632 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			632 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright 2015 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include <keymaster/contexts/pure_soft_keymaster_context.h>
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <memory>
 | |
| 
 | |
| #include <openssl/aes.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/hmac.h>
 | |
| #include <openssl/rand.h>
 | |
| #include <openssl/sha.h>
 | |
| #include <openssl/x509v3.h>
 | |
| 
 | |
| #include <keymaster/android_keymaster_utils.h>
 | |
| #include <keymaster/key_blob_utils/auth_encrypted_key_blob.h>
 | |
| #include <keymaster/key_blob_utils/integrity_assured_key_blob.h>
 | |
| #include <keymaster/key_blob_utils/ocb_utils.h>
 | |
| #include <keymaster/key_blob_utils/software_keyblobs.h>
 | |
| #include <keymaster/km_openssl/aes_key.h>
 | |
| #include <keymaster/km_openssl/asymmetric_key.h>
 | |
| #include <keymaster/km_openssl/attestation_utils.h>
 | |
| #include <keymaster/km_openssl/certificate_utils.h>
 | |
| #include <keymaster/km_openssl/ec_key_factory.h>
 | |
| #include <keymaster/km_openssl/hmac_key.h>
 | |
| #include <keymaster/km_openssl/openssl_err.h>
 | |
| #include <keymaster/km_openssl/openssl_utils.h>
 | |
| #include <keymaster/km_openssl/rsa_key_factory.h>
 | |
| #include <keymaster/km_openssl/soft_keymaster_enforcement.h>
 | |
| #include <keymaster/km_openssl/triple_des_key.h>
 | |
| #include <keymaster/logger.h>
 | |
| #include <keymaster/operation.h>
 | |
| #include <keymaster/wrapped_key.h>
 | |
| 
 | |
| #include <keymaster/contexts/soft_attestation_cert.h>
 | |
| 
 | |
| namespace keymaster {
 | |
| 
 | |
| PureSoftKeymasterContext::PureSoftKeymasterContext(KmVersion version,
 | |
|                                                    keymaster_security_level_t security_level)
 | |
| 
 | |
|     : SoftAttestationContext(version),
 | |
|       rsa_factory_(new (std::nothrow) RsaKeyFactory(*this /* blob_maker */, *this /* context */)),
 | |
|       ec_factory_(new (std::nothrow) EcKeyFactory(*this /* blob_maker */, *this /* context */)),
 | |
|       aes_factory_(new (std::nothrow)
 | |
|                        AesKeyFactory(*this /* blob_maker */, *this /* random_source */)),
 | |
|       tdes_factory_(new (std::nothrow)
 | |
|                         TripleDesKeyFactory(*this /* blob_maker */, *this /* random_source */)),
 | |
|       hmac_factory_(new (std::nothrow)
 | |
|                         HmacKeyFactory(*this /* blob_maker */, *this /* random_source */)),
 | |
|       os_version_(0), os_patchlevel_(0), soft_keymaster_enforcement_(64, 64),
 | |
|       security_level_(security_level) {
 | |
|     // We're pretending to be some sort of secure hardware which supports secure key storage,
 | |
|     // this must only be used for testing.
 | |
|     if (security_level != KM_SECURITY_LEVEL_SOFTWARE) {
 | |
|         pure_soft_secure_key_storage_ = std::make_unique<PureSoftSecureKeyStorage>(64);
 | |
|     }
 | |
|     if (version >= KmVersion::KEYMINT_1) {
 | |
|         pure_soft_remote_provisioning_context_ =
 | |
|             std::make_unique<PureSoftRemoteProvisioningContext>(security_level_);
 | |
|     }
 | |
| }
 | |
| 
 | |
| PureSoftKeymasterContext::~PureSoftKeymasterContext() {}
 | |
| 
 | |
| keymaster_error_t PureSoftKeymasterContext::SetSystemVersion(uint32_t os_version,
 | |
|                                                              uint32_t os_patchlevel) {
 | |
|     os_version_ = os_version;
 | |
|     os_patchlevel_ = os_patchlevel;
 | |
|     if (pure_soft_remote_provisioning_context_ != nullptr) {
 | |
|         pure_soft_remote_provisioning_context_->SetSystemVersion(os_version, os_patchlevel);
 | |
|     }
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| void PureSoftKeymasterContext::GetSystemVersion(uint32_t* os_version,
 | |
|                                                 uint32_t* os_patchlevel) const {
 | |
|     *os_version = os_version_;
 | |
|     *os_patchlevel = os_patchlevel_;
 | |
| }
 | |
| 
 | |
| keymaster_error_t
 | |
| PureSoftKeymasterContext::SetVerifiedBootInfo(std::string_view boot_state,
 | |
|                                               std::string_view bootloader_state,
 | |
|                                               const std::vector<uint8_t>& vbmeta_digest) {
 | |
|     if (verified_boot_state_.has_value() && boot_state != verified_boot_state_.value()) {
 | |
|         return KM_ERROR_INVALID_ARGUMENT;
 | |
|     }
 | |
|     if (bootloader_state_.has_value() && bootloader_state != bootloader_state_.value()) {
 | |
|         return KM_ERROR_INVALID_ARGUMENT;
 | |
|     }
 | |
|     if (vbmeta_digest_.has_value() && vbmeta_digest != vbmeta_digest_.value()) {
 | |
|         return KM_ERROR_INVALID_ARGUMENT;
 | |
|     }
 | |
|     verified_boot_state_ = boot_state;
 | |
|     bootloader_state_ = bootloader_state;
 | |
|     vbmeta_digest_ = vbmeta_digest;
 | |
|     if (pure_soft_remote_provisioning_context_ != nullptr) {
 | |
|         pure_soft_remote_provisioning_context_->SetVerifiedBootInfo(boot_state, bootloader_state,
 | |
|                                                                     vbmeta_digest);
 | |
|     }
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| keymaster_error_t PureSoftKeymasterContext::SetVendorPatchlevel(uint32_t vendor_patchlevel) {
 | |
|     if (vendor_patchlevel_.has_value() && vendor_patchlevel != vendor_patchlevel_.value()) {
 | |
|         // Can't set patchlevel to a different value.
 | |
|         return KM_ERROR_INVALID_ARGUMENT;
 | |
|     }
 | |
|     vendor_patchlevel_ = vendor_patchlevel;
 | |
|     if (pure_soft_remote_provisioning_context_ != nullptr) {
 | |
|         pure_soft_remote_provisioning_context_->SetVendorPatchlevel(vendor_patchlevel);
 | |
|     }
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| keymaster_error_t PureSoftKeymasterContext::SetBootPatchlevel(uint32_t boot_patchlevel) {
 | |
|     if (boot_patchlevel_.has_value() && boot_patchlevel != boot_patchlevel_.value()) {
 | |
|         // Can't set patchlevel to a different value.
 | |
|         return KM_ERROR_INVALID_ARGUMENT;
 | |
|     }
 | |
|     boot_patchlevel_ = boot_patchlevel;
 | |
|     if (pure_soft_remote_provisioning_context_ != nullptr) {
 | |
|         pure_soft_remote_provisioning_context_->SetBootPatchlevel(boot_patchlevel);
 | |
|     }
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| KeyFactory* PureSoftKeymasterContext::GetKeyFactory(keymaster_algorithm_t algorithm) const {
 | |
|     switch (algorithm) {
 | |
|     case KM_ALGORITHM_RSA:
 | |
|         return rsa_factory_.get();
 | |
|     case KM_ALGORITHM_EC:
 | |
|         return ec_factory_.get();
 | |
|     case KM_ALGORITHM_AES:
 | |
|         return aes_factory_.get();
 | |
|     case KM_ALGORITHM_TRIPLE_DES:
 | |
|         return tdes_factory_.get();
 | |
|     case KM_ALGORITHM_HMAC:
 | |
|         return hmac_factory_.get();
 | |
|     default:
 | |
|         return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static keymaster_algorithm_t supported_algorithms[] = {KM_ALGORITHM_RSA, KM_ALGORITHM_EC,
 | |
|                                                        KM_ALGORITHM_AES, KM_ALGORITHM_HMAC};
 | |
| 
 | |
| keymaster_algorithm_t*
 | |
| PureSoftKeymasterContext::GetSupportedAlgorithms(size_t* algorithms_count) const {
 | |
|     *algorithms_count = array_length(supported_algorithms);
 | |
|     return supported_algorithms;
 | |
| }
 | |
| 
 | |
| OperationFactory* PureSoftKeymasterContext::GetOperationFactory(keymaster_algorithm_t algorithm,
 | |
|                                                                 keymaster_purpose_t purpose) const {
 | |
|     KeyFactory* key_factory = GetKeyFactory(algorithm);
 | |
|     if (!key_factory) return nullptr;
 | |
|     return key_factory->GetOperationFactory(purpose);
 | |
| }
 | |
| 
 | |
| keymaster_error_t PureSoftKeymasterContext::CreateKeyBlob(const AuthorizationSet& key_description,
 | |
|                                                           const keymaster_key_origin_t origin,
 | |
|                                                           const KeymasterKeyBlob& key_material,
 | |
|                                                           KeymasterKeyBlob* blob,
 | |
|                                                           AuthorizationSet* hw_enforced,
 | |
|                                                           AuthorizationSet* sw_enforced) const {
 | |
|     // Check whether the key blob can be securely stored by pure software secure key storage.
 | |
|     bool canStoreBySecureKeyStorageIfRequired = false;
 | |
|     if (GetSecurityLevel() != KM_SECURITY_LEVEL_SOFTWARE &&
 | |
|         pure_soft_secure_key_storage_ != nullptr) {
 | |
|         pure_soft_secure_key_storage_->HasSlot(&canStoreBySecureKeyStorageIfRequired);
 | |
|     }
 | |
| 
 | |
|     bool needStoreBySecureKeyStorage = false;
 | |
|     if (key_description.GetTagValue(TAG_ROLLBACK_RESISTANCE)) {
 | |
|         needStoreBySecureKeyStorage = true;
 | |
|         if (!canStoreBySecureKeyStorageIfRequired) return KM_ERROR_ROLLBACK_RESISTANCE_UNAVAILABLE;
 | |
|     }
 | |
| 
 | |
|     if (GetSecurityLevel() != KM_SECURITY_LEVEL_SOFTWARE) {
 | |
|         // We're pretending to be some sort of secure hardware.  Put relevant tags in hw_enforced.
 | |
|         for (auto& entry : key_description) {
 | |
|             switch (entry.tag) {
 | |
|             case KM_TAG_PURPOSE:
 | |
|             case KM_TAG_ALGORITHM:
 | |
|             case KM_TAG_KEY_SIZE:
 | |
|             case KM_TAG_RSA_PUBLIC_EXPONENT:
 | |
|             case KM_TAG_BLOB_USAGE_REQUIREMENTS:
 | |
|             case KM_TAG_DIGEST:
 | |
|             case KM_TAG_PADDING:
 | |
|             case KM_TAG_BLOCK_MODE:
 | |
|             case KM_TAG_MIN_SECONDS_BETWEEN_OPS:
 | |
|             case KM_TAG_MAX_USES_PER_BOOT:
 | |
|             case KM_TAG_USER_SECURE_ID:
 | |
|             case KM_TAG_NO_AUTH_REQUIRED:
 | |
|             case KM_TAG_AUTH_TIMEOUT:
 | |
|             case KM_TAG_CALLER_NONCE:
 | |
|             case KM_TAG_MIN_MAC_LENGTH:
 | |
|             case KM_TAG_KDF:
 | |
|             case KM_TAG_EC_CURVE:
 | |
|             case KM_TAG_ECIES_SINGLE_HASH_MODE:
 | |
|             case KM_TAG_USER_AUTH_TYPE:
 | |
|             case KM_TAG_ORIGIN:
 | |
|             case KM_TAG_OS_VERSION:
 | |
|             case KM_TAG_OS_PATCHLEVEL:
 | |
|             case KM_TAG_EARLY_BOOT_ONLY:
 | |
|             case KM_TAG_UNLOCKED_DEVICE_REQUIRED:
 | |
|             case KM_TAG_RSA_OAEP_MGF_DIGEST:
 | |
|             case KM_TAG_ROLLBACK_RESISTANCE:
 | |
|                 hw_enforced->push_back(entry);
 | |
|                 break;
 | |
|             case KM_TAG_USAGE_COUNT_LIMIT:
 | |
|                 // Enforce single use key with usage count limit = 1 into secure key storage.
 | |
|                 if (canStoreBySecureKeyStorageIfRequired && entry.integer == 1) {
 | |
|                     needStoreBySecureKeyStorage = true;
 | |
|                     hw_enforced->push_back(entry);
 | |
|                 }
 | |
|                 break;
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     keymaster_error_t error =
 | |
|         SetKeyBlobAuthorizations(key_description, origin, os_version_, os_patchlevel_, hw_enforced,
 | |
|                                  sw_enforced, GetKmVersion());
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
|     error =
 | |
|         ExtendKeyBlobAuthorizations(hw_enforced, sw_enforced, vendor_patchlevel_, boot_patchlevel_);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     AuthorizationSet hidden;
 | |
|     error = BuildHiddenAuthorizations(key_description, &hidden, softwareRootOfTrust);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     error = SerializeIntegrityAssuredBlob(key_material, hidden, *hw_enforced, *sw_enforced, blob);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     // Pretend to be some sort of secure hardware that can securely store the key blob.
 | |
|     if (!needStoreBySecureKeyStorage) return KM_ERROR_OK;
 | |
|     km_id_t keyid;
 | |
|     if (!soft_keymaster_enforcement_.CreateKeyId(*blob, &keyid)) return KM_ERROR_UNKNOWN_ERROR;
 | |
|     assert(needStoreBySecureKeyStorage && canStoreBySecureKeyStorageIfRequired);
 | |
|     return pure_soft_secure_key_storage_->WriteKey(keyid, *blob);
 | |
| }
 | |
| 
 | |
| keymaster_error_t PureSoftKeymasterContext::UpgradeKeyBlob(const KeymasterKeyBlob& key_to_upgrade,
 | |
|                                                            const AuthorizationSet& upgrade_params,
 | |
|                                                            KeymasterKeyBlob* upgraded_key) const {
 | |
|     UniquePtr<Key> key;
 | |
|     keymaster_error_t error = ParseKeyBlob(key_to_upgrade, upgrade_params, &key);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     return FullUpgradeSoftKeyBlob(key, os_version_, os_patchlevel_, vendor_patchlevel_,
 | |
|                                   boot_patchlevel_, upgrade_params, upgraded_key);
 | |
| }
 | |
| 
 | |
| keymaster_error_t PureSoftKeymasterContext::ParseKeyBlob(const KeymasterKeyBlob& blob,
 | |
|                                                          const AuthorizationSet& additional_params,
 | |
|                                                          UniquePtr<Key>* key) const {
 | |
|     // This is a little bit complicated.
 | |
|     //
 | |
|     // The SoftKeymasterContext has to handle a lot of different kinds of key blobs.
 | |
|     //
 | |
|     // 1.  New keymaster1 software key blobs.  These are integrity-assured but not encrypted.  The
 | |
|     //     raw key material and auth sets should be extracted and returned.  This is the kind
 | |
|     //     produced by this context when the KeyFactory doesn't use keymaster0 to back the keys.
 | |
|     //
 | |
|     // 2.  Old keymaster1 software key blobs.  These are OCB-encrypted with an all-zero master key.
 | |
|     //     They should be decrypted and the key material and auth sets extracted and returned.
 | |
|     //
 | |
|     // 3.  Old keymaster0 software key blobs.  These are raw key material with a small header tacked
 | |
|     //     on the front.  They don't have auth sets, so reasonable defaults are generated and
 | |
|     //     returned along with the raw key material.
 | |
|     //
 | |
|     // Determining what kind of blob has arrived is somewhat tricky.  What helps is that
 | |
|     // integrity-assured and OCB-encrypted blobs are self-consistent and effectively impossible to
 | |
|     // parse as anything else.  Old keymaster0 software key blobs have a header.  It's reasonably
 | |
|     // unlikely that hardware keys would have the same header.  So anything that is neither
 | |
|     // integrity-assured nor OCB-encrypted and lacks the old software key header is assumed to be
 | |
|     // keymaster0 hardware.
 | |
| 
 | |
|     AuthorizationSet hw_enforced;
 | |
|     AuthorizationSet sw_enforced;
 | |
|     KeymasterKeyBlob key_material;
 | |
|     keymaster_error_t error;
 | |
| 
 | |
|     auto constructKey = [&, this]() mutable -> keymaster_error_t {
 | |
|         // GetKeyFactory
 | |
|         if (error != KM_ERROR_OK) return error;
 | |
|         keymaster_algorithm_t algorithm;
 | |
|         if (!hw_enforced.GetTagValue(TAG_ALGORITHM, &algorithm) &&
 | |
|             !sw_enforced.GetTagValue(TAG_ALGORITHM, &algorithm)) {
 | |
|             return KM_ERROR_INVALID_ARGUMENT;
 | |
|         }
 | |
| 
 | |
|         // Pretend to be some sort of secure hardware that can securely store
 | |
|         // the key blob. Check the key blob is still securely stored now.
 | |
|         if (hw_enforced.Contains(KM_TAG_ROLLBACK_RESISTANCE) ||
 | |
|             hw_enforced.Contains(KM_TAG_USAGE_COUNT_LIMIT)) {
 | |
|             if (pure_soft_secure_key_storage_ == nullptr) return KM_ERROR_INVALID_KEY_BLOB;
 | |
|             km_id_t keyid;
 | |
|             bool exists;
 | |
|             if (!soft_keymaster_enforcement_.CreateKeyId(blob, &keyid))
 | |
|                 return KM_ERROR_INVALID_KEY_BLOB;
 | |
|             error = pure_soft_secure_key_storage_->KeyExists(keyid, &exists);
 | |
|             if (error != KM_ERROR_OK || !exists) return KM_ERROR_INVALID_KEY_BLOB;
 | |
|         }
 | |
| 
 | |
|         auto factory = GetKeyFactory(algorithm);
 | |
|         return factory->LoadKey(move(key_material), additional_params, move(hw_enforced),
 | |
|                                 move(sw_enforced), key);
 | |
|     };
 | |
| 
 | |
|     AuthorizationSet hidden;
 | |
|     error = BuildHiddenAuthorizations(additional_params, &hidden, softwareRootOfTrust);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     // Assume it's an integrity-assured blob (new software-only blob, or new keymaster0-backed
 | |
|     // blob).
 | |
|     error =
 | |
|         DeserializeIntegrityAssuredBlob(blob, hidden, &key_material, &hw_enforced, &sw_enforced);
 | |
|     if (error != KM_ERROR_INVALID_KEY_BLOB) return constructKey();
 | |
| 
 | |
|     // Wasn't an integrity-assured blob.  Maybe it's an auth-encrypted blob.
 | |
|     error = ParseAuthEncryptedBlob(blob, hidden, &key_material, &hw_enforced, &sw_enforced);
 | |
|     if (error == KM_ERROR_OK) LOG_D("Parsed an old keymaster1 software key", 0);
 | |
|     if (error != KM_ERROR_INVALID_KEY_BLOB) return constructKey();
 | |
| 
 | |
|     // Wasn't an auth-encrypted blob.  Maybe it's an old softkeymaster blob.
 | |
|     error = ParseOldSoftkeymasterBlob(blob, &key_material, &hw_enforced, &sw_enforced);
 | |
|     if (error == KM_ERROR_OK) LOG_D("Parsed an old sofkeymaster key", 0);
 | |
| 
 | |
|     return constructKey();
 | |
| }
 | |
| 
 | |
| keymaster_error_t PureSoftKeymasterContext::DeleteKey(const KeymasterKeyBlob& blob) const {
 | |
|     // Pretend to be some secure hardware with secure storage.
 | |
|     if (GetSecurityLevel() != KM_SECURITY_LEVEL_SOFTWARE &&
 | |
|         pure_soft_secure_key_storage_ != nullptr) {
 | |
|         km_id_t keyid;
 | |
|         if (!soft_keymaster_enforcement_.CreateKeyId(blob, &keyid)) return KM_ERROR_UNKNOWN_ERROR;
 | |
|         return pure_soft_secure_key_storage_->DeleteKey(keyid);
 | |
|     }
 | |
| 
 | |
|     // Otherwise, nothing to do for software-only contexts.
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| keymaster_error_t PureSoftKeymasterContext::DeleteAllKeys() const {
 | |
|     // Pretend to be some secure hardware with secure storage.
 | |
|     if (GetSecurityLevel() != KM_SECURITY_LEVEL_SOFTWARE &&
 | |
|         pure_soft_secure_key_storage_ != nullptr) {
 | |
|         return pure_soft_secure_key_storage_->DeleteAllKeys();
 | |
|     }
 | |
| 
 | |
|     // Otherwise, nothing to do for software-only contexts.
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| keymaster_error_t PureSoftKeymasterContext::AddRngEntropy(const uint8_t* buf, size_t length) const {
 | |
|     if (length > 2 * 1024) {
 | |
|         // At most 2KiB is allowed to be added at once.
 | |
|         return KM_ERROR_INVALID_INPUT_LENGTH;
 | |
|     }
 | |
|     // XXX TODO according to boringssl openssl/rand.h RAND_add is deprecated and does
 | |
|     // nothing
 | |
|     RAND_add(buf, length, 0 /* Don't assume any entropy is added to the pool. */);
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| CertificateChain
 | |
| PureSoftKeymasterContext::GenerateAttestation(const Key& key,                         //
 | |
|                                               const AuthorizationSet& attest_params,  //
 | |
|                                               UniquePtr<Key> attest_key,
 | |
|                                               const KeymasterBlob& issuer_subject,
 | |
|                                               keymaster_error_t* error) const {
 | |
|     if (!error) return {};
 | |
|     *error = KM_ERROR_OK;
 | |
| 
 | |
|     keymaster_algorithm_t key_algorithm;
 | |
|     if (!key.authorizations().GetTagValue(TAG_ALGORITHM, &key_algorithm)) {
 | |
|         *error = KM_ERROR_UNKNOWN_ERROR;
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     if ((key_algorithm != KM_ALGORITHM_RSA && key_algorithm != KM_ALGORITHM_EC)) {
 | |
|         *error = KM_ERROR_INCOMPATIBLE_ALGORITHM;
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     if (attest_params.GetTagValue(TAG_DEVICE_UNIQUE_ATTESTATION)) {
 | |
|         *error = KM_ERROR_UNIMPLEMENTED;
 | |
|         return {};
 | |
|     }
 | |
|     // We have established that the given key has the correct algorithm, and because this is the
 | |
|     // SoftKeymasterContext we can assume that the Key is an AsymmetricKey. So we can downcast.
 | |
|     const AsymmetricKey& asymmetric_key = static_cast<const AsymmetricKey&>(key);
 | |
| 
 | |
|     AttestKeyInfo attest_key_info(attest_key, &issuer_subject, error);
 | |
|     if (*error != KM_ERROR_OK) return {};
 | |
| 
 | |
|     return generate_attestation(asymmetric_key, attest_params, move(attest_key_info), *this, error);
 | |
| }
 | |
| 
 | |
| CertificateChain PureSoftKeymasterContext::GenerateSelfSignedCertificate(
 | |
|     const Key& key, const AuthorizationSet& cert_params, bool fake_signature,
 | |
|     keymaster_error_t* error) const {
 | |
|     keymaster_algorithm_t key_algorithm;
 | |
|     if (!key.authorizations().GetTagValue(TAG_ALGORITHM, &key_algorithm)) {
 | |
|         *error = KM_ERROR_UNKNOWN_ERROR;
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     if ((key_algorithm != KM_ALGORITHM_RSA && key_algorithm != KM_ALGORITHM_EC)) {
 | |
|         *error = KM_ERROR_INCOMPATIBLE_ALGORITHM;
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     // We have established that the given key has the correct algorithm, and because this is the
 | |
|     // SoftKeymasterContext we can assume that the Key is an AsymmetricKey. So we can downcast.
 | |
|     const AsymmetricKey& asymmetric_key = static_cast<const AsymmetricKey&>(key);
 | |
| 
 | |
|     return generate_self_signed_cert(asymmetric_key, cert_params, fake_signature, error);
 | |
| }
 | |
| 
 | |
| keymaster::Buffer PureSoftKeymasterContext::GenerateUniqueId(uint64_t creation_date_time,
 | |
|                                                              const keymaster_blob_t& application_id,
 | |
|                                                              bool reset_since_rotation,
 | |
|                                                              keymaster_error_t* error) const {
 | |
|     *error = KM_ERROR_OK;
 | |
|     // The default implementation fakes the hardware bound key with an arbitrary 128-bit value.
 | |
|     // Any real implementation must follow the guidance from the interface definition
 | |
|     // hardware/interfaces/security/keymint/aidl/android/hardware/security/keymint/Tag.aidl:
 | |
|     // "..a unique hardware-bound secret known to the secure environment and never revealed by it.
 | |
|     // The secret must contain at least 128 bits of entropy and be unique to the individual device"
 | |
|     const std::vector<uint8_t> fake_hbk = {'M', 'u', 's', 't', 'B', 'e', 'R', 'a',
 | |
|                                            'n', 'd', 'o', 'm', 'B', 'i', 't', 's'};
 | |
|     return keymaster::generate_unique_id(fake_hbk, creation_date_time, application_id,
 | |
|                                          reset_since_rotation);
 | |
| }
 | |
| 
 | |
| static keymaster_error_t TranslateAuthorizationSetError(AuthorizationSet::Error err) {
 | |
|     switch (err) {
 | |
|     case AuthorizationSet::OK:
 | |
|         return KM_ERROR_OK;
 | |
|     case AuthorizationSet::ALLOCATION_FAILURE:
 | |
|         return KM_ERROR_MEMORY_ALLOCATION_FAILED;
 | |
|     case AuthorizationSet::MALFORMED_DATA:
 | |
|         return KM_ERROR_UNKNOWN_ERROR;
 | |
|     }
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| keymaster_error_t PureSoftKeymasterContext::UnwrapKey(
 | |
|     const KeymasterKeyBlob& wrapped_key_blob, const KeymasterKeyBlob& wrapping_key_blob,
 | |
|     const AuthorizationSet& /* wrapping_key_params */, const KeymasterKeyBlob& masking_key,
 | |
|     AuthorizationSet* wrapped_key_params, keymaster_key_format_t* wrapped_key_format,
 | |
|     KeymasterKeyBlob* wrapped_key_material) const {
 | |
|     keymaster_error_t error = KM_ERROR_OK;
 | |
| 
 | |
|     if (!wrapped_key_material) return KM_ERROR_UNEXPECTED_NULL_POINTER;
 | |
| 
 | |
|     // Parse wrapped key data
 | |
|     KeymasterBlob iv;
 | |
|     KeymasterKeyBlob transit_key;
 | |
|     KeymasterKeyBlob secure_key;
 | |
|     KeymasterBlob tag;
 | |
|     KeymasterBlob wrapped_key_description;
 | |
|     error = parse_wrapped_key(wrapped_key_blob, &iv, &transit_key, &secure_key, &tag,
 | |
|                               wrapped_key_params, wrapped_key_format, &wrapped_key_description);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     UniquePtr<Key> key;
 | |
|     auto wrapping_key_params = AuthorizationSetBuilder()
 | |
|                                    .RsaEncryptionKey(2048, 65537)
 | |
|                                    .Digest(KM_DIGEST_SHA_2_256)
 | |
|                                    .Padding(KM_PAD_RSA_OAEP)
 | |
|                                    .Authorization(TAG_PURPOSE, KM_PURPOSE_WRAP)
 | |
|                                    .build();
 | |
|     error = ParseKeyBlob(wrapping_key_blob, wrapping_key_params, &key);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     // Ensure the wrapping key has the right purpose
 | |
|     if (!key->hw_enforced().Contains(TAG_PURPOSE, KM_PURPOSE_WRAP) &&
 | |
|         !key->sw_enforced().Contains(TAG_PURPOSE, KM_PURPOSE_WRAP)) {
 | |
|         return KM_ERROR_INCOMPATIBLE_PURPOSE;
 | |
|     }
 | |
| 
 | |
|     auto operation_factory = GetOperationFactory(KM_ALGORITHM_RSA, KM_PURPOSE_DECRYPT);
 | |
|     if (!operation_factory) return KM_ERROR_UNKNOWN_ERROR;
 | |
| 
 | |
|     AuthorizationSet out_params;
 | |
|     OperationPtr operation(
 | |
|         operation_factory->CreateOperation(move(*key), wrapping_key_params, &error));
 | |
|     if (!operation.get()) return error;
 | |
| 
 | |
|     error = operation->Begin(wrapping_key_params, &out_params);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     Buffer input;
 | |
|     Buffer output;
 | |
|     if (!input.Reinitialize(transit_key.key_material, transit_key.key_material_size)) {
 | |
|         return KM_ERROR_MEMORY_ALLOCATION_FAILED;
 | |
|     }
 | |
| 
 | |
|     error = operation->Finish(wrapping_key_params, input, Buffer() /* signature */, &out_params,
 | |
|                               &output);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     // decrypt the encrypted key material with the transit key
 | |
|     KeymasterKeyBlob key_material = {output.peek_read(), output.available_read()};
 | |
| 
 | |
|     // XOR the transit key with the masking key
 | |
|     if (key_material.key_material_size != masking_key.key_material_size) {
 | |
|         return KM_ERROR_INVALID_ARGUMENT;
 | |
|     }
 | |
|     for (size_t i = 0; i < key_material.key_material_size; i++) {
 | |
|         key_material.writable_data()[i] ^= masking_key.key_material[i];
 | |
|     }
 | |
| 
 | |
|     auto transit_key_authorizations = AuthorizationSetBuilder()
 | |
|                                           .AesEncryptionKey(256)
 | |
|                                           .Padding(KM_PAD_NONE)
 | |
|                                           .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM)
 | |
|                                           .Authorization(TAG_NONCE, iv)
 | |
|                                           .Authorization(TAG_MIN_MAC_LENGTH, 128)
 | |
|                                           .build();
 | |
|     if (transit_key_authorizations.is_valid() != AuthorizationSet::Error::OK) {
 | |
|         return TranslateAuthorizationSetError(transit_key_authorizations.is_valid());
 | |
|     }
 | |
|     auto gcm_params = AuthorizationSetBuilder()
 | |
|                           .Padding(KM_PAD_NONE)
 | |
|                           .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM)
 | |
|                           .Authorization(TAG_NONCE, iv)
 | |
|                           .Authorization(TAG_MAC_LENGTH, 128)
 | |
|                           .build();
 | |
|     if (gcm_params.is_valid() != AuthorizationSet::Error::OK) {
 | |
|         return TranslateAuthorizationSetError(transit_key_authorizations.is_valid());
 | |
|     }
 | |
| 
 | |
|     auto aes_factory = GetKeyFactory(KM_ALGORITHM_AES);
 | |
|     if (!aes_factory) return KM_ERROR_UNKNOWN_ERROR;
 | |
| 
 | |
|     UniquePtr<Key> aes_key;
 | |
|     error = aes_factory->LoadKey(move(key_material), gcm_params, move(transit_key_authorizations),
 | |
|                                  AuthorizationSet(), &aes_key);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     auto aes_operation_factory = GetOperationFactory(KM_ALGORITHM_AES, KM_PURPOSE_DECRYPT);
 | |
|     if (!aes_operation_factory) return KM_ERROR_UNKNOWN_ERROR;
 | |
| 
 | |
|     OperationPtr aes_operation(
 | |
|         aes_operation_factory->CreateOperation(move(*aes_key), gcm_params, &error));
 | |
|     if (!aes_operation.get()) return error;
 | |
| 
 | |
|     error = aes_operation->Begin(gcm_params, &out_params);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     size_t consumed = 0;
 | |
|     Buffer encrypted_key, plaintext;
 | |
|     if (!plaintext.Reinitialize(secure_key.key_material_size + tag.data_length)) {
 | |
|         return KM_ERROR_MEMORY_ALLOCATION_FAILED;
 | |
|     }
 | |
|     if (!encrypted_key.Reinitialize(secure_key.key_material_size + tag.data_length)) {
 | |
|         return KM_ERROR_MEMORY_ALLOCATION_FAILED;
 | |
|     }
 | |
|     if (!encrypted_key.write(secure_key.key_material, secure_key.key_material_size)) {
 | |
|         return KM_ERROR_UNKNOWN_ERROR;
 | |
|     }
 | |
|     if (!encrypted_key.write(tag.data, tag.data_length)) {
 | |
|         return KM_ERROR_UNKNOWN_ERROR;
 | |
|     }
 | |
| 
 | |
|     AuthorizationSet update_outparams;
 | |
|     auto update_params = AuthorizationSetBuilder()
 | |
|                              .Authorization(TAG_ASSOCIATED_DATA, wrapped_key_description.data,
 | |
|                                             wrapped_key_description.data_length)
 | |
|                              .build();
 | |
|     if (update_params.is_valid() != AuthorizationSet::Error::OK) {
 | |
|         return TranslateAuthorizationSetError(update_params.is_valid());
 | |
|     }
 | |
| 
 | |
|     error = aes_operation->Update(update_params, encrypted_key, &update_outparams, &plaintext,
 | |
|                                   &consumed);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     AuthorizationSet finish_params, finish_out_params;
 | |
|     Buffer finish_input;
 | |
|     error = aes_operation->Finish(finish_params, finish_input, Buffer() /* signature */,
 | |
|                                   &finish_out_params, &plaintext);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     *wrapped_key_material = {plaintext.peek_read(), plaintext.available_read()};
 | |
|     if (!wrapped_key_material->key_material && plaintext.peek_read()) {
 | |
|         return KM_ERROR_MEMORY_ALLOCATION_FAILED;
 | |
|     }
 | |
| 
 | |
|     return error;
 | |
| }
 | |
| 
 | |
| const AttestationContext::VerifiedBootParams*
 | |
| PureSoftKeymasterContext::GetVerifiedBootParams(keymaster_error_t* error) const {
 | |
|     static VerifiedBootParams params;
 | |
|     static std::string fake_vb_key(32, 0);
 | |
|     params.verified_boot_key = {reinterpret_cast<uint8_t*>(fake_vb_key.data()), fake_vb_key.size()};
 | |
|     params.verified_boot_hash = {reinterpret_cast<uint8_t*>(fake_vb_key.data()),
 | |
|                                  fake_vb_key.size()};
 | |
|     params.verified_boot_state = KM_VERIFIED_BOOT_UNVERIFIED;
 | |
|     params.device_locked = false;
 | |
|     *error = KM_ERROR_OK;
 | |
|     return ¶ms;
 | |
| }
 | |
| 
 | |
| }  // namespace keymaster
 |