457 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			457 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2021 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #define LOG_TAG "TelemetryStatsd"
 | |
| 
 | |
| #include "TelemetryStatsd.h"
 | |
| 
 | |
| #include <android-base/logging.h>
 | |
| #include <android-base/no_destructor.h>
 | |
| #include <statslog_neuralnetworks.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <limits>
 | |
| #include <map>
 | |
| #include <mutex>
 | |
| #include <queue>
 | |
| #include <string>
 | |
| #include <thread>
 | |
| #include <vector>
 | |
| 
 | |
| #include "FeatureLevel.h"
 | |
| #include "Telemetry.h"
 | |
| #include "Tracing.h"
 | |
| 
 | |
| namespace android::nn::telemetry {
 | |
| namespace {
 | |
| 
 | |
| constexpr uint64_t kNoTimeReportedRuntime = std::numeric_limits<uint64_t>::max();
 | |
| constexpr int64_t kNoTimeReportedStatsd = std::numeric_limits<int64_t>::max();
 | |
| constexpr size_t kInitialChannelSize = 100;
 | |
| 
 | |
| // Statsd specifies that "Atom logging frequency should not exceed once per 10 milliseconds (i.e.
 | |
| // consecutive atom calls should be at least 10 milliseconds apart)." A quiet period of 100ms is
 | |
| // chosen here to reduce the chance that the NNAPI logs too frequently, even from separate
 | |
| // applications.
 | |
| constexpr auto kMinimumLoggingQuietPeriod = std::chrono::milliseconds(100);
 | |
| 
 | |
| int32_t getUid() {
 | |
|     static const int32_t uid = getuid();
 | |
|     return uid;
 | |
| }
 | |
| 
 | |
| constexpr int64_t nanosToMillis(uint64_t time) {
 | |
|     constexpr uint64_t kNanosPerMilli = 1'000'000;
 | |
|     return time == kNoTimeReportedRuntime ? kNoTimeReportedStatsd : time / kNanosPerMilli;
 | |
| }
 | |
| 
 | |
| constexpr int64_t nanosToMicros(uint64_t time) {
 | |
|     constexpr uint64_t kNanosPerMicro = 1'000;
 | |
|     return time == kNoTimeReportedRuntime ? kNoTimeReportedStatsd : time / kNanosPerMicro;
 | |
| }
 | |
| 
 | |
| AtomValue::AccumulatedTiming accumulatedTimingFrom(int64_t timing) {
 | |
|     if (timing == kNoTimeReportedStatsd) {
 | |
|         return {};
 | |
|     }
 | |
|     return {
 | |
|             .sumTime = timing,
 | |
|             .minTime = timing,
 | |
|             .maxTime = timing,
 | |
|             .sumSquaredTime = timing * timing,
 | |
|             .count = 1,
 | |
|     };
 | |
| }
 | |
| 
 | |
| void combineAccumulatedTiming(AtomValue::AccumulatedTiming* accumulatedTime,
 | |
|                               const AtomValue::AccumulatedTiming& timing) {
 | |
|     if (timing.count == 0) {
 | |
|         return;
 | |
|     }
 | |
|     accumulatedTime->sumTime += timing.sumTime;
 | |
|     accumulatedTime->minTime = std::min(accumulatedTime->minTime, timing.minTime);
 | |
|     accumulatedTime->maxTime = std::max(accumulatedTime->maxTime, timing.maxTime);
 | |
|     accumulatedTime->sumSquaredTime += timing.sumSquaredTime;
 | |
|     accumulatedTime->count += timing.count;
 | |
| }
 | |
| 
 | |
| stats::BytesField makeBytesField(const ModelArchHash& modelArchHash) {
 | |
|     return stats::BytesField(reinterpret_cast<const char*>(modelArchHash.data()),
 | |
|                              modelArchHash.size());
 | |
| }
 | |
| 
 | |
| ModelArchHash makeModelArchHash(const uint8_t* modelArchHash) {
 | |
|     ModelArchHash output;
 | |
|     std::memcpy(output.data(), modelArchHash, BYTE_SIZE_OF_MODEL_ARCH_HASH);
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| #define STATIC_ASSERT_DATA_CLASS_EQ_VALUE(type, inout, value) \
 | |
|     static_assert(static_cast<int32_t>(DataClass::value) ==   \
 | |
|                   stats::NEURAL_NETWORKS_##type##__##inout##_DATA_CLASS__DATA_CLASS_##value)
 | |
| 
 | |
| #define STATIC_ASSERT_DATA_CLASS_EQ(type, inout)             \
 | |
|     STATIC_ASSERT_DATA_CLASS_EQ_VALUE(type, inout, UNKNOWN); \
 | |
|     STATIC_ASSERT_DATA_CLASS_EQ_VALUE(type, inout, OTHER);   \
 | |
|     STATIC_ASSERT_DATA_CLASS_EQ_VALUE(type, inout, FLOAT32); \
 | |
|     STATIC_ASSERT_DATA_CLASS_EQ_VALUE(type, inout, FLOAT16); \
 | |
|     STATIC_ASSERT_DATA_CLASS_EQ_VALUE(type, inout, QUANT);   \
 | |
|     STATIC_ASSERT_DATA_CLASS_EQ_VALUE(type, inout, MIXED)
 | |
| 
 | |
| STATIC_ASSERT_DATA_CLASS_EQ(COMPILATION_COMPLETED, INPUT);
 | |
| STATIC_ASSERT_DATA_CLASS_EQ(COMPILATION_COMPLETED, OUTPUT);
 | |
| STATIC_ASSERT_DATA_CLASS_EQ(COMPILATION_FAILED, INPUT);
 | |
| STATIC_ASSERT_DATA_CLASS_EQ(COMPILATION_FAILED, OUTPUT);
 | |
| STATIC_ASSERT_DATA_CLASS_EQ(EXECUTION_COMPLETED, INPUT);
 | |
| STATIC_ASSERT_DATA_CLASS_EQ(EXECUTION_COMPLETED, OUTPUT);
 | |
| STATIC_ASSERT_DATA_CLASS_EQ(EXECUTION_FAILED, INPUT);
 | |
| STATIC_ASSERT_DATA_CLASS_EQ(EXECUTION_FAILED, OUTPUT);
 | |
| 
 | |
| #define STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, value) \
 | |
|     static_assert(ANEURALNETWORKS_##value ==            \
 | |
|                   stats::NEURAL_NETWORKS_##type##__ERROR_CODE__RESULT_CODE_##value)
 | |
| 
 | |
| #define STATIC_ASSERT_RESULT_CODE_EQ(type)                                   \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, NO_ERROR);                      \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, OUT_OF_MEMORY);                 \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, INCOMPLETE);                    \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, UNEXPECTED_NULL);               \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, BAD_DATA);                      \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, OP_FAILED);                     \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, BAD_STATE);                     \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, UNMAPPABLE);                    \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, OUTPUT_INSUFFICIENT_SIZE);      \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, UNAVAILABLE_DEVICE);            \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, MISSED_DEADLINE_TRANSIENT);     \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, MISSED_DEADLINE_PERSISTENT);    \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, RESOURCE_EXHAUSTED_TRANSIENT);  \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, RESOURCE_EXHAUSTED_PERSISTENT); \
 | |
|     STATIC_ASSERT_RESULT_CODE_EQ_VALUE(type, DEAD_OBJECT)
 | |
| 
 | |
| STATIC_ASSERT_RESULT_CODE_EQ(COMPILATION_FAILED);
 | |
| STATIC_ASSERT_RESULT_CODE_EQ(EXECUTION_FAILED);
 | |
| 
 | |
| #undef STATIC_ASSERT_DATA_CLASS_EQ_VALUE
 | |
| #undef STATIC_ASSERT_DATA_CLASS_EQ
 | |
| #undef STATIC_ASSERT_RESULT_CODE_EQ_VALUE
 | |
| #undef STATIC_ASSERT_RESULT_CODE_EQ
 | |
| 
 | |
| int32_t convertDataClass(DataClass dataClass) {
 | |
|     switch (dataClass) {
 | |
|         case DataClass::UNKNOWN:
 | |
|         case DataClass::OTHER:
 | |
|         case DataClass::FLOAT32:
 | |
|         case DataClass::FLOAT16:
 | |
|         case DataClass::QUANT:
 | |
|         case DataClass::MIXED:
 | |
|             return static_cast<int32_t>(dataClass);
 | |
|     }
 | |
|     return static_cast<int32_t>(DataClass::UNKNOWN);
 | |
| }
 | |
| 
 | |
| int32_t convertExecutionMode(ExecutionMode executionMode) {
 | |
|     switch (executionMode) {
 | |
|         case ExecutionMode::ASYNC:
 | |
|             return stats::NEURAL_NETWORKS_EXECUTION_FAILED__MODE__MODE_ASYNC;
 | |
|         case ExecutionMode::SYNC:
 | |
|             return stats::NEURAL_NETWORKS_EXECUTION_FAILED__MODE__MODE_SYNC;
 | |
|         case ExecutionMode::BURST:
 | |
|             return stats::NEURAL_NETWORKS_EXECUTION_FAILED__MODE__MODE_BURST;
 | |
|         case ExecutionMode::ASYNC_WITH_DEPS:
 | |
|             return stats::NEURAL_NETWORKS_EXECUTION_FAILED__MODE__MODE_ASYNC_WITH_DEPS;
 | |
|     }
 | |
|     return stats::NEURAL_NETWORKS_EXECUTION_FAILED__MODE__MODE_UNKNOWN;
 | |
| }
 | |
| 
 | |
| int32_t convertResultCode(int32_t resultCode) {
 | |
|     return resultCode >= ANEURALNETWORKS_NO_ERROR && resultCode <= ANEURALNETWORKS_DEAD_OBJECT
 | |
|                    ? resultCode
 | |
|                    : ANEURALNETWORKS_OP_FAILED;
 | |
| }
 | |
| 
 | |
| int64_t compressTo64(const ModelArchHash& modelArchHash) {
 | |
|     int64_t hash = 0;
 | |
|     const char* data = reinterpret_cast<const char*>(modelArchHash.data());
 | |
|     for (size_t i = 0; i + sizeof(int64_t) <= sizeof(ModelArchHash); i += sizeof(int64_t)) {
 | |
|         int64_t tmp = 0;
 | |
|         std::memcpy(&tmp, data + i, sizeof(int64_t));
 | |
|         hash ^= tmp;
 | |
|     }
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| void logAtomToStatsd(Atom&& atom) {
 | |
|     NNTRACE_RT(NNTRACE_PHASE_UNSPECIFIED, "logAtomToStatsd");
 | |
|     const auto& [key, value] = atom;
 | |
| 
 | |
|     const auto modelArchHash64 = compressTo64(key.modelArchHash);
 | |
| 
 | |
|     if (!key.isExecution) {
 | |
|         if (key.errorCode == ANEURALNETWORKS_NO_ERROR) {
 | |
|             stats::stats_write(
 | |
|                     stats::NEURALNETWORKS_COMPILATION_COMPLETED, getUid(), getSessionId(),
 | |
|                     kNnapiApexVersion, makeBytesField(key.modelArchHash), key.deviceId.c_str(),
 | |
|                     convertDataClass(key.inputDataClass), convertDataClass(key.outputDataClass),
 | |
|                     key.fallbackToCpuFromError, key.introspectionEnabled, key.cacheEnabled,
 | |
|                     key.hasControlFlow, key.hasDynamicTemporaries,
 | |
|                     value.compilationTimeMillis.sumTime, value.compilationTimeMillis.minTime,
 | |
|                     value.compilationTimeMillis.maxTime, value.compilationTimeMillis.sumSquaredTime,
 | |
|                     value.compilationTimeMillis.count, value.count, modelArchHash64);
 | |
|         } else {
 | |
|             stats::stats_write(
 | |
|                     stats::NEURALNETWORKS_COMPILATION_FAILED, getUid(), getSessionId(),
 | |
|                     kNnapiApexVersion, makeBytesField(key.modelArchHash), key.deviceId.c_str(),
 | |
|                     convertDataClass(key.inputDataClass), convertDataClass(key.outputDataClass),
 | |
|                     convertResultCode(key.errorCode), key.introspectionEnabled, key.cacheEnabled,
 | |
|                     key.hasControlFlow, key.hasDynamicTemporaries, value.count, modelArchHash64);
 | |
|         }
 | |
|     } else {
 | |
|         if (key.errorCode == ANEURALNETWORKS_NO_ERROR) {
 | |
|             stats::stats_write(
 | |
|                     stats::NEURALNETWORKS_EXECUTION_COMPLETED, getUid(), getSessionId(),
 | |
|                     kNnapiApexVersion, makeBytesField(key.modelArchHash), key.deviceId.c_str(),
 | |
|                     convertExecutionMode(key.executionMode), convertDataClass(key.inputDataClass),
 | |
|                     convertDataClass(key.outputDataClass), key.introspectionEnabled,
 | |
|                     key.cacheEnabled, key.hasControlFlow, key.hasDynamicTemporaries,
 | |
|                     value.durationRuntimeMicros.sumTime, value.durationRuntimeMicros.minTime,
 | |
|                     value.durationRuntimeMicros.maxTime, value.durationRuntimeMicros.sumSquaredTime,
 | |
|                     value.durationRuntimeMicros.count, value.durationDriverMicros.sumTime,
 | |
|                     value.durationDriverMicros.minTime, value.durationDriverMicros.maxTime,
 | |
|                     value.durationDriverMicros.sumSquaredTime, value.durationDriverMicros.count,
 | |
|                     value.durationHardwareMicros.sumTime, value.durationHardwareMicros.minTime,
 | |
|                     value.durationHardwareMicros.maxTime,
 | |
|                     value.durationHardwareMicros.sumSquaredTime, value.durationHardwareMicros.count,
 | |
|                     value.count, modelArchHash64);
 | |
|         } else {
 | |
|             stats::stats_write(
 | |
|                     stats::NEURALNETWORKS_EXECUTION_FAILED, getUid(), getSessionId(),
 | |
|                     kNnapiApexVersion, makeBytesField(key.modelArchHash), key.deviceId.c_str(),
 | |
|                     convertExecutionMode(key.executionMode), convertDataClass(key.inputDataClass),
 | |
|                     convertDataClass(key.outputDataClass), convertResultCode(key.errorCode),
 | |
|                     key.introspectionEnabled, key.cacheEnabled, key.hasControlFlow,
 | |
|                     key.hasDynamicTemporaries, value.count, modelArchHash64);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| AsyncLogger& getStatsdLogger() {
 | |
|     static base::NoDestructor<AsyncLogger> logger(logAtomToStatsd, kMinimumLoggingQuietPeriod);
 | |
|     return *logger;
 | |
| }
 | |
| 
 | |
| constexpr auto asTuple(const AtomKey& v) {
 | |
|     return std::tie(v.isExecution, v.modelArchHash, v.deviceId, v.executionMode, v.errorCode,
 | |
|                     v.inputDataClass, v.outputDataClass, v.fallbackToCpuFromError,
 | |
|                     v.introspectionEnabled, v.cacheEnabled, v.hasControlFlow,
 | |
|                     v.hasDynamicTemporaries);
 | |
| };
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| bool operator==(const AtomKey& lhs, const AtomKey& rhs) {
 | |
|     return asTuple(lhs) == asTuple(rhs);
 | |
| }
 | |
| 
 | |
| bool operator<(const AtomKey& lhs, const AtomKey& rhs) {
 | |
|     return asTuple(lhs) < asTuple(rhs);
 | |
| }
 | |
| 
 | |
| void combineAtomValues(AtomValue* accumulatedValue, const AtomValue& value) {
 | |
|     accumulatedValue->count += value.count;
 | |
|     combineAccumulatedTiming(&accumulatedValue->compilationTimeMillis, value.compilationTimeMillis);
 | |
|     combineAccumulatedTiming(&accumulatedValue->durationRuntimeMicros, value.durationRuntimeMicros);
 | |
|     combineAccumulatedTiming(&accumulatedValue->durationDriverMicros, value.durationDriverMicros);
 | |
|     combineAccumulatedTiming(&accumulatedValue->durationHardwareMicros,
 | |
|                              value.durationHardwareMicros);
 | |
| }
 | |
| 
 | |
| bool AtomAggregator::empty() const {
 | |
|     return mOrder.empty();
 | |
| }
 | |
| 
 | |
| void AtomAggregator::push(Atom&& atom) {
 | |
|     const AtomValue& value = atom.second;
 | |
|     if (const auto [it, inserted] = mAggregate.try_emplace(std::move(atom.first), value);
 | |
|         !inserted) {
 | |
|         combineAtomValues(&it->second, value);
 | |
|     } else {
 | |
|         mOrder.push(&it->first);
 | |
|     }
 | |
| }
 | |
| 
 | |
| std::pair<AtomKey, AtomValue> AtomAggregator::pop() {
 | |
|     CHECK(!empty());
 | |
| 
 | |
|     // Find the key of the aggregated atom to log and remove it.
 | |
|     const AtomKey* key = mOrder.front();
 | |
|     mOrder.pop();
 | |
| 
 | |
|     // Find the value that corresponds to the key and remove the (key,value) from the map.
 | |
|     auto node = mAggregate.extract(*key);
 | |
|     CHECK(!node.empty());
 | |
| 
 | |
|     return std::make_pair(std::move(node.key()), node.mapped());
 | |
| }
 | |
| 
 | |
| AsyncLogger::AsyncLogger(LoggerFn logger, Duration loggingQuietPeriodDuration) {
 | |
|     mChannel.reserve(kInitialChannelSize);
 | |
|     mThread = std::thread([this, log = std::move(logger), loggingQuietPeriodDuration]() {
 | |
|         AtomAggregator data;
 | |
|         std::vector<Atom> atoms;
 | |
|         atoms.reserve(kInitialChannelSize);
 | |
| 
 | |
|         // Loop until the thread is being torn down.
 | |
|         while (true) {
 | |
|             // Get data if it's available.
 | |
|             const Result result = takeAll(&atoms, /*blockUntilDataIsAvailable=*/data.empty());
 | |
|             if (result == Result::TEARDOWN) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             // Aggregate the data locally.
 | |
|             std::for_each(atoms.begin(), atoms.end(),
 | |
|                           [&data](Atom& atom) { data.push(std::move(atom)); });
 | |
|             atoms.clear();
 | |
| 
 | |
|             // Log data if available and sleep.
 | |
|             if (!data.empty()) {
 | |
|                 log(data.pop());
 | |
|                 const Result result = sleepFor(loggingQuietPeriodDuration);
 | |
|                 if (result == Result::TEARDOWN) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     });
 | |
| }
 | |
| 
 | |
| void AsyncLogger::write(Atom&& atom) {
 | |
|     bool wasEmpty = false;
 | |
|     {
 | |
|         std::lock_guard hold(mMutex);
 | |
|         wasEmpty = mChannel.empty();
 | |
|         mChannel.push_back(std::move(atom));
 | |
|     }
 | |
|     if (wasEmpty) {
 | |
|         mNotEmptyOrTeardown.notify_one();
 | |
|     }
 | |
| }
 | |
| 
 | |
| AsyncLogger::Result AsyncLogger::takeAll(std::vector<Atom>* output,
 | |
|                                          bool blockUntilDataIsAvailable) {
 | |
|     CHECK(output != nullptr);
 | |
|     CHECK(output->empty());
 | |
|     const auto blockUntil = blockUntilDataIsAvailable ? TimePoint::max() : TimePoint{};
 | |
|     std::unique_lock lock(mMutex);
 | |
|     mNotEmptyOrTeardown.wait_until(
 | |
|             lock, blockUntil, [this]() REQUIRES(mMutex) { return !mChannel.empty() || mTeardown; });
 | |
|     std::swap(*output, mChannel);
 | |
|     return mTeardown ? Result::TEARDOWN : Result::SUCCESS;
 | |
| }
 | |
| 
 | |
| AsyncLogger::Result AsyncLogger::sleepFor(Duration duration) {
 | |
|     std::unique_lock lock(mMutex);
 | |
|     mNotEmptyOrTeardown.wait_for(lock, duration, [this]() REQUIRES(mMutex) { return mTeardown; });
 | |
|     return mTeardown ? Result::TEARDOWN : Result::SUCCESS;
 | |
| }
 | |
| 
 | |
| AsyncLogger::~AsyncLogger() {
 | |
|     {
 | |
|         std::lock_guard hold(mMutex);
 | |
|         mTeardown = true;
 | |
|     }
 | |
|     mNotEmptyOrTeardown.notify_one();
 | |
|     mThread.join();
 | |
| }
 | |
| 
 | |
| Atom createAtomFrom(const DiagnosticCompilationInfo* info) {
 | |
|     Atom atom = Atom{
 | |
|             AtomKey{
 | |
|                     .isExecution = false,
 | |
|                     .modelArchHash = makeModelArchHash(info->modelArchHash),
 | |
|                     .deviceId = info->deviceId,
 | |
|                     .executionMode = ExecutionMode::SYNC,
 | |
|                     .errorCode = info->errorCode,
 | |
|                     .inputDataClass = info->inputDataClass,
 | |
|                     .outputDataClass = info->outputDataClass,
 | |
|                     .fallbackToCpuFromError = info->fallbackToCpuFromError,
 | |
|                     .introspectionEnabled = info->introspectionEnabled,
 | |
|                     .cacheEnabled = info->cacheEnabled,
 | |
|                     .hasControlFlow = info->hasControlFlow,
 | |
|                     .hasDynamicTemporaries = info->hasDynamicTemporaries,
 | |
|             },
 | |
|             AtomValue{
 | |
|                     .count = 1,
 | |
|             },
 | |
|     };
 | |
| 
 | |
|     // Timing information is only relevant for the "Completed" path.
 | |
|     if (info->errorCode == ANEURALNETWORKS_NO_ERROR) {
 | |
|         auto& value = atom.second;
 | |
|         const auto compilationTimeMillis = nanosToMillis(info->compilationTimeNanos);
 | |
|         value.compilationTimeMillis = accumulatedTimingFrom(compilationTimeMillis);
 | |
|     }
 | |
| 
 | |
|     return atom;
 | |
| }
 | |
| 
 | |
| Atom createAtomFrom(const DiagnosticExecutionInfo* info) {
 | |
|     Atom atom = Atom{
 | |
|             AtomKey{
 | |
|                     .isExecution = true,
 | |
|                     .modelArchHash = makeModelArchHash(info->modelArchHash),
 | |
|                     .deviceId = info->deviceId,
 | |
|                     .executionMode = info->executionMode,
 | |
|                     .errorCode = info->errorCode,
 | |
|                     .inputDataClass = info->inputDataClass,
 | |
|                     .outputDataClass = info->outputDataClass,
 | |
|                     .fallbackToCpuFromError = false,
 | |
|                     .introspectionEnabled = info->introspectionEnabled,
 | |
|                     .cacheEnabled = info->cacheEnabled,
 | |
|                     .hasControlFlow = info->hasControlFlow,
 | |
|                     .hasDynamicTemporaries = info->hasDynamicTemporaries,
 | |
|             },
 | |
|             AtomValue{
 | |
|                     .count = 1,
 | |
|             },
 | |
|     };
 | |
| 
 | |
|     // Timing information is only relevant for the "Completed" path.
 | |
|     if (info->errorCode == ANEURALNETWORKS_NO_ERROR) {
 | |
|         auto& value = atom.second;
 | |
|         const auto durationRuntimeMicros = nanosToMicros(info->durationRuntimeNanos);
 | |
|         const auto durationDriverMicros = nanosToMicros(info->durationDriverNanos);
 | |
|         const auto durationHardwareMicros = nanosToMicros(info->durationHardwareNanos);
 | |
|         value.durationRuntimeMicros = accumulatedTimingFrom(durationRuntimeMicros);
 | |
|         value.durationDriverMicros = accumulatedTimingFrom(durationDriverMicros);
 | |
|         value.durationHardwareMicros = accumulatedTimingFrom(durationHardwareMicros);
 | |
|     };
 | |
| 
 | |
|     return atom;
 | |
| }
 | |
| 
 | |
| void logCompilationToStatsd(const DiagnosticCompilationInfo* info) {
 | |
|     NNTRACE_RT(NNTRACE_PHASE_UNSPECIFIED, "logCompilationStatsd");
 | |
|     getStatsdLogger().write(createAtomFrom(info));
 | |
| }
 | |
| 
 | |
| void logExecutionToStatsd(const DiagnosticExecutionInfo* info) {
 | |
|     NNTRACE_RT(NNTRACE_PHASE_UNSPECIFIED, "logExecutionStatsd");
 | |
|     getStatsdLogger().write(createAtomFrom(info));
 | |
| }
 | |
| 
 | |
| }  // namespace android::nn::telemetry
 |