638 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			638 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2017 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #define LOG_TAG "Memory"
 | |
| 
 | |
| #include "Memory.h"
 | |
| 
 | |
| #include <CpuExecutor.h>
 | |
| #include <LegacyUtils.h>
 | |
| #include <android-base/scopeguard.h>
 | |
| #include <nnapi/IBurst.h>
 | |
| #include <nnapi/SharedMemory.h>
 | |
| #include <nnapi/TypeUtils.h>
 | |
| #include <nnapi/Types.h>
 | |
| #include <nnapi/Validation.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <memory>
 | |
| #include <set>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| #include "CompilationBuilder.h"
 | |
| #include "Manager.h"
 | |
| #include "TypeManager.h"
 | |
| 
 | |
| #ifdef __ANDROID__
 | |
| #include <android/hardware_buffer.h>
 | |
| #endif  // __ANDROID__
 | |
| 
 | |
| namespace android {
 | |
| namespace nn {
 | |
| namespace {
 | |
| 
 | |
| // The validator for a client-managed single-dimensional memory pool with a known size.
 | |
| // The memory may be used for request inputs, request outputs, or model constants.
 | |
| class SizedMemoryValidator : public MemoryValidatorBase {
 | |
|    public:
 | |
|     explicit SizedMemoryValidator(uint32_t size) : kSize(size) {}
 | |
| 
 | |
|     bool validate(const CompilationBuilder*, IOType, uint32_t, const ANeuralNetworksOperandType*,
 | |
|                   uint32_t offset, uint32_t length) const override {
 | |
|         NN_RET_CHECK(offset + length <= kSize) << "request size larger than the memory size.";
 | |
|         NN_RET_CHECK(offset != 0 || length != 0) << "memory size cannot be implied.";
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     Metadata getMetadata() const override { return {.logicalSize = kSize}; }
 | |
|     bool updateMetadata(const Metadata& metadata) override {
 | |
|         return metadata.logicalSize == 0 || metadata.logicalSize == kSize;
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const uint32_t kSize;
 | |
| };
 | |
| 
 | |
| // The validator for an AHardwareBuffer with Non-BLOB format.
 | |
| // We require the memory only used for request inputs or request outputs,
 | |
| // with both offset and length set to zero.
 | |
| class AHardwareBufferNonBlobValidator : public MemoryValidatorBase {
 | |
|    public:
 | |
|     AHardwareBufferNonBlobValidator() = default;
 | |
| 
 | |
|     bool validate(const CompilationBuilder* compilation, IOType, uint32_t,
 | |
|                   const ANeuralNetworksOperandType*, uint32_t offset,
 | |
|                   uint32_t length) const override {
 | |
|         NN_RET_CHECK(compilation != nullptr)
 | |
|                 << "cannot use Non-BLOB AHardwareBuffer as model constant";
 | |
|         NN_RET_CHECK(offset == 0 && length == 0)
 | |
|                 << "non-zero offset (" << offset << ") and/or length (" << length
 | |
|                 << ") for Non-BLOB format AHardwareBuffer.";
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     Metadata getMetadata() const override { return {}; }
 | |
|     bool updateMetadata(const Metadata&) override { return true; }
 | |
| };
 | |
| 
 | |
| // The validator for a memory created from ANNMemory_createFromDesc.
 | |
| // We require the memory only used as one of the pre-specified roles,
 | |
| // with both offset and length set to zero.
 | |
| class DeviceMemoryValidator : public MemoryValidatorBase {
 | |
|    public:
 | |
|     DeviceMemoryValidator(std::set<CompilationRole> roles, Operand operand,
 | |
|                           std::vector<uint32_t> dimensions)
 | |
|         : kCompilationRoles(std::move(roles)),
 | |
|           kOperand(std::move(operand)),
 | |
|           kInitialDimensions(std::move(dimensions)),
 | |
|           mUpdatedDimensions(kInitialDimensions) {}
 | |
| 
 | |
|     bool validate(const CompilationBuilder* compilation, IOType ioType, uint32_t index,
 | |
|                   const ANeuralNetworksOperandType* type, uint32_t offset,
 | |
|                   uint32_t length) const override {
 | |
|         NN_RET_CHECK(kCompilationRoles.count({compilation, ioType, index}) > 0)
 | |
|                 << "invalid compilation role.";
 | |
|         NN_RET_CHECK(offset == 0 && length == 0)
 | |
|                 << "non-zero offset and/or length for driver-allocated memory.";
 | |
|         if (type) {
 | |
|             const bool isTensor = TypeManager::get()->isTensorType(kOperand.type);
 | |
|             NN_RET_CHECK(isTensor || type->dimensionCount == 0)
 | |
|                     << "invalid dimensions for scalar memory.";
 | |
|             std::vector<uint32_t> dimensions(type->dimensions,
 | |
|                                              type->dimensions + type->dimensionCount);
 | |
|             // We only check against kInitialDimensions here.
 | |
|             // For input memories, mUpdatedDimensions will be checked in validateInputDimensions
 | |
|             // at the beginning of a computation.
 | |
|             const auto combined = combineDimensions(dimensions, kInitialDimensions);
 | |
|             NN_RET_CHECK(combined.has_value())
 | |
|                     << "incompatible dimensions between request and memory. (request: "
 | |
|                     << toString(dimensions) << ", memory: " << toString(kInitialDimensions) << ")";
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     bool validateInputDimensions(const std::vector<uint32_t>& dimensions) const override {
 | |
|         NN_RET_CHECK(mInitialized) << "using an uninitialized memory as input";
 | |
|         NN_RET_CHECK(dimensions == mUpdatedDimensions)
 | |
|                 << "incompatible input dimensions between request and memory. (request: "
 | |
|                 << toString(dimensions) << ", memory: " << toString(mUpdatedDimensions) << ")";
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     Metadata getMetadata() const override {
 | |
|         return {.logicalSize = TypeManager::get()->getSizeOfData(kOperand.type, mUpdatedDimensions),
 | |
|                 .dimensions = mUpdatedDimensions,
 | |
|                 .operand = kOperand};
 | |
|     }
 | |
| 
 | |
|     bool updateMetadata(const Metadata& metadata) override {
 | |
|         NN_RET_CHECK(!metadata.operand.has_value() ||
 | |
|                      (metadata.operand->type == kOperand.type &&
 | |
|                       metadata.operand->scale == kOperand.scale &&
 | |
|                       metadata.operand->zeroPoint == kOperand.zeroPoint &&
 | |
|                       metadata.operand->extraParams == kOperand.extraParams));
 | |
| 
 | |
|         NN_RET_CHECK(metadata.dimensions.empty() ||
 | |
|                      TypeManager::get()->isTensorType(kOperand.type));
 | |
|         auto combined = combineDimensions(metadata.dimensions, kInitialDimensions);
 | |
|         NN_RET_CHECK(combined.has_value());
 | |
|         NN_RET_CHECK(metadata.logicalSize == 0 ||
 | |
|                      metadata.logicalSize ==
 | |
|                              TypeManager::get()->getSizeOfData(kOperand.type, combined.value()));
 | |
|         mUpdatedDimensions = std::move(combined.value());
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     bool createdWithUnknownShape() const override {
 | |
|         return TypeManager::get()->getSizeOfData(kOperand.type, kInitialDimensions) == 0;
 | |
|     }
 | |
| 
 | |
|     void setInitialized(bool initialized) override { mInitialized = initialized; }
 | |
|     bool isInitialized() const override { return mInitialized; }
 | |
| 
 | |
|    private:
 | |
|     const std::set<CompilationRole> kCompilationRoles;
 | |
| 
 | |
|     // Keep track of the data type, scale, zero point, and extra parameters of the target operand.
 | |
|     // Other fields will be ignored, including dimensions, lifetime, location, etc.
 | |
|     const Operand kOperand;
 | |
| 
 | |
|     // The dimensions of the memory when the memory object is created.
 | |
|     // May have unknown dimensions or rank.
 | |
|     const std::vector<uint32_t> kInitialDimensions;
 | |
| 
 | |
|     // The updated dimensions after a successful execution or memory copying.
 | |
|     std::vector<uint32_t> mUpdatedDimensions;
 | |
| 
 | |
|     bool mInitialized = false;
 | |
| };
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| RuntimeMemory::RuntimeMemory(SharedMemory memory) : kMemory(std::move(memory)) {
 | |
|     CHECK(kMemory != nullptr);
 | |
|     mValidator = std::make_unique<SizedMemoryValidator>(nn::getSize(kMemory));
 | |
| }
 | |
| 
 | |
| RuntimeMemory::RuntimeMemory(SharedMemory memory, std::unique_ptr<MemoryValidatorBase> validator)
 | |
|     : kMemory(std::move(memory)), mValidator(std::move(validator)) {
 | |
|     CHECK(kMemory != nullptr);
 | |
| }
 | |
| 
 | |
| RuntimeMemory::RuntimeMemory(SharedBuffer buffer) : kBuffer(std::move(buffer)) {}
 | |
| 
 | |
| Request::MemoryPool RuntimeMemory::getMemoryPool() const {
 | |
|     if (kBuffer != nullptr) {
 | |
|         return kBuffer->getToken();
 | |
|     }
 | |
|     return kMemory;
 | |
| }
 | |
| 
 | |
| std::optional<RunTimePoolInfo> RuntimeMemory::getRunTimePoolInfo() const {
 | |
|     std::lock_guard<std::mutex> guard(mMutex);
 | |
|     if (!mHasCachedRunTimePoolInfo) {
 | |
|         mCachedRunTimePoolInfo = RunTimePoolInfo::createFromMemory(kMemory);
 | |
|         mHasCachedRunTimePoolInfo = true;
 | |
|     }
 | |
|     return mCachedRunTimePoolInfo;
 | |
| }
 | |
| 
 | |
| void RuntimeMemory::hold(const IBurst::OptionalCacheHold& cacheHold) const {
 | |
|     if (cacheHold != nullptr) {
 | |
|         std::lock_guard<std::mutex> guard(mMutex);
 | |
|         mHold.insert(cacheHold);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int copyHidlMemories(const std::optional<RunTimePoolInfo>& src,
 | |
|                             const std::optional<RunTimePoolInfo>& dst) {
 | |
|     if (!src.has_value() || !dst.has_value()) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemory_copy -- unable to map memory";
 | |
|         return ANEURALNETWORKS_UNMAPPABLE;
 | |
|     }
 | |
|     if (src->getSize() != dst->getSize()) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memory size";
 | |
|         return ANEURALNETWORKS_BAD_DATA;
 | |
|     }
 | |
|     CHECK(src->getBuffer() != nullptr);
 | |
|     CHECK(dst->getBuffer() != nullptr);
 | |
|     std::copy(src->getBuffer(), src->getBuffer() + src->getSize(), dst->getBuffer());
 | |
|     dst->flush();
 | |
|     return ANEURALNETWORKS_NO_ERROR;
 | |
| }
 | |
| 
 | |
| int copyIBufferToMemory(const SharedBuffer& src, const SharedMemory& dst) {
 | |
|     const auto ret = src->copyTo(dst);
 | |
|     if (!ret.has_value()) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.error().message;
 | |
|         return convertErrorStatusToResultCode(ret.error().code);
 | |
|     }
 | |
|     return ANEURALNETWORKS_NO_ERROR;
 | |
| }
 | |
| 
 | |
| int copyMemoryToIBuffer(const SharedMemory& src, const SharedBuffer& dst,
 | |
|                         const std::vector<uint32_t>& dimensions) {
 | |
|     const auto ret = dst->copyFrom(src, dimensions);
 | |
|     if (!ret.has_value()) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.error().message;
 | |
|         return convertErrorStatusToResultCode(ret.error().code);
 | |
|     }
 | |
|     return ANEURALNETWORKS_NO_ERROR;
 | |
| }
 | |
| 
 | |
| static int copyIBuffers(const SharedBuffer& src, const SharedBuffer& dst,
 | |
|                         const MemoryValidatorBase::Metadata& srcMetadata) {
 | |
| #ifdef __ANDROID__
 | |
|     const auto [n, runtimeMemory] = MemoryRuntimeAHWB::create(srcMetadata.logicalSize);
 | |
| #else   // __ANDROID__
 | |
|     const auto [n, runtimeMemory] = MemoryAshmem::create(srcMetadata.logicalSize);
 | |
| #endif  // __ANDROID__
 | |
|     NN_RETURN_IF_ERROR(n);
 | |
|     const SharedMemory& memory = runtimeMemory->getMemory();
 | |
|     if (!validate(memory).ok()) return ANEURALNETWORKS_OUT_OF_MEMORY;
 | |
|     NN_RETURN_IF_ERROR(copyIBufferToMemory(src, memory));
 | |
|     NN_RETURN_IF_ERROR(copyMemoryToIBuffer(memory, dst, srcMetadata.dimensions));
 | |
|     return ANEURALNETWORKS_NO_ERROR;
 | |
| }
 | |
| 
 | |
| static int copyInternal(const RuntimeMemory& src, const RuntimeMemory& dst) {
 | |
|     if (&src == &dst) return ANEURALNETWORKS_NO_ERROR;
 | |
| 
 | |
|     if (!src.getValidator().isInitialized()) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemory_copy -- uninitialized source memory";
 | |
|         return ANEURALNETWORKS_BAD_DATA;
 | |
|     }
 | |
| 
 | |
|     const auto srcMetadata = src.getValidator().getMetadata();
 | |
|     if (!dst.getValidator().updateMetadata(srcMetadata)) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memories";
 | |
|         return ANEURALNETWORKS_BAD_DATA;
 | |
|     }
 | |
| 
 | |
|     bool srcHasMemory = validate(src.getMemory()).ok();
 | |
|     bool dstHasMemory = validate(dst.getMemory()).ok();
 | |
|     bool srcHasIBuffer = src.getIBuffer() != nullptr;
 | |
|     bool dstHasIBuffer = dst.getIBuffer() != nullptr;
 | |
|     if (srcHasIBuffer && dstHasIBuffer) {
 | |
|         return copyIBuffers(src.getIBuffer(), dst.getIBuffer(), srcMetadata);
 | |
|     } else if (srcHasMemory && dstHasMemory) {
 | |
|         return copyHidlMemories(src.getRunTimePoolInfo(), dst.getRunTimePoolInfo());
 | |
|     } else if (srcHasMemory && dstHasIBuffer) {
 | |
|         return copyMemoryToIBuffer(src.getMemory(), dst.getIBuffer(), srcMetadata.dimensions);
 | |
|     } else if (srcHasIBuffer && dstHasMemory) {
 | |
|         return copyIBufferToMemory(src.getIBuffer(), dst.getMemory());
 | |
|     }
 | |
|     return ANEURALNETWORKS_OP_FAILED;
 | |
| }
 | |
| 
 | |
| int RuntimeMemory::copy(const RuntimeMemory& src, const RuntimeMemory& dst) {
 | |
|     int n = copyInternal(src, dst);
 | |
|     dst.getValidator().setInitialized(n == ANEURALNETWORKS_NO_ERROR);
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| bool MemoryBuilder::badState(const char* name) const {
 | |
|     if (mFinished) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << name << " can't modify after finished";
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| int MemoryBuilder::addRole(const CompilationBuilder& compilation, IOType ioType, uint32_t index,
 | |
|                            float prob) {
 | |
|     const char* tag = ioType == IOType::INPUT ? "addInputRole" : "addOutputRole";
 | |
|     if (badState(tag)) {
 | |
|         return ANEURALNETWORKS_BAD_STATE;
 | |
|     }
 | |
|     if (mRoles.count({&compilation, ioType, index}) > 0) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag
 | |
|                    << " -- the same operand is specified twice.";
 | |
|         return ANEURALNETWORKS_BAD_DATA;
 | |
|     }
 | |
| 
 | |
|     std::vector<std::tuple<const RuntimePreparedModel*, IOType, uint32_t>> roles;
 | |
|     auto callback = [&roles](const auto* preparedModel, IOType type, uint32_t index) {
 | |
|         roles.emplace_back(preparedModel, type, index);
 | |
|     };
 | |
|     if (ioType == IOType::INPUT) {
 | |
|         if (compilation.forEachStepRoleOfInput(index, callback) != ANEURALNETWORKS_NO_ERROR) {
 | |
|             return ANEURALNETWORKS_BAD_DATA;
 | |
|         }
 | |
|     } else {
 | |
|         if (compilation.forEachStepRoleOfOutput(index, callback) != ANEURALNETWORKS_NO_ERROR) {
 | |
|             return ANEURALNETWORKS_BAD_DATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const ModelBuilder* model = compilation.getModel();
 | |
|     CHECK(model != nullptr);
 | |
|     Operand operand;
 | |
|     if (ioType == IOType::INPUT) {
 | |
|         if (index >= model->inputCount()) {
 | |
|             LOG(ERROR) << "ANeuralNetworksMemoryDesc_addInputRole -- input index out of range.";
 | |
|             return ANEURALNETWORKS_BAD_DATA;
 | |
|         }
 | |
|         operand = model->getInputOperand(index);
 | |
|     } else {
 | |
|         if (index >= model->outputCount()) {
 | |
|             LOG(ERROR) << "ANeuralNetworksMemoryDesc_addOutputRole -- output index out of range.";
 | |
|             return ANEURALNETWORKS_BAD_DATA;
 | |
|         }
 | |
|         operand = model->getOutputOperand(index);
 | |
|     }
 | |
|     if (mOperand.has_value()) {
 | |
|         if (operand.type != mOperand->type || operand.scale != mOperand->scale ||
 | |
|             operand.zeroPoint != mOperand->zeroPoint ||
 | |
|             operand.extraParams != mOperand->extraParams) {
 | |
|             LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag
 | |
|                        << " -- incompatible operand metadata.";
 | |
|             return ANEURALNETWORKS_BAD_DATA;
 | |
|         }
 | |
|     }
 | |
|     if (!TypeManager::get()->isTensorType(operand.type) && !mDesc.dimensions.empty()) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions.";
 | |
|         return ANEURALNETWORKS_BAD_DATA;
 | |
|     }
 | |
|     auto combined = combineDimensions(mDesc.dimensions, operand.dimensions);
 | |
|     if (!combined.has_value()) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions.";
 | |
|         return ANEURALNETWORKS_BAD_DATA;
 | |
|     }
 | |
| 
 | |
|     if (prob > 1.0f || prob <= 0.0f) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- invalid frequency " << prob;
 | |
|         return ANEURALNETWORKS_BAD_DATA;
 | |
|     }
 | |
| 
 | |
|     mRoles.emplace(&compilation, ioType, index);
 | |
|     for (const auto& [preparedModel, type, ind] : roles) {
 | |
|         uint32_t modelIndex = mDesc.preparedModels.add(preparedModel);
 | |
|         BufferRole role = {.modelIndex = modelIndex, .ioIndex = ind, .probability = prob};
 | |
|         if (type == IOType::INPUT) {
 | |
|             mDesc.inputRoles.push_back(role);
 | |
|         } else {
 | |
|             mDesc.outputRoles.push_back(role);
 | |
|         }
 | |
|     }
 | |
|     mOperand = std::move(operand);
 | |
|     mDesc.dimensions = std::move(combined.value());
 | |
|     return ANEURALNETWORKS_NO_ERROR;
 | |
| }
 | |
| 
 | |
| int MemoryBuilder::setDimensions(const std::vector<uint32_t>& dimensions) {
 | |
|     if (badState("setDimensions")) return ANEURALNETWORKS_BAD_STATE;
 | |
|     if (mOperand.has_value() && !TypeManager::get()->isTensorType(mOperand->type) &&
 | |
|         !dimensions.empty()) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions for "
 | |
|                       "scalars.";
 | |
|         return ANEURALNETWORKS_BAD_DATA;
 | |
|     }
 | |
|     auto combined = combineDimensions(mDesc.dimensions, dimensions);
 | |
|     if (!combined.has_value()) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions.";
 | |
|         return ANEURALNETWORKS_BAD_DATA;
 | |
|     }
 | |
|     mDesc.dimensions = std::move(combined.value());
 | |
|     return ANEURALNETWORKS_NO_ERROR;
 | |
| }
 | |
| 
 | |
| static void logMemoryDescriptorToInfo(const MemoryDescriptor& desc, const Operand& operand) {
 | |
|     LOG(INFO) << "MemoryDescriptor start";
 | |
|     LOG(INFO) << "    Data type: " << operand.type;
 | |
|     LOG(INFO) << "    Scale: " << operand.scale;
 | |
|     LOG(INFO) << "    Zero point: " << operand.zeroPoint;
 | |
|     LOG(INFO) << "    Extra params: " << operand.extraParams;
 | |
|     LOG(INFO) << "    Dimensions: " << toString(desc.dimensions);
 | |
|     LOG(INFO) << "    Prepared models [" << desc.preparedModels.size() << "]:";
 | |
|     for (const auto* preparedModel : desc.preparedModels) {
 | |
|         LOG(INFO) << "        service = " << preparedModel->getDevice()->getName();
 | |
|     }
 | |
|     LOG(INFO) << "    Input roles [" << desc.inputRoles.size() << "]:";
 | |
|     for (const auto& usage : desc.inputRoles) {
 | |
|         LOG(INFO) << "        " << usage;
 | |
|     }
 | |
|     LOG(INFO) << "    Output roles [" << desc.outputRoles.size() << "]:";
 | |
|     for (const auto& usage : desc.outputRoles) {
 | |
|         LOG(INFO) << "        " << usage;
 | |
|     }
 | |
|     LOG(INFO) << "MemoryDescriptor end";
 | |
| }
 | |
| 
 | |
| static std::set<const Device*> getDevices(const MemoryDescriptor& desc) {
 | |
|     std::set<const Device*> devices;
 | |
|     for (const auto* preparedModel : desc.preparedModels) {
 | |
|         const auto* device = preparedModel->getDevice();
 | |
|         devices.insert(device);
 | |
|     }
 | |
|     return devices;
 | |
| }
 | |
| 
 | |
| int MemoryBuilder::finish() {
 | |
|     if (badState("finish")) return ANEURALNETWORKS_BAD_STATE;
 | |
|     if (mRoles.empty()) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemoryDesc_finish -- no role has been specified.";
 | |
|         return ANEURALNETWORKS_BAD_DATA;
 | |
|     }
 | |
|     CHECK(mOperand.has_value());
 | |
|     if (VLOG_IS_ON(MEMORY)) {
 | |
|         logMemoryDescriptorToInfo(mDesc, mOperand.value());
 | |
|     }
 | |
|     std::set<const Device*> devices = getDevices(mDesc);
 | |
|     if (devices.empty()) {
 | |
|         // This can happen with interpreted control flow.
 | |
|         mAllocator = nullptr;
 | |
|     } else if (devices.size() == 1) {
 | |
|         mAllocator = *devices.begin();
 | |
|         VLOG(MEMORY) << "Using " << mAllocator->getName() << " as allocator.";
 | |
|     } else {
 | |
|         LOG(INFO) << "MemoryBuilder::finish -- cannot handle multiple devices.";
 | |
|         mAllocator = nullptr;
 | |
|     }
 | |
| #ifdef __ANDROID__
 | |
|     mSupportsAhwb = std::all_of(devices.begin(), devices.end(), [](const auto* device) {
 | |
|         return isCompliantVersion(kHalVersionV1_3ToApi.canonical, device->getFeatureLevel());
 | |
|     });
 | |
| #else   // __ANDROID__
 | |
|     mSupportsAhwb = false;
 | |
| #endif  // __ANDROID__
 | |
|     mShouldFallback = std::none_of(mRoles.begin(), mRoles.end(), [](const auto& role) {
 | |
|         const auto* cb = std::get<const CompilationBuilder*>(role);
 | |
|         return cb->createdWithExplicitDeviceList();
 | |
|     });
 | |
|     const uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions);
 | |
|     mShouldFallback &= (size != 0);
 | |
|     mFinished = true;
 | |
|     return ANEURALNETWORKS_NO_ERROR;
 | |
| }
 | |
| 
 | |
| std::pair<int, std::unique_ptr<RuntimeMemory>> MemoryBuilder::allocate() const {
 | |
|     if (!mFinished) {
 | |
|         LOG(ERROR) << "ANeuralNetworksMemory_createFromDesc -- passed an unfinished descriptor";
 | |
|         return {ANEURALNETWORKS_BAD_STATE, nullptr};
 | |
|     }
 | |
| 
 | |
|     int n = ANEURALNETWORKS_OP_FAILED;
 | |
|     std::unique_ptr<RuntimeMemory> memory;
 | |
|     CHECK(mOperand.has_value());
 | |
| 
 | |
|     // Try allocate the memory on device.
 | |
|     if (mAllocator != nullptr) {
 | |
|         std::tie(n, memory) = mAllocator->allocate(mDesc, mOperand->type);
 | |
|     }
 | |
| 
 | |
|     // If failed, fallback to ashmem or BLOB mode AHWB.
 | |
|     if (n != ANEURALNETWORKS_NO_ERROR && mShouldFallback) {
 | |
|         const uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions);
 | |
|         if (mSupportsAhwb) {
 | |
|             VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to BLOB mode AHWB.";
 | |
|             std::tie(n, memory) = MemoryRuntimeAHWB::create(size);
 | |
|         } else {
 | |
|             VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to ashmem.";
 | |
|             std::tie(n, memory) = MemoryAshmem::create(size);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (n == ANEURALNETWORKS_NO_ERROR) {
 | |
|         CHECK(memory != nullptr);
 | |
|         auto validator =
 | |
|                 std::make_unique<DeviceMemoryValidator>(mRoles, mOperand.value(), mDesc.dimensions);
 | |
|         memory->setValidator(std::move(validator));
 | |
|     }
 | |
|     return {n, std::move(memory)};
 | |
| }
 | |
| 
 | |
| std::pair<int, std::unique_ptr<MemoryAshmem>> MemoryAshmem::create(uint32_t size) {
 | |
|     auto memory = createSharedMemory(size);
 | |
|     if (!memory.has_value()) {
 | |
|         LOG(ERROR) << "RuntimeMemory::create() failed: " << memory.error().message;
 | |
|         return {convertErrorStatusToResultCode(memory.error().code), nullptr};
 | |
|     }
 | |
|     auto mapping = map(memory.value());
 | |
|     if (!mapping.has_value()) {
 | |
|         LOG(ERROR) << "RuntimeMemory::create() map failed: " << mapping.error().message;
 | |
|         return {convertErrorStatusToResultCode(mapping.error().code), nullptr};
 | |
|     }
 | |
|     return {ANEURALNETWORKS_NO_ERROR,
 | |
|             std::make_unique<MemoryAshmem>(std::move(memory).value(), std::move(mapping).value())};
 | |
| }
 | |
| 
 | |
| uint8_t* MemoryAshmem::getPointer() const {
 | |
|     return static_cast<uint8_t*>(std::get<void*>(kMapping.pointer));
 | |
| }
 | |
| 
 | |
| MemoryAshmem::MemoryAshmem(SharedMemory memory, Mapping mapping)
 | |
|     : RuntimeMemory(std::move(memory)), kMapping(std::move(mapping)) {}
 | |
| 
 | |
| std::pair<int, std::unique_ptr<MemoryFd>> MemoryFd::create(size_t size, int prot, int fd,
 | |
|                                                            size_t offset) {
 | |
|     auto memory = createSharedMemoryFromFd(size, prot, fd, offset);
 | |
|     if (!memory.has_value()) {
 | |
|         LOG(ERROR) << "Failed to create memory from fd: " << memory.error().message;
 | |
|         return {convertErrorStatusToResultCode(memory.error().code), nullptr};
 | |
|     }
 | |
|     return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFd>(std::move(memory).value())};
 | |
| }
 | |
| 
 | |
| MemoryFd::MemoryFd(SharedMemory memory) : RuntimeMemory(std::move(memory)) {}
 | |
| 
 | |
| std::pair<int, std::unique_ptr<MemoryAHWB>> MemoryAHWB::create(const AHardwareBuffer& ahwb) {
 | |
| #ifdef __ANDROID__
 | |
|     auto memory = createSharedMemoryFromAHWB(const_cast<AHardwareBuffer*>(&ahwb),
 | |
|                                              /*takeOwnership=*/false);
 | |
|     if (!memory.has_value()) {
 | |
|         LOG(ERROR) << "Failed to create memory from AHWB: " << memory.error().message;
 | |
|         return {convertErrorStatusToResultCode(memory.error().code), nullptr};
 | |
|     }
 | |
| 
 | |
|     std::unique_ptr<MemoryValidatorBase> validator;
 | |
|     if (isAhwbBlob(memory.value())) {
 | |
|         validator = std::make_unique<SizedMemoryValidator>(nn::getSize(memory.value()));
 | |
|     } else {
 | |
|         validator = std::make_unique<AHardwareBufferNonBlobValidator>();
 | |
|     }
 | |
| 
 | |
|     auto memoryAHWB = std::make_unique<MemoryAHWB>(std::move(memory).value(), std::move(validator));
 | |
|     return {ANEURALNETWORKS_NO_ERROR, std::move(memoryAHWB)};
 | |
| #else   // __ANDROID__
 | |
|     LOG(FATAL) << "std::pair<int, std::unique_ptr<MemoryAHWB>> MemoryAHWB::create(const "
 | |
|                   "AHardwareBuffer& ahwb): Not Available on Host Build";
 | |
|     (void)ahwb;
 | |
|     return {ANEURALNETWORKS_OP_FAILED, nullptr};
 | |
| #endif  // __ANDROID__
 | |
| }
 | |
| 
 | |
| std::pair<int, std::unique_ptr<MemoryRuntimeAHWB>> MemoryRuntimeAHWB::create(uint32_t size) {
 | |
| #ifdef __ANDROID__
 | |
|     AHardwareBuffer* ahwb = nullptr;
 | |
|     const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
 | |
|     const AHardwareBuffer_Desc desc = {
 | |
|             .width = size,
 | |
|             .height = 1,
 | |
|             .layers = 1,
 | |
|             .format = AHARDWAREBUFFER_FORMAT_BLOB,
 | |
|             .usage = usage,
 | |
|             .stride = size,
 | |
|     };
 | |
|     int err = AHardwareBuffer_allocate(&desc, &ahwb);
 | |
|     if (err != 0 || ahwb == nullptr) {
 | |
|         LOG(ERROR) << "Failed to allocate BLOB mode AHWB.";
 | |
|         return {ANEURALNETWORKS_OP_FAILED, nullptr};
 | |
|     }
 | |
| 
 | |
|     auto memory = createSharedMemoryFromAHWB(ahwb, /*takeOWnership=*/true);
 | |
|     if (!memory.has_value()) {
 | |
|         LOG(ERROR) << "Failed to allocate BLOB mode AHWB: " << memory.error().message;
 | |
|         return {convertErrorStatusToResultCode(memory.error().code), nullptr};
 | |
|     }
 | |
|     auto mapping = map(memory.value());
 | |
|     if (!mapping.has_value()) {
 | |
|         LOG(ERROR) << "Failed to map BLOB mode AHWB: " << mapping.error().message;
 | |
|         return {convertErrorStatusToResultCode(mapping.error().code), nullptr};
 | |
|     }
 | |
|     auto memoryAHWB = std::make_unique<MemoryRuntimeAHWB>(std::move(memory).value(),
 | |
|                                                           std::move(mapping).value());
 | |
|     return {ANEURALNETWORKS_NO_ERROR, std::move(memoryAHWB)};
 | |
| #else   // __ANDROID__
 | |
|     LOG(FATAL) << "std::pair<int, std::unique_ptr<MemoryRuntimeAHWB>> "
 | |
|                   "MemoryRuntimeAHWB::create(uint32_t size): Not Available on Host Build";
 | |
|     (void)size;
 | |
|     return {ANEURALNETWORKS_OP_FAILED, nullptr};
 | |
| #endif  // __ANDROID__
 | |
| }
 | |
| 
 | |
| uint8_t* MemoryRuntimeAHWB::getPointer() const {
 | |
|     return static_cast<uint8_t*>(std::get<void*>(kMapping.pointer));
 | |
| }
 | |
| 
 | |
| MemoryRuntimeAHWB::MemoryRuntimeAHWB(SharedMemory memory, Mapping mapping)
 | |
|     : RuntimeMemory(std::move(memory)), kMapping(std::move(mapping)) {}
 | |
| 
 | |
| std::pair<int, std::unique_ptr<MemoryFromDevice>> MemoryFromDevice::create(SharedBuffer buffer) {
 | |
|     if (buffer == nullptr) {
 | |
|         LOG(ERROR) << "nullptr IBuffer for device memory.";
 | |
|         return {ANEURALNETWORKS_OP_FAILED, nullptr};
 | |
|     }
 | |
|     return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFromDevice>(std::move(buffer))};
 | |
| }
 | |
| 
 | |
| MemoryFromDevice::MemoryFromDevice(SharedBuffer buffer) : RuntimeMemory(std::move(buffer)) {}
 | |
| 
 | |
| }  // namespace nn
 | |
| }  // namespace android
 |