420 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			420 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright 2015 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #include <keymaster/contexts/soft_keymaster_context.h>
 | |
| 
 | |
| #include <memory>
 | |
| 
 | |
| #include <openssl/rand.h>
 | |
| 
 | |
| #include <keymaster/android_keymaster_utils.h>
 | |
| #include <keymaster/key_blob_utils/auth_encrypted_key_blob.h>
 | |
| #include <keymaster/key_blob_utils/integrity_assured_key_blob.h>
 | |
| #include <keymaster/key_blob_utils/ocb_utils.h>
 | |
| #include <keymaster/key_blob_utils/software_keyblobs.h>
 | |
| #include <keymaster/km_openssl/aes_key.h>
 | |
| #include <keymaster/km_openssl/asymmetric_key.h>
 | |
| #include <keymaster/km_openssl/attestation_utils.h>
 | |
| #include <keymaster/km_openssl/certificate_utils.h>
 | |
| #include <keymaster/km_openssl/hmac_key.h>
 | |
| #include <keymaster/km_openssl/openssl_err.h>
 | |
| #include <keymaster/km_openssl/triple_des_key.h>
 | |
| #include <keymaster/legacy_support/ec_keymaster1_key.h>
 | |
| #include <keymaster/legacy_support/rsa_keymaster1_key.h>
 | |
| #include <keymaster/logger.h>
 | |
| 
 | |
| #include <keymaster/contexts/soft_attestation_cert.h>
 | |
| 
 | |
| using std::unique_ptr;
 | |
| 
 | |
| namespace keymaster {
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| KeymasterBlob string2Blob(const std::string& str) {
 | |
|     return KeymasterBlob(reinterpret_cast<const uint8_t*>(str.data()), str.size());
 | |
| }
 | |
| 
 | |
| }  // anonymous namespace
 | |
| 
 | |
| SoftKeymasterContext::SoftKeymasterContext(KmVersion version, const std::string& root_of_trust)
 | |
|     : SoftAttestationContext(version),  //
 | |
|       rsa_factory_(new (std::nothrow) RsaKeyFactory(*this /* blob_maker */, *this /* context */)),
 | |
|       ec_factory_(new (std::nothrow) EcKeyFactory(*this /* blob_maker */, *this /* context */)),
 | |
|       aes_factory_(new (std::nothrow)
 | |
|                        AesKeyFactory(*this /* blob_maker */, *this /* random_source */)),
 | |
|       tdes_factory_(new (std::nothrow)
 | |
|                         TripleDesKeyFactory(*this /* blob_maker */, *this /* random_source */)),
 | |
|       hmac_factory_(new (std::nothrow)
 | |
|                         HmacKeyFactory(*this /* blob_maker */, *this /* random_source */)),
 | |
|       km1_dev_(nullptr), root_of_trust_(string2Blob(root_of_trust)), os_version_(0),
 | |
|       os_patchlevel_(0) {}
 | |
| 
 | |
| SoftKeymasterContext::~SoftKeymasterContext() {}
 | |
| 
 | |
| keymaster_error_t SoftKeymasterContext::SetHardwareDevice(keymaster1_device_t* keymaster1_device) {
 | |
|     if (!keymaster1_device) return KM_ERROR_UNEXPECTED_NULL_POINTER;
 | |
| 
 | |
|     km1_dev_ = keymaster1_device;
 | |
| 
 | |
|     km1_engine_.reset(new (std::nothrow) Keymaster1Engine(keymaster1_device));
 | |
|     rsa_factory_.reset(new (std::nothrow) RsaKeymaster1KeyFactory(
 | |
|         *this /* blob_maker */, *this /* attestation_context */, km1_engine_.get()));
 | |
|     ec_factory_.reset(new (std::nothrow) EcdsaKeymaster1KeyFactory(
 | |
|         *this /* blob_maker */, *this /* attestation_context */, km1_engine_.get()));
 | |
| 
 | |
|     // Use default HMAC and AES key factories. Higher layers will pass HMAC/AES keys/ops that are
 | |
|     // supported by the hardware to it and other ones to the software-only factory.
 | |
| 
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| keymaster_error_t SoftKeymasterContext::SetSystemVersion(uint32_t os_version,
 | |
|                                                          uint32_t os_patchlevel) {
 | |
|     os_version_ = os_version;
 | |
|     os_patchlevel_ = os_patchlevel;
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| void SoftKeymasterContext::GetSystemVersion(uint32_t* os_version, uint32_t* os_patchlevel) const {
 | |
|     *os_version = os_version_;
 | |
|     *os_patchlevel = os_patchlevel_;
 | |
| }
 | |
| 
 | |
| KeyFactory* SoftKeymasterContext::GetKeyFactory(keymaster_algorithm_t algorithm) const {
 | |
|     switch (algorithm) {
 | |
|     case KM_ALGORITHM_RSA:
 | |
|         return rsa_factory_.get();
 | |
|     case KM_ALGORITHM_EC:
 | |
|         return ec_factory_.get();
 | |
|     case KM_ALGORITHM_AES:
 | |
|         return aes_factory_.get();
 | |
|     case KM_ALGORITHM_TRIPLE_DES:
 | |
|         return tdes_factory_.get();
 | |
|     case KM_ALGORITHM_HMAC:
 | |
|         return hmac_factory_.get();
 | |
|     default:
 | |
|         return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static keymaster_algorithm_t supported_algorithms[] = {KM_ALGORITHM_RSA, KM_ALGORITHM_EC,
 | |
|                                                        KM_ALGORITHM_AES, KM_ALGORITHM_HMAC};
 | |
| 
 | |
| keymaster_algorithm_t*
 | |
| SoftKeymasterContext::GetSupportedAlgorithms(size_t* algorithms_count) const {
 | |
|     *algorithms_count = array_length(supported_algorithms);
 | |
|     return supported_algorithms;
 | |
| }
 | |
| 
 | |
| OperationFactory* SoftKeymasterContext::GetOperationFactory(keymaster_algorithm_t algorithm,
 | |
|                                                             keymaster_purpose_t purpose) const {
 | |
|     KeyFactory* key_factory = GetKeyFactory(algorithm);
 | |
|     if (!key_factory) return nullptr;
 | |
|     return key_factory->GetOperationFactory(purpose);
 | |
| }
 | |
| 
 | |
| static keymaster_error_t TranslateAuthorizationSetError(AuthorizationSet::Error err) {
 | |
|     switch (err) {
 | |
|     case AuthorizationSet::OK:
 | |
|         return KM_ERROR_OK;
 | |
|     case AuthorizationSet::ALLOCATION_FAILURE:
 | |
|         return KM_ERROR_MEMORY_ALLOCATION_FAILED;
 | |
|     case AuthorizationSet::MALFORMED_DATA:
 | |
|         return KM_ERROR_UNKNOWN_ERROR;
 | |
|     }
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| static keymaster_error_t SetAuthorizations(const AuthorizationSet& key_description,
 | |
|                                            keymaster_key_origin_t origin, uint32_t os_version,
 | |
|                                            uint32_t os_patchlevel, AuthorizationSet* hw_enforced,
 | |
|                                            AuthorizationSet* sw_enforced) {
 | |
|     sw_enforced->Clear();
 | |
| 
 | |
|     for (auto& entry : key_description) {
 | |
|         switch (entry.tag) {
 | |
|         // These cannot be specified by the client.
 | |
|         case KM_TAG_ROOT_OF_TRUST:
 | |
|         case KM_TAG_ORIGIN:
 | |
|             LOG_E("Root of trust and origin tags may not be specified", 0);
 | |
|             return KM_ERROR_INVALID_TAG;
 | |
| 
 | |
|         // These don't work.
 | |
|         case KM_TAG_ROLLBACK_RESISTANT:
 | |
|             LOG_E("KM_TAG_ROLLBACK_RESISTANT not supported", 0);
 | |
|             return KM_ERROR_UNSUPPORTED_TAG;
 | |
| 
 | |
|         // These are hidden.
 | |
|         case KM_TAG_APPLICATION_ID:
 | |
|         case KM_TAG_APPLICATION_DATA:
 | |
|             break;
 | |
| 
 | |
|         // Everything else we just copy into sw_enforced, unless the KeyFactory has placed it in
 | |
|         // hw_enforced, in which case we defer to its decision.
 | |
|         default:
 | |
|             if (hw_enforced->GetTagCount(entry.tag) == 0) sw_enforced->push_back(entry);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sw_enforced->push_back(TAG_CREATION_DATETIME, java_time(time(nullptr)));
 | |
|     sw_enforced->push_back(TAG_ORIGIN, origin);
 | |
|     sw_enforced->push_back(TAG_OS_VERSION, os_version);
 | |
|     sw_enforced->push_back(TAG_OS_PATCHLEVEL, os_patchlevel);
 | |
| 
 | |
|     return TranslateAuthorizationSetError(sw_enforced->is_valid());
 | |
| }
 | |
| 
 | |
| keymaster_error_t SoftKeymasterContext::CreateKeyBlob(const AuthorizationSet& key_description,
 | |
|                                                       const keymaster_key_origin_t origin,
 | |
|                                                       const KeymasterKeyBlob& key_material,
 | |
|                                                       KeymasterKeyBlob* blob,
 | |
|                                                       AuthorizationSet* hw_enforced,
 | |
|                                                       AuthorizationSet* sw_enforced) const {
 | |
|     keymaster_error_t error = SetAuthorizations(key_description, origin, os_version_,
 | |
|                                                 os_patchlevel_, hw_enforced, sw_enforced);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     AuthorizationSet hidden;
 | |
|     error = BuildHiddenAuthorizations(key_description, &hidden, root_of_trust_);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     return SerializeIntegrityAssuredBlob(key_material, hidden, *hw_enforced, *sw_enforced, blob);
 | |
| }
 | |
| 
 | |
| keymaster_error_t SoftKeymasterContext::UpgradeKeyBlob(const KeymasterKeyBlob& key_to_upgrade,
 | |
|                                                        const AuthorizationSet& upgrade_params,
 | |
|                                                        KeymasterKeyBlob* upgraded_key) const {
 | |
|     UniquePtr<Key> key;
 | |
|     keymaster_error_t error = ParseKeyBlob(key_to_upgrade, upgrade_params, &key);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     // Three cases here:
 | |
|     //
 | |
|     // 1. Software key blob.  Version info, if present, is in sw_enforced.  If not present, we
 | |
|     //    should add it.
 | |
|     //
 | |
|     // 2. Keymaster0 hardware key blob.  Version info, if present, is in sw_enforced.  If not
 | |
|     //    present we should add it.
 | |
|     //
 | |
|     // 3. Keymaster1 hardware key blob.  Version info is not present and we shouldn't have been
 | |
|     //    asked to upgrade.
 | |
| 
 | |
|     // Handle case 3.
 | |
|     if (km1_dev_ && key->hw_enforced().Contains(TAG_PURPOSE) &&
 | |
|         !key->hw_enforced().Contains(TAG_OS_PATCHLEVEL))
 | |
|         return KM_ERROR_INVALID_ARGUMENT;
 | |
| 
 | |
|     // Handle case 1 and 2
 | |
|     return UpgradeSoftKeyBlob(key, os_version_, os_patchlevel_, upgrade_params, upgraded_key);
 | |
| }
 | |
| 
 | |
| keymaster_error_t SoftKeymasterContext::ParseKeyBlob(const KeymasterKeyBlob& blob,
 | |
|                                                      const AuthorizationSet& additional_params,
 | |
|                                                      UniquePtr<Key>* key) const {
 | |
|     // This is a little bit complicated.
 | |
|     //
 | |
|     // The SoftKeymasterContext has to handle a lot of different kinds of key blobs.
 | |
|     //
 | |
|     // 1.  New keymaster1 software key blobs.  These are integrity-assured but not encrypted.  The
 | |
|     //     raw key material and auth sets should be extracted and returned.  This is the kind
 | |
|     //     produced by this context when the KeyFactory doesn't use keymaster0 to back the keys.
 | |
|     //
 | |
|     // 2.  Old keymaster1 software key blobs.  These are OCB-encrypted with an all-zero master key.
 | |
|     //     They should be decrypted and the key material and auth sets extracted and returned.
 | |
|     //
 | |
|     // 3.  Old keymaster0 software key blobs.  These are raw key material with a small header tacked
 | |
|     //     on the front.  They don't have auth sets, so reasonable defaults are generated and
 | |
|     //     returned along with the raw key material.
 | |
|     //
 | |
|     // 4.  New keymaster0 hardware key blobs.  These are integrity-assured but not encrypted (though
 | |
|     //     they're protected by the keymaster0 hardware implementation).  The keymaster0 key blob
 | |
|     //     and auth sets should be extracted and returned.
 | |
|     //
 | |
|     // 5.  Keymaster1 hardware key blobs.  These are raw hardware key blobs.  They contain auth
 | |
|     //     sets, which we retrieve from the hardware module.
 | |
|     //
 | |
|     // 6.  Old keymaster0 hardware key blobs.  These are raw hardware key blobs.  They don't have
 | |
|     //     auth sets so reasonable defaults are generated and returned along with the key blob.
 | |
|     //
 | |
|     // Determining what kind of blob has arrived is somewhat tricky.  What helps is that
 | |
|     // integrity-assured and OCB-encrypted blobs are self-consistent and effectively impossible to
 | |
|     // parse as anything else.  Old keymaster0 software key blobs have a header.  It's reasonably
 | |
|     // unlikely that hardware keys would have the same header.  So anything that is neither
 | |
|     // integrity-assured nor OCB-encrypted and lacks the old software key header is assumed to be
 | |
|     // keymaster0 hardware.
 | |
| 
 | |
|     AuthorizationSet hw_enforced;
 | |
|     AuthorizationSet sw_enforced;
 | |
|     KeymasterKeyBlob key_material;
 | |
|     AuthorizationSet hidden;
 | |
|     keymaster_error_t error;
 | |
| 
 | |
|     auto constructKey = [&, this]() mutable -> keymaster_error_t {
 | |
|         // GetKeyFactory
 | |
|         if (error != KM_ERROR_OK) return error;
 | |
|         keymaster_algorithm_t algorithm;
 | |
|         if (!hw_enforced.GetTagValue(TAG_ALGORITHM, &algorithm) &&
 | |
|             !sw_enforced.GetTagValue(TAG_ALGORITHM, &algorithm)) {
 | |
|             return KM_ERROR_INVALID_ARGUMENT;
 | |
|         }
 | |
|         auto factory = GetKeyFactory(algorithm);
 | |
|         return factory->LoadKey(move(key_material), additional_params, move(hw_enforced),
 | |
|                                 move(sw_enforced), key);
 | |
|     };
 | |
| 
 | |
|     error = BuildHiddenAuthorizations(additional_params, &hidden, root_of_trust_);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
| 
 | |
|     // Assume it's an integrity-assured blob (new software-only blob, or new keymaster0-backed
 | |
|     // blob).
 | |
|     error =
 | |
|         DeserializeIntegrityAssuredBlob(blob, hidden, &key_material, &hw_enforced, &sw_enforced);
 | |
|     if (error != KM_ERROR_INVALID_KEY_BLOB) return constructKey();
 | |
| 
 | |
|     // Wasn't an integrity-assured blob.  Maybe it's an Auth-encrypted blob.
 | |
|     error = ParseAuthEncryptedBlob(blob, hidden, &key_material, &hw_enforced, &sw_enforced);
 | |
|     if (error == KM_ERROR_OK) LOG_D("Parsed an old keymaster1 software key", 0);
 | |
|     if (error != KM_ERROR_INVALID_KEY_BLOB) return constructKey();
 | |
| 
 | |
|     // Wasn't an OCB-encrypted blob.  Maybe it's an old softkeymaster blob.
 | |
|     error = ParseOldSoftkeymasterBlob(blob, &key_material, &hw_enforced, &sw_enforced);
 | |
|     if (error == KM_ERROR_OK) LOG_D("Parsed an old sofkeymaster key", 0);
 | |
|     if (error != KM_ERROR_INVALID_KEY_BLOB) return constructKey();
 | |
| 
 | |
|     if (km1_dev_) {
 | |
|         error = ParseKeymaster1HwBlob(blob, additional_params, &key_material, &hw_enforced,
 | |
|                                       &sw_enforced);
 | |
|     } else {
 | |
|         return KM_ERROR_INVALID_KEY_BLOB;
 | |
|     }
 | |
|     return constructKey();
 | |
| }
 | |
| 
 | |
| keymaster_error_t SoftKeymasterContext::DeleteKey(const KeymasterKeyBlob& blob) const {
 | |
|     if (km1_engine_) {
 | |
|         // HACK. Due to a bug with Qualcomm's Keymaster implementation, which causes the device to
 | |
|         // reboot if we pass it a key blob it doesn't understand, we need to check for software
 | |
|         // keys.  If it looks like a software key there's nothing to do so we just return.
 | |
|         KeymasterKeyBlob key_material;
 | |
|         AuthorizationSet hw_enforced, sw_enforced;
 | |
|         keymaster_error_t error = DeserializeIntegrityAssuredBlob_NoHmacCheck(
 | |
|             blob, &key_material, &hw_enforced, &sw_enforced);
 | |
|         if (error == KM_ERROR_OK) {
 | |
|             return KM_ERROR_OK;
 | |
|         }
 | |
| 
 | |
|         return km1_engine_->DeleteKey(blob);
 | |
|     }
 | |
| 
 | |
|     // Nothing to do for software-only contexts.
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| keymaster_error_t SoftKeymasterContext::DeleteAllKeys() const {
 | |
|     if (km1_engine_) return km1_engine_->DeleteAllKeys();
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| keymaster_error_t SoftKeymasterContext::AddRngEntropy(const uint8_t* buf, size_t length) const {
 | |
|     RAND_add(buf, length, 0 /* Don't assume any entropy is added to the pool. */);
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| keymaster_error_t SoftKeymasterContext::ParseKeymaster1HwBlob(
 | |
|     const KeymasterKeyBlob& blob, const AuthorizationSet& additional_params,
 | |
|     KeymasterKeyBlob* key_material, AuthorizationSet* hw_enforced,
 | |
|     AuthorizationSet* sw_enforced) const {
 | |
|     assert(km1_dev_);
 | |
| 
 | |
|     keymaster_blob_t client_id = {nullptr, 0};
 | |
|     keymaster_blob_t app_data = {nullptr, 0};
 | |
|     keymaster_blob_t* client_id_ptr = nullptr;
 | |
|     keymaster_blob_t* app_data_ptr = nullptr;
 | |
|     if (additional_params.GetTagValue(TAG_APPLICATION_ID, &client_id)) client_id_ptr = &client_id;
 | |
|     if (additional_params.GetTagValue(TAG_APPLICATION_DATA, &app_data)) app_data_ptr = &app_data;
 | |
| 
 | |
|     // Get key characteristics, which incidentally verifies that the HW recognizes the key.
 | |
|     keymaster_key_characteristics_t* characteristics;
 | |
|     keymaster_error_t error = km1_dev_->get_key_characteristics(km1_dev_, &blob, client_id_ptr,
 | |
|                                                                 app_data_ptr, &characteristics);
 | |
|     if (error != KM_ERROR_OK) return error;
 | |
|     unique_ptr<keymaster_key_characteristics_t, Characteristics_Delete> characteristics_deleter(
 | |
|         characteristics);
 | |
| 
 | |
|     LOG_D("Module \"%s\" accepted key", km1_dev_->common.module->name);
 | |
| 
 | |
|     hw_enforced->Reinitialize(characteristics->hw_enforced);
 | |
|     sw_enforced->Reinitialize(characteristics->sw_enforced);
 | |
|     *key_material = blob;
 | |
|     return KM_ERROR_OK;
 | |
| }
 | |
| 
 | |
| CertificateChain
 | |
| SoftKeymasterContext::GenerateAttestation(const Key& key,  //
 | |
|                                           const AuthorizationSet& attest_params,
 | |
|                                           UniquePtr<Key> /* attest_key */,
 | |
|                                           const KeymasterBlob& /* issuer_subject */,  //
 | |
|                                           keymaster_error_t* error) const {
 | |
|     keymaster_algorithm_t key_algorithm;
 | |
|     if (!key.authorizations().GetTagValue(TAG_ALGORITHM, &key_algorithm)) {
 | |
|         *error = KM_ERROR_UNKNOWN_ERROR;
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     if ((key_algorithm != KM_ALGORITHM_RSA && key_algorithm != KM_ALGORITHM_EC)) {
 | |
|         *error = KM_ERROR_INCOMPATIBLE_ALGORITHM;
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     // We have established that the given key has the correct algorithm, and because this is the
 | |
|     // SoftKeymasterContext we can assume that the Key is an AsymmetricKey. So we can downcast.
 | |
|     const AsymmetricKey& asymmetric_key = static_cast<const AsymmetricKey&>(key);
 | |
| 
 | |
|     return generate_attestation(asymmetric_key, attest_params, {} /* attest_key */, *this, error);
 | |
| }
 | |
| 
 | |
| CertificateChain SoftKeymasterContext::GenerateSelfSignedCertificate(
 | |
|     const Key& key, const AuthorizationSet& cert_params, bool fake_signature,
 | |
|     keymaster_error_t* error) const {
 | |
|     keymaster_algorithm_t key_algorithm;
 | |
|     if (!key.authorizations().GetTagValue(TAG_ALGORITHM, &key_algorithm)) {
 | |
|         *error = KM_ERROR_UNKNOWN_ERROR;
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     if ((key_algorithm != KM_ALGORITHM_RSA && key_algorithm != KM_ALGORITHM_EC)) {
 | |
|         *error = KM_ERROR_INCOMPATIBLE_ALGORITHM;
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     // We have established that the given key has the correct algorithm, and because this is the
 | |
|     // SoftKeymasterContext we can assume that the Key is an AsymmetricKey. So we can downcast.
 | |
|     const AsymmetricKey& asymmetric_key = static_cast<const AsymmetricKey&>(key);
 | |
| 
 | |
|     return generate_self_signed_cert(asymmetric_key, cert_params, fake_signature, error);
 | |
| }
 | |
| 
 | |
| keymaster_error_t SoftKeymasterContext::UnwrapKey(const KeymasterKeyBlob&, const KeymasterKeyBlob&,
 | |
|                                                   const AuthorizationSet&, const KeymasterKeyBlob&,
 | |
|                                                   AuthorizationSet*, keymaster_key_format_t*,
 | |
|                                                   KeymasterKeyBlob*) const {
 | |
|     return KM_ERROR_UNIMPLEMENTED;
 | |
| }
 | |
| 
 | |
| }  // namespace keymaster
 |