245 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			245 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  * Copyright (C) 2016 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #define LOG_TAG "connect_benchmark"
 | |
| 
 | |
| /*
 | |
|  * See README.md for general notes.
 | |
|  *
 | |
|  * This set of benchmarks measures the throughput of connect() calls on a single thread for IPv4 and
 | |
|  * IPv6.
 | |
|  *
 | |
|  * Realtime timed tests
 | |
|  * ====================
 | |
|  *
 | |
|  * The tests named *_high_load record the following useful information:
 | |
|  *
 | |
|  *   - real_time: the mean roundtrip time for one connect() call under load
 | |
|  *
 | |
|  *   - iterations: the number of times the test was run within the timelimit --- approximately
 | |
|  *                 MinTime / real_time
 | |
|  *
 | |
|  * Manually timed tests
 | |
|  * ====================
 | |
|  *
 | |
|  * All other sets of tests apart from *_high_load run with manual timing. The purpose of these is to
 | |
|  * measure 90th-percentile latency for connect() calls compared to mean latency.
 | |
|  *
 | |
|  * (TODO: ideally this should be against median latency, but google-benchmark only supports one
 | |
|  *        custom 'label' output for graphing. Stddev isn't appropriate because the latency
 | |
|  *        distribution is usually spiky, not in a nice neat normal-like distribution.)
 | |
|  *
 | |
|  * The manually timed tests record the following useful information:
 | |
|  *
 | |
|  *  - real_time: the average time taken to complete a test run. Unlike the real_time used in high
 | |
|  *               load tests, this is calculated from before-and-after values of the realtime clock
 | |
|  *               over many iterations so may be less accurate than the under-load times.
 | |
|  *
 | |
|  *  - iterations: the number of times the test was run within the timelimit --- approximately
 | |
|  *                MinTime / real_time, although as explained, may not be as meaningful because of
 | |
|  *                overhead from timing.
 | |
|  *
 | |
|  *  - label: a manually-recorded time giving the 90th-percentile value of real_time over all
 | |
|  *           individual runs. Should be compared to real_time.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <arpa/inet.h>
 | |
| #include <cutils/sockets.h>
 | |
| #include <errno.h>
 | |
| #include <netinet/in.h>
 | |
| #include <time.h>
 | |
| 
 | |
| #include <map>
 | |
| #include <functional>
 | |
| #include <thread>
 | |
| 
 | |
| #include <android-base/stringprintf.h>
 | |
| #include <benchmark/benchmark.h>
 | |
| #include <log/log.h>
 | |
| #include <netdutils/Stopwatch.h>
 | |
| #include <utils/StrongPointer.h>
 | |
| 
 | |
| #include "FwmarkClient.h"
 | |
| #include "SockDiag.h"
 | |
| 
 | |
| using android::base::StringPrintf;
 | |
| using android::netdutils::Stopwatch;
 | |
| 
 | |
| static int bindAndListen(int s) {
 | |
|     sockaddr_in6 sin6 = { .sin6_family = AF_INET6 };
 | |
|     if (bind(s, (sockaddr*) &sin6, sizeof(sin6)) == 0) {
 | |
|         if (listen(s, 1)) {
 | |
|             return -1;
 | |
|         }
 | |
|         sockaddr_in sin = {};
 | |
|         socklen_t len = sizeof(sin);
 | |
|         if (getsockname(s, (sockaddr*) &sin, &len)) {
 | |
|             return -1;
 | |
|         }
 | |
|         return ntohs(sin.sin_port);
 | |
|     } else {
 | |
|         return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ipv4_loopback(benchmark::State& state, const bool waitBetweenRuns) {
 | |
|     const int listensocket = socket(AF_INET6, SOCK_STREAM | SOCK_CLOEXEC, 0);
 | |
|     const int port = bindAndListen(listensocket);
 | |
|     if (port == -1) {
 | |
|         state.SkipWithError("Unable to bind server socket");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // ALOGW("Listening on port = %d", port);
 | |
|     std::vector<uint64_t> latencies(state.max_iterations);
 | |
|     uint64_t iterations = 0;
 | |
| 
 | |
|     while (state.KeepRunning()) {
 | |
|         int sock = socket(AF_INET, SOCK_STREAM | SOCK_CLOEXEC, 0);
 | |
|         if (sock < 0) {
 | |
|             state.SkipWithError(StringPrintf("socket() failed with errno=%d", errno).c_str());
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         const Stopwatch stopwatch;
 | |
| 
 | |
|         sockaddr_in server = { .sin_family = AF_INET, .sin_port = htons(port) };
 | |
|         if (connect(sock, (sockaddr*) &server, sizeof(server))) {
 | |
|             state.SkipWithError(StringPrintf("connect() failed with errno=%d", errno).c_str());
 | |
|             close(sock);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (waitBetweenRuns) {
 | |
|             latencies[iterations] = stopwatch.timeTakenUs();
 | |
|             state.SetIterationTime(static_cast<double>(latencies[iterations]) / 1.0e6L);
 | |
|             std::this_thread::sleep_for(std::chrono::milliseconds(10));
 | |
|             ++iterations;
 | |
|         }
 | |
| 
 | |
|         sockaddr_in6 client;
 | |
|         socklen_t clientlen = sizeof(client);
 | |
|         int accepted = accept4(listensocket, (sockaddr*) &client, &clientlen, SOCK_CLOEXEC);
 | |
|         if (accepted < 0) {
 | |
|             state.SkipWithError(StringPrintf("accept() failed with errno=%d", errno).c_str());
 | |
|             close(sock);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         close(accepted);
 | |
|         close(sock);
 | |
|     }
 | |
|     close(listensocket);
 | |
|     // ALOGI("Finished test on port = %d", port);
 | |
| 
 | |
|     if (iterations > 0) {
 | |
|         latencies.resize(iterations);
 | |
|         sort(latencies.begin(), latencies.end());
 | |
|         state.SetLabel(StringPrintf("%lld", (long long) latencies[iterations * 9 / 10]));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ipv6_loopback(benchmark::State& state, const bool waitBetweenRuns) {
 | |
|     const int listensocket = socket(AF_INET6, SOCK_STREAM | SOCK_CLOEXEC, 0);
 | |
|     const int port = bindAndListen(listensocket);
 | |
|     if (port == -1) {
 | |
|         state.SkipWithError("Unable to bind server socket");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // ALOGW("Listening on port = %d", port);
 | |
|     std::vector<uint64_t> latencies(state.max_iterations);
 | |
|     uint64_t iterations = 0;
 | |
| 
 | |
|     while (state.KeepRunning()) {
 | |
|         int sock = socket(AF_INET6, SOCK_STREAM | SOCK_CLOEXEC, 0);
 | |
|         if (sock < 0) {
 | |
|             state.SkipWithError(StringPrintf("socket() failed with errno=%d", errno).c_str());
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         const Stopwatch stopwatch;
 | |
| 
 | |
|         sockaddr_in6 server = { .sin6_family = AF_INET6, .sin6_port = htons(port) };
 | |
|         if (connect(sock, (sockaddr*) &server, sizeof(server))) {
 | |
|             state.SkipWithError(StringPrintf("connect() failed with errno=%d", errno).c_str());
 | |
|             close(sock);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (waitBetweenRuns) {
 | |
|             latencies[iterations] = stopwatch.timeTakenUs();
 | |
|             state.SetIterationTime(static_cast<double>(latencies[iterations]) / 1.0e6L);
 | |
|             std::this_thread::sleep_for(std::chrono::milliseconds(10));
 | |
|             ++iterations;
 | |
|         }
 | |
| 
 | |
|         sockaddr_in6 client;
 | |
|         socklen_t clientlen = sizeof(client);
 | |
|         int accepted = accept4(listensocket, (sockaddr*) &client, &clientlen, SOCK_CLOEXEC);
 | |
|         if (accepted < 0) {
 | |
|             state.SkipWithError(StringPrintf("accept() failed with errno=%d", errno).c_str());
 | |
|             close(sock);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         close(accepted);
 | |
|         close(sock);
 | |
|     }
 | |
|     close(listensocket);
 | |
|     // ALOGI("Finished test on port = %d", port);
 | |
| 
 | |
|     if (iterations > 0) {
 | |
|         latencies.resize(iterations);
 | |
|         sort(latencies.begin(), latencies.end());
 | |
|         state.SetLabel(StringPrintf("%lld", (long long) latencies[iterations * 9 / 10]));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void run(decltype(ipv4_loopback) benchmarkFunction, ::benchmark::State& state,
 | |
|                 const bool waitBetweenRuns) {
 | |
|     benchmarkFunction(state, waitBetweenRuns);
 | |
| }
 | |
| 
 | |
| constexpr int MIN_THREADS = 1;
 | |
| constexpr int MAX_THREADS = 1;
 | |
| constexpr double MIN_TIME = 0.5 /* seconds */;
 | |
| 
 | |
| // IPv4 benchmarks under no load
 | |
| static void ipv4_no_load(::benchmark::State& state) {
 | |
|     run(ipv4_loopback, state, true);
 | |
| }
 | |
| BENCHMARK(ipv4_no_load)->MinTime(MIN_TIME)->UseManualTime();
 | |
| 
 | |
| // IPv4 benchmarks under high load
 | |
| static void ipv4_high_load(::benchmark::State& state) {
 | |
|     run(ipv4_loopback, state, false);
 | |
| }
 | |
| BENCHMARK(ipv4_high_load)->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
 | |
| 
 | |
| // IPv6 raw connect() without using fwmark
 | |
| static void ipv6_no_load(::benchmark::State& state) {
 | |
|     run(ipv6_loopback, state, true);
 | |
| }
 | |
| BENCHMARK(ipv6_no_load)->MinTime(MIN_TIME)->UseManualTime();
 | |
| 
 | |
| // IPv6 benchmarks under high load
 | |
| static void ipv6_high_load(::benchmark::State& state) {
 | |
|     run(ipv6_loopback, state, false);
 | |
| }
 | |
| BENCHMARK(ipv6_high_load)->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
 |