |
| }
 | |
| 
 | |
| TEST(ValidateRequestTest, ScalarOutput) {
 | |
|     V1_3::Request::MemoryPool pool;
 | |
|     pool.hidlMemory(allocateSharedMemory(sizeof(float) + sizeof(int32_t)));
 | |
|     ASSERT_TRUE(pool.hidlMemory().valid());
 | |
|     const V1_3::Model model = {
 | |
|             .main =
 | |
|                     {
 | |
|                             .operands = {{
 | |
|                                                  .type = V1_3::OperandType::TENSOR_FLOAT32,
 | |
|                                                  .dimensions = {1},
 | |
|                                                  .numberOfConsumers = 1,
 | |
|                                                  .lifetime = V1_3::OperandLifeTime::SUBGRAPH_INPUT,
 | |
|                                          },
 | |
|                                          {
 | |
|                                                  .type = V1_3::OperandType::INT32,
 | |
|                                                  .dimensions = {},
 | |
|                                                  .numberOfConsumers = 0,
 | |
|                                                  .lifetime = V1_3::OperandLifeTime::SUBGRAPH_OUTPUT,
 | |
|                                          }},
 | |
|                             .operations = {{
 | |
|                                     .type = V1_3::OperationType::RANK,
 | |
|                                     .inputs = {0},
 | |
|                                     .outputs = {1},
 | |
|                             }},
 | |
|                             .inputIndexes = {0},
 | |
|                             .outputIndexes = {1},
 | |
|                     },
 | |
|     };
 | |
|     const V1_3::Request request = {
 | |
|             .inputs = {{
 | |
|                     .location = {.poolIndex = 0, .offset = 0, .length = sizeof(float)},
 | |
|                     .dimensions = {},
 | |
|             }},
 | |
|             .outputs = {{
 | |
|                     .location = {.poolIndex = 0,
 | |
|                                  .offset = sizeof(float),
 | |
|                                  .length = sizeof(int32_t)},
 | |
|                     .dimensions = {},
 | |
|             }},
 | |
|             .pools = {std::move(pool)},
 | |
|     };
 | |
|     EXPECT_TRUE(validateRequest(request, model, /*allowUnspecifiedOutput=*/false));
 | |
| }
 | |
| 
 | |
| class CombineDimensionsTest : public ::testing::Test {
 | |
|    protected:
 | |
|     void testCompatible(const std::vector<uint32_t>& lhs, const std::vector<uint32_t>& rhs,
 | |
|                         const std::vector<uint32_t>& expected) {
 | |
|         SCOPED_TRACE("lhs = " + toString(lhs) + ", rhs = " + toString(rhs));
 | |
|         const auto res = combineDimensions(lhs, rhs);
 | |
|         ASSERT_TRUE(res.has_value());
 | |
|         EXPECT_EQ(res.value(), expected);
 | |
|     }
 | |
| 
 | |
|     void testIncompatible(const std::vector<uint32_t>& lhs, const std::vector<uint32_t>& rhs) {
 | |
|         SCOPED_TRACE("lhs = " + toString(lhs) + ", rhs = " + toString(rhs));
 | |
|         const auto res = combineDimensions(lhs, rhs);
 | |
|         EXPECT_FALSE(res.has_value());
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_F(CombineDimensionsTest, Rank) {
 | |
|     testCompatible({}, {1, 2, 3, 4}, {1, 2, 3, 4});
 | |
|     testCompatible({1, 2, 3, 4}, {}, {1, 2, 3, 4});
 | |
|     testCompatible({}, {}, {});
 | |
|     testIncompatible({1, 2, 3}, {1, 2, 3, 4});
 | |
|     testIncompatible({1, 2, 3, 4}, {1, 2, 3});
 | |
| }
 | |
| 
 | |
| TEST_F(CombineDimensionsTest, Dimensions) {
 | |
|     testCompatible({0, 0, 0, 0}, {1, 2, 3, 4}, {1, 2, 3, 4});
 | |
|     testCompatible({1, 2, 3, 4}, {0, 0, 0, 0}, {1, 2, 3, 4});
 | |
|     testCompatible({0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0});
 | |
|     testIncompatible({1, 2, 3, 4}, {2, 2, 3, 4});
 | |
|     testIncompatible({1, 2, 3, 4}, {1, 2, 3, 3});
 | |
| }
 | |
| 
 | |
| TEST(QuantizationUtilsTest, QuantizeMultiplierSmallerThanOneExp) {
 | |
|     auto checkInvalidQuantization = [](double value) {
 | |
|         int32_t q;
 | |
|         int s;
 | |
|         EXPECT_FALSE(QuantizeMultiplierSmallerThanOneExp(value, &q, &s));
 | |
|     };
 | |
| 
 | |
|     checkInvalidQuantization(-0.1);
 | |
|     checkInvalidQuantization(0.0);
 | |
|     // If we get close enough to 1.0 it crashes and dies in one of two ways:
 | |
|     // Either the shift becomes negative or we trigger the 'less-than-one' CHECK.
 | |
|     checkInvalidQuantization(1 - 1e-15);
 | |
|     checkInvalidQuantization(1 - 1e-17);
 | |
|     checkInvalidQuantization(1.0);
 | |
| 
 | |
|     auto checkQuantization = [](double value, int32_t goldenQuantized, int goldenShift) {
 | |
|         int32_t q;
 | |
|         int s;
 | |
|         EXPECT_TRUE(QuantizeMultiplierSmallerThanOneExp(value, &q, &s));
 | |
|         EXPECT_EQ(q, goldenQuantized);
 | |
|         EXPECT_EQ(s, goldenShift);
 | |
|     };
 | |
| 
 | |
|     checkQuantization(0.25, 1073741824, -1);
 | |
|     checkQuantization(0.50 - 5e-9, 2147483627, -1);
 | |
|     checkQuantization(0.50 - 1e-10, 1073741824, 0);
 | |
|     checkQuantization(0.50, 1073741824, 0);
 | |
|     checkQuantization(0.75, 1610612736, 0);
 | |
|     checkQuantization(1 - 1e-9, 2147483646, 0);
 | |
| }
 | |
| 
 | |
| TEST(QuantizationUtilsTest, QuantizeMultiplierGreaterThanOne) {
 | |
|     auto checkInvalidQuantization = [](double value) {
 | |
|         int32_t q;
 | |
|         int s;
 | |
|         EXPECT_FALSE(QuantizeMultiplierGreaterThanOne(value, &q, &s));
 | |
|     };
 | |
| 
 | |
|     checkInvalidQuantization(1 + 1e-16);
 | |
| 
 | |
|     auto checkQuantization = [](double value, int32_t goldenQuantized, int goldenShift) {
 | |
|         int32_t q;
 | |
|         int s;
 | |
|         EXPECT_TRUE(QuantizeMultiplierGreaterThanOne(value, &q, &s));
 | |
|         EXPECT_EQ(q, goldenQuantized);
 | |
|         EXPECT_EQ(s, goldenShift);
 | |
|     };
 | |
| 
 | |
|     checkQuantization(1 + 1e-11, 1073741824, 1);
 | |
|     checkQuantization(1.25, 1342177280, 1);
 | |
|     checkQuantization(1.50, 1610612736, 1);
 | |
|     checkQuantization(1.50, 1610612736, 1);
 | |
|     checkQuantization(1.75, 1879048192, 1);
 | |
|     checkQuantization(2 - 1e-9, 2147483647, 1);
 | |
|     checkQuantization(2 - 1e-11, 1073741824, 2);
 | |
|     checkQuantization(2, 1073741824, 2);
 | |
| }
 | |
| 
 | |
| TEST(QuantizationUtilTest, QuantizeMultiplier) {
 | |
|     auto checkQuantization = [](double value, int32_t goldenQuantized, int goldenShift) {
 | |
|         int32_t q;
 | |
|         int s;
 | |
|         EXPECT_TRUE(QuantizeMultiplier(value, &q, &s));
 | |
|         EXPECT_EQ(q, goldenQuantized);
 | |
|         EXPECT_EQ(s, goldenShift);
 | |
|     };
 | |
| 
 | |
|     checkQuantization(-4, -1073741824, 3);
 | |
|     checkQuantization(-2, -1073741824, 2);
 | |
|     checkQuantization(-1, -1073741824, 1);
 | |
|     checkQuantization(-0.5, -1073741824, 0);
 | |
|     checkQuantization(-0.25, -1073741824, -1);
 | |
|     checkQuantization(-0.125, -1073741824, -2);
 | |
|     checkQuantization(0, 0, 0);
 | |
|     checkQuantization(0.125, 1073741824, -2);
 | |
|     checkQuantization(0.25, 1073741824, -1);
 | |
|     checkQuantization(0.5, 1073741824, 0);
 | |
|     checkQuantization(1, 1073741824, 1);
 | |
|     checkQuantization(2, 1073741824, 2);
 | |
|     checkQuantization(4, 1073741824, 3);
 | |
| }
 | |
| 
 | |
| TEST(QuantizationUtilTest, QuantizeMultiplierUnderflow) {
 | |
|     auto checkQuantization = [](double value, int32_t goldenQuantized, int goldenShift) {
 | |
|         int32_t q;
 | |
|         int s;
 | |
|         EXPECT_TRUE(QuantizeMultiplier(value, &q, &s));
 | |
|         EXPECT_EQ(q, goldenQuantized);
 | |
|         EXPECT_EQ(s, goldenShift);
 | |
|     };
 | |
| 
 | |
|     checkQuantization(std::ldexp(1.0f, -31), 1073741824, -30);
 | |
|     checkQuantization(std::ldexp(1.0f, -32), 1073741824, -31);
 | |
|     checkQuantization(std::ldexp(0.99f, -32), 0, 0);
 | |
|     checkQuantization(std::ldexp(1.0f, -33), 0, 0);
 | |
| }
 | |
| 
 | |
| TEST(QuantizationUtilTest, GetInvSqrtQuantizedMultiplierExp) {
 | |
|     auto checkInvSqrtQuantization = [](int32_t input, int32_t goldenInvSqrt, int goldenShift) {
 | |
|         int32_t q;
 | |
|         int s;
 | |
|         EXPECT_TRUE(GetInvSqrtQuantizedMultiplierExp(input, 1, &q, &s));
 | |
|         EXPECT_EQ(q, goldenInvSqrt);
 | |
|         EXPECT_EQ(s, goldenShift);
 | |
|     };
 | |
| 
 | |
|     const auto kInt32Max = std::numeric_limits<std::int32_t>::max();
 | |
|     checkInvSqrtQuantization(0, kInt32Max, 0);
 | |
|     checkInvSqrtQuantization(1, kInt32Max, 0);
 | |
|     checkInvSqrtQuantization(2, 1518498372, 0);
 | |
|     checkInvSqrtQuantization(3, 1239850284, 0);
 | |
|     checkInvSqrtQuantization(4, 1073741828, 0);
 | |
|     checkInvSqrtQuantization(100, 214748363, 0);
 | |
|     checkInvSqrtQuantization(10000, 343597361, 4);
 | |
|     checkInvSqrtQuantization(1000000, 274877901, 7);
 | |
|     checkInvSqrtQuantization(100000000, 219902323, 10);
 | |
|     checkInvSqrtQuantization((1 << 30), 268435457, 12);
 | |
|     checkInvSqrtQuantization(kInt32Max, 189812531, 12);
 | |
| }
 | |
| 
 | |
| }  // namespace wrapper
 | |
| }  // namespace nn
 | |
| }  // namespace android
 |